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Restoration of a Single Superresolution
Image from Several Blurred, Noisy,
and Undersampled Measured Images

Michael Elad and Arie Feuer,Senior Member, IEEE

Abstract— The three main tools in the single image restora-
tion theory are the maximum likelihood (ML) estimator, the
maximum a posteriori probability (MAP) estimator, and the set
theoretic approach using projection onto convex sets (POCS).
This paper utilizes the above known tools to propose a unified
methodology toward the more complicated problem ofsuperreso-
lution restoration. In the superresolution restoration problem, an
improved resolution image is restored from several geometrically
warped, blurred, noisy and downsampledmeasured images. The
superresolution restoration problem is modeled and analyzed
from the ML, the MAP, and POCS points of view, yielding a
generalization of the known superresolution restoration meth-
ods. The proposed restoration approach is general but assumes
explicit knowledge of the linear space- and time-variant blur,
the (additive Gaussian) noise, the different measured resolu-
tions, and the (smooth) motion characteristics. A hybrid method
combining the simplicity of the ML and the incorporation of
nonellipsoid constraints is presented, giving improved restoration
performance, compared with the ML and the POCS approaches.
The hybrid method is shown to converge to the unique optimal
solution of a new definition of the optimization problem. Su-
perresolution restoration from motionless measurements is also
discussed. Simulations demonstrate the power of the proposed
methodology.

Index Terms—Constrained optimization problems, estimation,
image restoration, MAP, ML, POCS, regularization, supperres-
olution.

I. INTRODUCTION

T HE CLASSIC theory of restoration of a single image
from linear blur and additive noise has drawn a lot of

research attention in the last three decades [1]–[4]. Many
algorithms were proposed in the literature for this classic
and related problems, contributing to the construction of a
unified theory that ties together many of the existing meth-
ods [4]. In the single image restoration theory, three major
and distinct approaches are extensively used in order to get
practical restoration algorithms: 1) maximum likelihood (ML)
estimator [1]–[4], 2) maximuma posteriori(MAP) probability
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estimator [1]–[4], and 3) projection onto convex sets (POCS)
approach ([5]).

The consistent development of computer technology in
recent years has led to a growing interest in image restoration
theory. The main directions are nontraditional treatments to the
classic problem and looking at new, second-generation restora-
tion problems, allowing for more complicated and more com-
putationally intensive algorithms. Among these new second-
generation problems are multiple image restoration [6]–[12]
and superresolution image restoration [13]–[27]. This pa-
per focuses on the latter problem of superresolution restora-
tion. Application of such restoration methods arises in the
following areas.

1) Remote sensing:where several images of the same area
are given, and an improved resolution image is sought.

2) Frame freeze in video:where typical single frame in
video signal is generally of poor quality and is not
suitable for hard-copy printout. Enhancement of a freeze
image can be done by using several successive images
merged together by a superresolution algorithm.

3) Medical imaging (CT, MRI, ultrasound, etc.):these en-
able the acquisition of several images, yet are limited in
resolution quality.

The superresolution restoration idea was first presented
by Tsay and Huang [13]. They used the frequency domain
approach to demonstrate the ability to reconstruct one im-
proved resolution image from several downsampled noise-free
versions of it, based on the spatial aliasing effect. Other
results suggested a simple generalization of the above idea
to noisy and blurred images. A frequency domain recursive
algorithm for the restoration of superresolution images from
noisy and blurred measurements is suggested in [14]–[16]. A
spatial domain alternative, based on Papoulis [17] and Yen [18]
generalized sampling theorems is suggested by Ur and Gross
[19]. Srinivas and Srinath [20] proposed a superresolution
restoration algorithm based on a minimum mean squared
error (MMSE) approach for the multiple image restoration
problem and interpolation of the restored images into one. All
the above superresolution restoration methods [13]–[20] are
restricted to global uniform translational displacement between
the measured images, linear space-invariant (LSI) blur, and
homogeneous additive noise.

A different approach toward the superresolution restoration
problem was suggested by Peleget al. [21]–[23], based on the
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iterative backprojection (IBP) method adopted from computer
aided tomography (CAT). This method starts with an initial
guess of the output image, projects the temporary result to the
measurements (simulating them), and updates the temporary
guess according to this simulation error. This method is not
limited as the previous ones to specific motion characteristics
and allows arbitrary smooth motion flow, although the conver-
gence of the proposed algorithm is proven only for an affine
geometric warp between the measured images [23]. Set theo-
retic approach to the superresolution restoration problem was
also suggested [24]–[26]. The main result there is the ability
to define convex sets which represent tight constraints on the
required image. Having such constraints, it is straightforward
to apply the POCS method. The restoration procedure in
[24]–[26] has the same benefits as the IBP method mentioned
earlier: arbitrary smooth motion, linear space variant blur,
and nonhomogeneous additive noise. Actually, the POCS can
even be better than the IBP since nonlinear constraints can be
easily combined with the restoration process. However, prac-
tical application of the projections might be computationally
demanding, thus limiting the POCS applicability.

