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Abstract

This paper presents a generalization of
restoration theory for the problem of Super-
Resolution Reconstruction (SRR) of an image. In
the SRR problem, a set of low quality images is
given, and a single improved quality image which
fuses their information is required. We present a
model for this problem, and show how the classic
restoration theory tools - ML, MAP and POCS -
can be applied as a solution. A hybrid algorithm
which joins the POCS and the ML benefits is
suggested.

1. Introduction

In the classic restoration problem in image
processing, a blurred and noisy image is given and
the purpose is to somehow restore the ideal image
prior to the degradation effects. Such problem is
typically modeled using the linear vector-matrix
equation (using lexicographic ordering for the
images [1]):

Y=HX+N; N~Glow™] M

The three main tools that have been proposed to
solve the above restoration problem are the
Maximum Likelihood Estimator (ML) and the
Maximum A-postiriori Probability Estimator
(MAP), which apply stochastic perception to the
problem, and Projection Onto Convex Sets (POCS),
which applies set theory tools instead [1].

This paper presents a utilization of the above
three estimation tools for the (SRR) problem. In

this problem, an improved resolution image is
reconstructed based on several geometrically
warped, linearly blurred, uniformly down-sampled
and noisy measured images. N such measured
images are given, and the purpose is to reconstruct
a single super-resolution image, which fuses all the
measurements into it. The SRR problem have been
proposed and treated by several authors in the last
decade [2-6]. Among the various proposed methods,
the most general and thorough approaches are the
Iterative Back Propagation algorithm proposed by
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Irani & Peleg [4], and the POCS based
reconstruction, proposed by Patti, Sezan and
Tekalp [S].

This paper is organized as follows: Section 2
presents a new vector-matrix model for the SRR
problem, generalizing the above restoration model,
shown in equation (1). Using this model, Section 3
presents the ML, MAP and POCS solutions for the
SRR problem. In Section 4 a hybrid algorithm
which combines the benefits of both the ML and
the POCS is presented. Section 5 shows simulation
results, and Section 6 concludes this paper.

2. Modeling The Super-Resolution Problem

Given are N measured images {Y}N, of
different sizes [M XM, ]. We assume that these
images are different representations of a single
high-resolution image X of size [L.xL], where
typically - L>M, for 1<k <N. Each measured
image is the result of an arbitrary geometric
warping [L2 xL2] matrix K, linear space variant
blurring [L2 X L2] matrix H, and uniform rational
decimating [M% XL2] matrix D performed on the

ideal high-resolution image X. We further assume

that each of the measured images is contaminated
by zero mean additive Gaussian noise vector E,
with auto-correlation [Mi XM%] matrix Wi 1
These noise vectors are uncorrelated between
different measurements. Translating the above
description to an analytical model we get:

Xk =DkaFkK+_E.k for 1<k<N 2
All these matrices (F, H , D, W, ) are assumed to
be known in advance. Justifying such an
assumption is treated in [6]. Having the above
model, grouping the N equations into one can be
done for notational convenience. This way we get:

E,

=H_+E 3
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where we have defined C, =D HF, and the
auto-correlation of the Gaussian random vector E
is:
W
H{EE'} -

0

Wn

The final obtained model equation Y = HX+E
is a classic restoration problem model [1-2]. Thus,
we can easily apply the Maximum Likelihood
estimator, the Maximum A-postiriori estimator or
the POCS methods in order to restore the image X,
which is exactly our purpose here. In the following
sub-sections we shall briefly present the way to
specifically apply those tools.

3. Solving the Super-Resolution Problem
Applying the ML solution [6] we get:

Xyq =argmin{[Y - HX] WY -HX]} (5
X

which gives the well-known pseudo-inverse result:
Ry =P

* N *
R=H WH= 3C,W,C,
k=1

(6)

* N «
P=H WY= ZC, W, Y,
k=1

Locally adaptive regularization can be included
in the above analysis with both algebraic and
physical interpretations [1,6]. Using the Laplacian
operator S and a weighting matrix V (penalizing
non-smoothness according to the a-priori knowledge
on the smoothness required at each pixel), we get:

Ky, =argmin{[¥ - HX] W[Y - HX] +
X

| ™
+BsX]" VIsx]}

Again we get - RXML =P, but a new term BS*VS
is added to the matrix R.

If we assume that the unknown X is a zero mean
Gaussian random process with auto-correlation
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matrix Q, the MAP estimator becomes the
Minimum Mean Square Error estimator.
Performing several algebraic steps [6] gives:

Xpap = argmin {[X - H_)g]* W[Y -HX]+
X

®
+X'Q'x}

Minimizing the above function with respect to X
yields the following result: '

RXpap =P

* — N
R=Q!+HWH=Q '+ JC,W,Cy (9
k=1

* N *
P=H WY= 3C, W, Y,
k=1

and the resemblance to the ML result is evident. It
can be shown [1,6] that if an Auto-Regresive model
is assumed on the image X, a simple and direct
connection between the Laplacian regularization
matrix and the AR coefficients can be established.

The ML, the MAP estimator reduces to a huge
sparse set of equations which can be solved
iteratively [7].

According to the set theoretic approach [1,6],
each a-priori knowledge on the required restored
image should be formulated as a constraining
convex set containing the restored image as a point
within this set. Using the model presented earlier,
we can suggest a group of such convex sets based
on L, distance measure:

Gy = {_)gl [DKH B X —xk"%vk 51} (10)

for 1<k <N. This defines a group of N convex
sets - ellipsoids in this case. Since POCS requires a
projection onto these sets, and since projection onto
an ellipsoid is computationally very complex, L.,
constraints can be proposed instead [6]:

Gy (m,n)= {XNDkaFk X| .0y~ Yi(m,m)

<8 (m,n)}

(11)
1<k<N; V(mn)e6,



where 0, is the support region of the k-th measured
image, and 8, stands for the uncertainty of the
model.

Another set which can be used is the one
constraining smoothness. We can suggest L, or
L, convex set versions as before:

Gs(m,m={X |sX], ,, <8,} Vmmeog
‘ (12)
o Gg={x][sxl} <1}

where 8, is the support region of the ideal image.
We can incorporate additional non-linear
constraints such as constraints on the output
energy, phase, support and others. An often used
constraint is the one posed on the amplitude of the
result:
Gp ={x(m,n) | A, <x(m,n)<A,} (13)
Having a group of M convex sets, each
containing the required image, the Projection Onto
Convex Set (POCS) method suggests the following

iterative algorithm for the recovery of a point within
the intersection of these sets [1,6]:

Xy+1 =PuPu-r PP {X( } (14)

where P; is the projection of a given point onto the
j-th convex set.

A different approach towards the POCS idea is
the bounding ellipsoid method [6]. For the case
where all