Another approach toward the super-resolution restoration
problem is presented by Schultz and Stevenson [27]. Their
approach uses MAP estimator, with the Huber-Markov Ran-
dom Field (HMRF) prior. The blur of the measured images
is assumed to be simple averaging, and the measurements
additive noise is assumed to be independent and identically
distributed (i.i.d.) Gaussian vector. This choice of prior causes
the entire problem to be nonquadratic, thus complicating the
resulting minimization problem.

In complete analogy to the single image restoration prob-
lem, this paper proposes a unified methodology toward the
problem of superresolution restoration. In this problem, one
improved resolution image is restored from several blurred,
noisy, and downsampled measured images. The superresolu-
tion restoration problem is modeled by using sparse matrices
and analyzed from the ML, the MAP, and the POCS points
of view. The result is a direct generalization of the classic
problem of single image restoration from one measured image.
The three approaches merge into one family of algorithms,
which generalizes the single image restoration theory [1]–[4]
on one hand, and the existing superresolution algorithms
proposed in the literature [13]–[23] on the other hand. The
proposed restoration approach is general but assumes explicit
knowledge of the linear space- and time-variant blur, the
(additive Gaussian) noise, the different measured resolutions,
and the (smooth) motion flow. The presented methodology
also enables the incorporation of POCS into the ML or MAP
restoration algorithms, similar to the way it is done for the
iterative single image restoration problem [4], yielding hybrid
superresolution restoration algorithm with further improved
performance and assured convergence.

The classic superresolution restoration assumes a relative
motion between the measured images as part of the model,
in order to achieve superresolution restoration capability
[13]–[27]. Another question addressed in this paper is whether
motion is a necessary condition for a feasible restoration
with improved resolution. Theoretical results for the LSI blur

operations can be found in [17] and [32]. In this paper, the
general linear space variant case is treated, and it is shown
that superresolution can be achieved even without motion.

This paper is organized as follows: Section II presents a new
model for the superresolution problem and the application of
the ML, the MAP, the POCS, and the hybrid algorithms for
the restoration task. Section III presents a short analysis of the
motionless superresolution restoration problem. In Section IV
we compare the main known superresolution restoration tech-
niques to the approach presented here, showing that the new
approach is a generalization of those techniques. Simulations
results presented in Section V and Section VI concludes the
paper.

II. SUPERRESOLUTIONRESTORATION: A NEW APPROACH

In this section, we present a new approach toward the
superresolution restoration problem. Simplicity and direct con-
nection to the problem of single image restoration (from one
measured image) are the main benefits of this approach. Thus,
the various known methods to restore one image from one
measured image are easily generalized to the new problem of
single image restoration from several measured images. We
start our presentation with a new model to the problem and
then turn to apply known restoration methods to the suggested
model.

A. Modeling the Problem

The key to a comprehensive analysis of the classical su-
perresolution problem is to formulate the problem and to
model it as simply and as efficiently as possible. We start by
presenting the problem to be solved and then turn to introduce
an analytical model describing it. Throughout this paper we
represent images columnwise lexicographically ordered for
matrix notation convenience.

Given are measured images , where each image
is (in the general case) of different size . We
assume that these images are different representations of
a single high-resolution image of size , where
typically for . More specifically, each
measured image is the result of an arbitrary geometric warping,
linear space-variant blurring, and uniform rational decimating
performed on the ideal high-resolution image. We further
assume that each of the measured images is contaminated
by nonhomogeneous additive Gaussian noise, uncorrelated
between different measurements. In order to treat the most
general case, it is assumed that each measurement is the result
of different blur, noise, motion, and decimation parameters.
Translating the above description to an analytical model, we
get

for (2.1)

where is a matrix representing the geometric
warp performed on the image , is the linear space-
variant blur matrix of size , is a
matrix representing the decimation operator resulting in.

stands for the additive zero mean Gaussian noise in the
th measurement with positive definite autocorrelation matrix
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Fig. 1. Degradation model for the superresolution restoration problem

of size . All these matrices ( )
are assumed to be known in advance. Fig. 1 illustrates the
model schematically.

Before we turn to use the above model, we justify the above
assumption regarding the availability of the matrices involved.
The geometric warp matrix is a one-to-one representation
of the optic flow between thenondecimated noiselessversion
of the th measured image and the ideal image. This
optic flow can be reliably estimated from the noisy and
downsampled measurement if it is smooth enough. Such a
case corresponds to global motion characteristics. Note that
the orientation of the ideal image should be chosen arbitrarily
as equal to the orientation of one of the measurements.

The assumption on thea priori knowledge of the blurring
matrix can be explained in some applications by referring
the blur to measurable phenomena, such as optics and sensor
blur. In other cases, we may assume that the superresolution
restoration process is robust to errors in the blurring function,
and thus use rough guess for the blur function and allow such
errors to exist. Of course, such robustness should be proven, a
point that will not be treated in this paper. A different approach
which will not be discussed in this framework is estimating the
blur function in parallel to the restoration process, as suggested
for single image restoration algorithms [4].

The decimation ratio between the ideal image and theth
measurement image is the only parameter determining the
matrix . This ratio is directly drawn from the ratio between
the number of pixels in the measured image and the
ideal image . The determination of the ideal image pixels
number is arbitrary. Choosing a very high value will cause
the problem to be ill-posed, with the ability to relax it by
regularization. Choosing a low value can result in underuti-
lization of information in the measurements, but will improve
the noise suppression results. One intuitive rule that can help
us determine is the requirement

, which can be explained as a requirement that the
amount of given data (in the measurements) should be larger
than the amount of information required in the restored image.

The autocorrelation matrix can be chosen as the
identity matrix if noa priori knowledge on the additive noise
is given. Such a choice corresponds to the assumption that
the noise is white, which is typically the case for many
restoration problems, including superresolution applications.
As mentioned before, a colored noise can be assumed with
its parameters estimated as part of the restoration process [4],
though this approach will not be further discussed here.

Having the above model, grouping of the equations into
one can be done for notational convenience. This way we get

...
...

...
...

(2.2)

where we have defined , and the autocorrela-
tion of the Gaussian random vector is

... (2.3)

The obtained model equation is a classic
restoration problem model [1]–[4]. Thus, we can easily apply
the ML estimator, the MAP or the POCS methods in order to
restore the image , which is exactly our purpose here. In the
following sections we shall briefly present the way to apply
each of those tools.

B. ML Restoration

According to the ML estimator [1]–[4], the estimation of
the unknown image is done by maximizing the condi-
tional probability density function of the measurements, given
the ideal image . Assuming that the measurements
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additive noise is zero mean Gaussian random process with
autocorrelation matrix , performing several algebraic
steps we get that the ML is reduced to the weighted least
squares (WLS) estimation of the form

argmax

argmax (2.4)

Differentiating with respect to and equating to zero gives
the well-known classic pseudoinverse result

(2.5)

where:

(2.6)

Locally adaptive regularization can be included in the above
analysis with both algebraic and physical interpretations
[1]–[4]. Using the Laplacian operator and a weighting
matrix (penalizing nonsmoothness according to thea priori
knowledge on the smoothness required at each pixel), we get

argmax

(2.7)

Differentiating again with respect to and equating to zero
yields the equation , which is the same as in (2.5),
but a new term, , is added to the matrix . Various
iterative methods for practical ways to solve this large set of
sparse linear equations have been suggested in the literature
(see, e.g., [29]).

C. MAP Restoration

According to the MAP estimator, the additive noise, the
measurements, and the ideal image are all assumed stochastic
signals. The MAP estimation of the unknown imageis done
by maximizing the conditional probability density function of
the ideal image given the measurements . Based on
Bayes rule, maximizing is equivalent to maximizing
the function [1]–[4]. Therefore, the MAP
estimator is equivalent to the ML estimator, with the uniform
probability distribution assumption of .

If we assume that the measurements additive noise is zero
mean Gaussian random process with auto-correlation matrix

, and is a zero mean Gaussian random process also,
with autocorrelation matrix , the MAP estimator becomes
the MMSE estimator. Performing several algebraic steps as

was done before, the MAP estimation gives

argmax

argmax

(2.8)

Minimizing the above function with respect to yields
the following result:

(2.9)

where

(2.10)

and the resemblance to the ML result is evident. It can be
shown [4] that if an autoregressive (AR) model is assumed
on the image , a simple and direct connection between the
Laplacian regularization matrix and the AR coefficients can be
established. As before for the ML, the MAP estimator reduces
to a large set of sparse equations that can be solved iteratively
[29].

D. Set Theoretic Restoration

According to the set theoretic approach [5], eacha priori
knowledge on the required restored image should be formu-
lated as a constraining convex set containing the restored
image as a point within this set. Using the model presented
earlier, we can suggest a group of such convex sets based on
the distance measure

(2.11)
This defines a group of convex sets—ellipsoids, in this case.
If the measurements additive noise is white, then ,
other forms of constraints can be proposed, based on
distance measure [5], [24], [25]

(2.12)

where is the support region of theth measured image,
and stands for the uncertainty of the model [24], [25].
This convex set is actually a polytop constructed of scalar
constraints—each corresponds to one pixel of the measured
image , requiring that the absolute value of the model error
at this point be bounded.

Another set that can be used is the one constraining smooth-
ness. According to the proposed smoothness constraint [4], we
can suggest convex set versions as before.

For , we have

(2.13)
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or for :

(2.14)

where is the support region of the ideal image. We can
incorporate additional nonlinear constraints such as constraints
on the output energy, phase, support, and others. An often used
constraint is the one posed on the amplitude of the result

(2.15)
Having a group of convex sets, each containing the

required image, the POCS method suggests the following
iterative algorithm for the recovery of a point within the
intersection of these sets [5]:

(2.16)

where is the projection of a given point onto theth
convex set. Relaxed projections can be used instead of direct
ones in order to improve convergence rate [5]. Projecting
onto an ellipsoid, as required for the sets given in (2.11) and
(2.13), is a computationally complicated task. Projection onto
a multidimensional cube, as is given in the convex sets in
(2.12) and (2.14), does not require any parameter setup, or
large matrix inversion, and thus is much simpler to apply,
compared to the projection onto an ellipsoid.

A different approach toward the POCS idea is the bounding
ellipsoid method [6], [30], [33]. This method is valid for the
case where all the constraints are ellipsoids. The basic idea
here is to find the ellipsoid bounding the intersection of all the
participating constraints, and to choose its center as the output
result. In [6], [30], and [33], the bounding ellipsoid method
and its properties are discussed. Using the convex sets given
in (2.11) and (2.13), we get that the bounding ellipsoid center
is [6], [30], [33]

(2.17)

where

and must satisfy

and (2.18)

For each different choice of a different bounding
ellipsoid is obtained, with a different center. For the special
case where all are identical, we get the results obtained by
the ML and the MAP methods.

E. Hybrid Restoration

We have seen that the ML, the MAP, and the uniform-
weights bounding ellipsoid estimators give similar linear set
of equations, to be solved using iterative algorithms [29]. The
benefit in using these approaches is the relative simplicity
of the restoration process. Their main drawback is the fact
that additional nonquadratic constraints representing additional
a priori knowledge of the ideal signal are not incorporated
into the restoration process. This section presents the way to
combine the simplicity of the above iterative algorithms with
the application of the nonquadratic constraints. We start by
defining a new convex optimization problem, which combines
a quadratic scalar error with convex constraints as follows:

minimize

subject to (2.19)

where the quadratic error takes care of the model and the
smoothness errors, and the additional constraints refer
to the nonellipsoidsa priori knowledge. The quadratic error
term is the same as was defined in the ML, the MAP, and
the bounding ellipsoid methods. Our aim is to construct an
efficient iterative algorithm to solve this constrained convex
optimization problem. The benefit of the proposed new for-
mulation is in the fact that it combines both set theoretic and
stochastic estimation approaches. This way, all thea priori
knowledge is utilized effectively and, in contrast to the POCS
method, there is a single optimal solution (see appendix A)
and [4], [33].

Following the iterative methods presented in [4], we propose
a simple yet effective two-phase iterative algorithm to solve
the above optimization problem. Analysis of this method can
be found in Appendix A. Suppose that an efficient iterative
algorithm that is known to converge to the minimum of the
scalar squared error is given, denoted by [29]. Algorithms
such as the conjugate gradient (CG) or the Gauss–Siedel can
be considered as excellent candidates for. Beyond this first
iterative algorithm , projection operators denoted by

, can be constructed, each projects onto a
convex set and represents a single given constraint. Assuming
that the projections are all given using the Euclidiean
metric, we suggest the following global iterative step:

(2.20)

This interlaced approach is generally converging to asub-
optimal point of the problem given in (2.19) (see Appendix
A). Adding several new iterations, where now is replaced
by the (notoriously slow [29])steepest descent, updates the
previous result and assures that the final convergence is to
the optimal point, as is proved in Appendix A. Off course,
such convergence is assured only if the iterative algorithms
in both phases (conjugate-gradient/Gauss–Siedel, and steepest
descent) are converging to the minimum of[29].

Appendix A also shows that the Gauss–Siedel or the CG
algorithms [29] can serve for the first phase, because of
their relatively fast convergence, but indeed, might converge
to a suboptimal result, whereas the steepest descent assures
convergence to the optimal result. It should be noted that
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applying the CG algorithm combined with projection opera-
tions might cause instability behavior, because the projections
might destroy the -orthogonality of the search directions,
generated by the CG algorithm. However, our simulations gave
no evidence for such problem.

III. M OTION-FREE SUPERRESOLUTION

The classic superresolution restoration assumes a relative
motion between the measured images as part of the model,
in order to achieve superresolution restoration capability
[13]–[27]. This section refers to the question of whether
the motion is a necessary condition for a feasible restoration
with improved resolution. An example for such application is
a fixed camera filming fixed objects. The question is whether
superresolution image can be obtained from several such
images with different defocusing. This section contains a
short analysis of the above question. More details can be
found in [33].

A. Theoretic Analysis

As was shown in the previous section, the ML, MAP, and
POCS (only for ellipsoids and norm) methods give similar
restoration procedures, namely the solution of a large set of
sparse linear equations . We say that superresolu-
tion restoration is possible if the linear set of equations is
well posed, which means that the matrixR is nonsingular.
But, when regularization is combined as an interpolator, the
matrix R is always nonsingular, even if the other terms inR
are singular. Therefore, we omit the regularization term for
the following analysis to concentrate on the restoration part
without the need for interpolation.

Another way of looking at the equations set is the following:
The spatial aliasing effect in the frequency domain is inti-
mately connected to the superresolution restoration idea. This
connection can be directly seen in frequency domain methods
such as [13]–[16]. Spatial aliasing means that high-frequency
components are folded and added to lower frequency ones.
By getting several measurements with different spatial aliasing
effect, these high frequencies can be identified and restored;
this is the main idea behind the superresolution restora-
tion methods. Intuitively, we can understand that having a
measured image with no aliasing effect means that higher
frequencies components do not exist in the original image,
thus removing need for restoring them, and in such cases,
the obtained restoration equation becomes ill posed. Taking
this reasoning further, we can say that when the defined
superresolution restoration problem reduces to an ill-posed
equations set, this corresponds directly to an overresolution
demand from the restoration process. Regularizing the ill-
posed problem is equivalent to introducing interpolation since
the data available is insufficient.

We are interested in the case where , which
means that there is no relative geometric motion between the
measured images. The question to be solved is: Can the matrix
R under the above assumption on be nonsingular? We
further simplify the analysis by assuming that

1) all the measured images are of the same size, i.e.,
;

2) the decimation is the same for all the measured images:
;

3) the weight matrices are the same for all measurements
and equals I: ;

4) the blur matrices are block-Toeplitz, which corresponds
to LSI blur;

5) the blur matrices’ kernel has zero center of mass in
the two axes. This assumption is crucial since nonzero
center of mass implies a global translational motion of
the corresponding measured image. We could replace
this requirement by a tighter requirement and restrict
the analysis to the case of symmetric blurring kernel (in
the two axes), but this of course only limits the results
of the analysis.

Having all these assumptions, we have the following matrix
to check for singularity:

...
...

(3.1)
It is easy to see that if the matrixH is of full rank, then

R is nonsingular [31]. One immediate necessary condition for
this requirement comes from the dimensions on the matrixH:
the number of its rows, , must be at least as high as
the number of its columns, . This necessary condition is
therefore

(3.2)

The rank of the term is at the most (since ).
Taking the first row of each such term , we get vectors.
These vectors must span at least an dimensional
subspace in order to enableH to be full rank. Since these rows
consist of only nonzero entries at fixed locations,
and since the center of mass for each kernel must be zero
(see the assumption 5 made above) we get a second necessary
condition for H to be full rank, as follows:

(3.3)

where is the kernel size of the blurring
operators [1]–[3]. From the above two necessary (but not
sufficient) conditions, we have that superresolution restoration
is impossible if the following condition is not met:

(3.4)

which poses a restriction over the resolution improvement,
governed by the blur-kernel size and the number of measure-
ments. Note, however, that the above inequality only presents
necessary conditions for the superresolution restoration possi-
bility. One interesting point with regard to the above result is
that increasing the number of measurements cannot increase
the restored resolution beyond the upper bound posed by the
kernel size. However, increased number of measurements with
the same output resolution means that better reduction of noise
can be achieved.
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Fig. 2. The eight blurring kernels for the test.

TABLE I
RESULTS FOR THETWO SUPERRESOLUTIONRESTORATION TESTS

B. Motionless Superresolution: Simulation Results

To demonstrate that superresolution is possible without
motion, we have chosen the following case. Let 16,

8, and 2. We then need to have in order to
satisfy the necessary condition (3.4). By assuming a symmetric
blur kernel, we have only free parameters
(see [33] for more details). Eight different experiments have
been conducted varying in the number of measurement images
used, from one to eight. Each of the available measurements
resulted from using different blur kernel; these are given in
Fig. 2. The , are constructed each from
a corresponding kernel in a block Toeplitz form. The matrix
R was constructed for each test and its rank calculated. The
results are summarized in Table I. We note that for our choice
of blur kernelsR is nonsingular when . Namely, in this
case, motionless superresolution restoration is possible.

As part of this same experiment, eight measurements images
from an ideal image , blurred by , decimated by
and contaminated by white Gaussian noise with
were created. The ideal image was then restored using four,
five, six, seven, and eight measurements, with and without
regularization. The regularization constant was chosen to be

. The weight matrix for the regularization term was
diagonal matrix, with “1” for all the image plane, except for
a rectangle covering the letter A, which got the weight 0.1.

The restored images without regularization were computed
using the CG algorithm using only five iterations. It was found

that using more iterations could cause unstable results. It is
known that limiting the iteration number stands for a variation
of regularization [4]. Thus, the nonregularized restoration re-
sults are in a way also regularized. The restoration results with
smoothness regularization were computed using 20 iterations.
The restored images are presented in Fig. 3. As can be seen
from the images, raising the number of measurements indeed
improves the restoration result as expected. Regularizing using
the Laplacian operator also improves the results significantly,
especially for a low number of measurements.

This experiment was repeated using different blur kernels,
all , created from those in Fig. 3 by eliminating the
outer elements. In this case, since the number of free param-
eters is , requiring is theoretically
impossible according to (3.4). Indeed, Table I shows that in
this case the rank of the matricesR is bounded by 192,
meaning that R is singular for all , as expected.

Summarizing this section, we have shown that superres-
olution restoration is possible even without motion between
the measurements. We have established two necessary con-
ditions that apply to the case of LSI blur and uniform size
measurements.

IV. RELATION TO OTHER METHODS

Since this paper proposes a new approach to the superreso-
lution restoration problem, it is appropriate to relate this new
approach to the methods already known in the literature. In
the sequel, we will present a brief description of each of the
existing methods in light of the new results. The four main
known methods for superresolution restoration are the IBP
method [21]–[23], the frequency domain approach [14]–[16],
the POCS approach [24]–[25], and the MAP approach [27].
This section will concentrate on these four methods.

A. The IBP Method

The IBP method [21]–[23] is an iterative algorithm that
projects the temporary result onto the measurements, simu-
lating them this way. The above simulation error is used to
update the temporary result. If we take this exact reasoning
and apply it on our proposed model in (2.1), denoting the
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Fig. 3. Motionless superresolution restoration demonstration.N = 4 (left) to N = 8 (right).

temporary result at the th step by , we get for the
simulated measurements . The proposed
update equation in the IBP method [21]–[23] is given in scalar
form, but when put in matrix notations, we get

(4.1)

where are some error relaxation matrices to be chosen.
The configuration obtained in (4.1) is a simple error relaxation
algorithm (such as the steepest descent, the Gauss–Siedel
algorithms, or other algorithms), which minimizes a quadratic
error as defined in (2.4). This analogy means that the IBP
method is none other than the ML (or least squares) method
proposed here without regularization. In the IBP method
presented in [21]–[23], the matrices were chosen to be

where is a reblurring operator, and
is an interpolation to be determined [21]–[23]. If we choose
the simple SD algorithm for the solution of (2.5), we get
that . This result implies that choosing the
transpose of the blur matrix as the reblurring operator, and zero
padding as the interpolation operator gives almost the same
result as the IBP method. The only difference is the choice
of the warp matrix in the above two configurations. Since

, the IBP method uses the additional
positive-definite inverse of the matrices to the error
relaxation matrices proposed by the SD algorithm. These
additional terms may compromise the convergence properties
of the IBP algorithm, whereas the SD (and others) approach
performed directly on the ML optimization problem assures
convergence.

According to the above discussion, therefore, the new
approach has thus several benefits when compared to the IBP
method, as follows.

1) There is a freedom to choose faster iterative algorithms
(such as the CG) to the quadratic optimization problem.

2) Convergence is assured for arbitrary motion charac-
teristic, linear space variant blur, different decimation
factors for the measurements, and different additive
noise statistics.

3) Locally adaptive regularization can be added in a simple
fashion, with improved overall performance.

B. The Frequency Domain Method

A frequency domain analysis is possible only for an LSI
case, where the blur, the motion, and the decimation are all
space invariant. In order for the motion to be LSI, only global
translational motion is allowed. It can be shown [31]–[33] that
in such cases, the matrixR is unitarily similar to a block di-
agonal matrix using the 2-D discrete Fourier transform (DFT)
matrix. Actually, if we take the previous section discussion and
assume that the blur kernels are with nonzero center of mass,
we get a treatment for the general LSI superresolution case.
As is shown in [33], since the matrix to be inverted as part
of the restoration procedure is block diagonal matrix, small
groups of pixels in the output image (in the frequency domain)
can be calculated independently. Thus, the overall restoration
algorithm is separable and can be implemented most efficiently
in a parallel scheme.

The frequency domain algorithm proposed in [14]–[16]
gives the same result as the one discussed here. In addition,
the recursive least squares (RLS) algorithm is proposed there
in order to add new measurements to the process, using the
previous restoration result. The frequency domain method as
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proposed in [14]–[16] is again the ML approach presented
here for the LSI case. Thus, its result is the same as the one
that is obtained by the IBP method. As mentioned before,
regularization can be added in order to improve the restoration
results, a tool that is not proposed in [14]–[16]. However, since
a regularization weight matrix that assigns locally adaptive
smoothness weight to each pixel is linear spacevariant,
locally adaptive regularization is not possible in the frequency
domain approach. Instead, we can suggest a different scheme
where the superresolution restoration is performed twice using
LSI formulation—once without regularization, yielding ,
and once with LSI regularization yielding . The locally
adaptive restoration result can then be constructed by the
equation

(4.2)

where is the regularization weight matrix. This way, non-
smooth regions will be chosen from the nonregularized restora-
tion process, and smooth regions will be chosen from the
regularized image.

C. The POCS Method

The approach taken in [24]–[26] is the direct application of
the POCS method for the restoration of superresolution image.
The suggested approach did not use the smoothness constraint
as proposed here, and chose to use thedistance measure
in order to get simpler projection operators. In the sequel, we
have presented the bounding ellipsoid method as a tool to
relate the POCS results to the stochastic estimation methods.
We have seen that applying only ellipsoids as constraints gives
a very similar result to the ML and the MAP methods [33]. In
[24]–[26], it is suggested to add only the amplitude constraint
given in (2.15) to the trivial ellipsoid constraints. We have
shown that instead, we can suggest a hybrid method that has
a unique solution, and yet is very simple to implement.

D. The Map Method with Huber–Markov Prior

The MAP approach with the Huber–Markov prior was
suggested by Schultz and Stevenson [27]. Their approach
starts with a linear model describing the relationship between
the measurements and the required higher resolution image.
This model is very similar to ours, given in (2.2). However,
they restrict their treatment to simple uniform blur, and the
measurements noise is assumed to be i.i.d. Gaussian vector,
with variance which linearly decays as a function of the image
index, related to the center index. This property gives higher
influence to near images, and low influence to distant ones.

As we have seen above, the MAP estimator suggests some
sort of regularization, originated from stochastic modeling. In
the Huber–Markov prior, this regularization is a Gibbs prior
that penalizes high activity regions. No attempt is made to
adopt this penalty to be locally varying, according to the
image content. The Huber–Markov prior is simply a quadratic
function for low activity values, and linear for higher values.
As such, the overall resulting minimization problem becomes
nonquadratic, and is typically more complicated to solve.

Fig. 4. Ideal image.

According to the above discussion, our new approach thus
has several advantages when compared to the MAP–Huber
method given in [27], listed below.

1) In our approach, relatively simple and efficient iterative
algorithms can be applied, with assured convergence,
whereas the MAP–Huber method results in a more
complicated optimization problem.

2) The MAP–Huber method as given in [27] treats only
simple blur and white noise.

3) Locally adaptive regularization can be added in a simple
fashion, with improved overall performance.

E. Conclusion: Relation to Other Methods

In this section we have shown that the four main known
methods for superresolution restoration are highly connected
to the new approach presented here. Moreover, since our
approach is strongly connected to the classic restoration theory,
various tools and ideas to enhance the superresolution restora-
tion result are revealed. These tools enable the improvement
of the restoration procedure both from the computational and
the output quality points of view. In a sense, we can say
that the methodology presented here gives a unified approach
toward the superresolution restoration problem and solution,
and generalizes (to some extent) the already known methods.

V. SIMULATIONS AND ANALYSIS

In this section, we present simple examples that demonstrate
the effectiveness of the proposed method for the superresolu-
tion restoration problem. All the simulations correspond to
synthetic data, in order to bypass problems which are beyond
the scope of this paper such as motion estimation, and the
blurring function estimation. We start with a single high-
quality image of size shown in Fig. 4, from which
we generated 16 blurred, downsampled, and noisy images of
size .

The degradation includes affine motion (with zoom ratio
in the range [0.9,1.1], rotation in the range [0,50], and
translation in the range [5,5] pixels), blur with the 1-D
separable kernel , a 2 : 1 decimation ratio,
and additive white Gaussian noise with . All the
degraded images are shown in Fig. 5.
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Fig. 5. The 16 measured images.

Figs. 6–9 show the restored images using the hybrid restora-
tion algorithm. In the first ten iterations ( ) the
step [see (2.20)] consists of using the CG algorithm. In the
next 30 iterations ( ) the CG is replaced by the
SD algorithm. In both phases of the algorithm there is one
projection to the set presented in (2.15) limiting the output
image gray level to the range [0,63]. The initialization image
was chosen to be the first measured image after additional blur,
and interpolation. We made an attempt to use the initialization
as was recommended in [22], but found out that the benefit
was minor in terms of convergence rate. Exact known motion
flow, blur function, and decimation ratio were used in the
restoration process. The various restored images correspond
to different regularization terms as is listed in the figures.
The first image (Fig. 6) contains no regularization [
in (2.19)]. The second image (Fig. 7) corresponds to LSI
regularization ( ) Laplacian as the smoothness operator,
and . Fig. 8 presents the restored image with local
adaptive regularization, using the as before, and diagonal
matrix with diagonal values in the range [0.01,1], defined
by

(5.1)

where is the smoothness measured by the gradient
on the initialization image and . The final image,
Fig. 9, presents the result of an alternative approach to the
locally adaptive regularization procedure as was presented in

Fig. 6. Superresolution restoration result without regularization (MSE=
96.17).

the previous section for the frequency domain superresolution
restoration. Instead of solving the optimization problem with
arbitrary diagonal matrix , we use two restored images, one
without regularization and one with LSI regularization,
yielding , as is presented in Figs. 6 and 7. The locally
adaptive restoration result is constructed by (4.2).

Summarizing the obtained results, we first see that a super-
resolution image can be generated; the text is readable and the
icons are recognizable, in all cases, after the restoration. As
expected, the restoration without regularization gives ringing
effects [4]. The ringing effects are reduced effectively by the
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Fig. 7. Superresolution restoration result with LSI regularization (MSE=
154.82).

LSI regularization, causing degradation in the sharpness of
the output edges. The two LSV regularization approaches give
relatively sharp images, as can be seen in Figs. 8 and 9, with
reduced ringing in the smooth regions. It is difficult to compare
the two LSV regularization methods for the general case,
because different definitions of the matrix might change
significantly the restoration results.

VI. CONCLUSION

This paper addresses the superresolution restoration prob-
lem: Namely, given a number of moved, blurred, ,
and noisy versions of a single ideal image, one wants to restore
the original image. To solve this problem, a new general
model was introduced here. This model enabled the direct
generalization of classic tools from restoration theory to the
new problem. In this context, the ML, the MAP, and the POCS
methods are all shown to be directly and simply applicable to
superresolution restoration with equivalencies between these
methods. The restoration problem at hand in each of these
approaches reduces to the problem of solving a very large set
of sparse linear equations.

A hybrid algorithm is proposed that combines the benefits of
the simple ML estimator, and the ability of the POCS to incor-
porate nonellipsoids constraints. This hybrid algorithm solves
a constrained convex minimization problem, combining all the
a priori knowledge on the required result into the restoration
process. An efficient iterative two-phase algorithm is presented
for solving the defined problem, and convergence is assured to
the optimal point. Simulations are performed to demonstrate
superresolution restoration using the hybrid algorithm.

An interesting question with regard to superresolution
restoration is raised and treated in this paper. Typically,
superresolution restoration methods assume that motion
exists between the measured images [13], [27]. The
question whether the motion is necessary for superresolution
restoration ability is not treated in the literature. We
demonstrate that, indeed, there is an ability to restore an
image with improved resolution, based on several motionless
blurred, decimated, and noisy images.

The proposed methodology is compared to known super-
resolution methods [13]-[25]. It is shown that the presented
methodology gives a unified approach toward the superreso-

Fig. 8. Superresolution restoration result with locally adaptive regulariza-
tion: the direct approach (MSE= 112.22).

Fig. 9. Superresolution restoration result with locally adaptive regulariza-
tion: by linear combination (MSE= 94.57)

lution restoration problem and solution, and generalizes the
already known methods. However, this generalization is not
ideal, since MAP estimator with nonquadratic priors, POCS
with norm, and other possible methods are not special
cases of the proposed approach. Rather, we have shown in this
paper a generalization of well-known methods from restora-
tion theory to the superresolution problem. Establishing such
connection enables to import various other known tools from
restoration theory, to be implemented in the more complicated
problem of superresolution restoration.

APPENDIX A
HYBRID RESTORATION METHOD

Definition A-1: The following constrained quadratic opti-
mization problem is defined asP:

Minimize

subject to

where is a positive definite matrix, is a constant which
ensures that , and are all closed convex sets.

Let denote the optimal solution of the problemP when
no constraints are added to the optimization criteria. Clearly,
this vector is given by the equation and is
unique. Let denote the (assumed) nonempty intersection
of the M convex sets , namely, . This
intersection set is closed and convex too. The problemP
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is equivalent to a problem where the convex constraints
are replaced by a single constraint .

Theorem A1: If then the solution to the problem
P is a point on the boundary of .

Proof: The proof is by contradiction. Let
be the solution of the problemP. Then, because of the
convexity of the quadratic error , it is clear that

(A.1)

for for all . Since
, there exists such that

which, together with (A.1) leads to a contradiction.
Theorem A2:The problemP has a unique solution.

Proof: We refer to the problemP with the constraint
. If then is the solution of the

problemP, and since this point is unique, we have a unique
solution. Now, assuming that , we have from the
previous theorem that the solution (or solutions if there are
several) is on the boundary of . Assume that and
are two distinct solutions to the problemP. Then

1 Boundary of

2

3

(A.2)

Since is convex
. Furthermore, because of the nonsingularity ofR, it

can readily be shown that

for all (A.3)

and since , this leads to contradiction and we must
have a unique solution.

In Section II, we have presented an iterative algorithm to
solve the problemP. We show that the proposed algorithm
converges to the solution ofP.

Theorem A3:Let be the projection onto the closed con-
vex set (using the Euclidiean norm), and defined as the
steepest descent mapping, namely

(A.4)

where and are the matrix and vector definingP, and
is the stepsize chosen such that has all its

eigenvalues in (-1,1). Define the algorithm

(A.5)

Then, (A.5) converges globally to the solution ofP.

Proof: From the properties of POCS [see, e.g., [5] and
(A.4)] we have

(A.6)

Hence, is a contraction mapping and as such has
a unique fixed point. Then, clearly the algorithm in (A.5)
converges to regardless of the initialization. satisfies
the following equation:

(A.7)

It can be readily shown (see [5]) that for any we
have

(A.8)

In case , so
and the theorem holds. In case ,

. Since we have that
and thus, the local gradient of at the point is
nonzero and thus .
Otherwise we would have

which contradicts (A.7). Then, by (A.7) and (A.8) we have

(A.9)

Hence

(A.10)

and by using the inequality given in (A.9) in the above
equation, we get

(A.11)

and therefore is the solution of the problemP .
Note that, from the above, we have that if the iterative

algorithm is not the steepest descent, then the limiting point
is not necessarilythe optimal solution ofP.
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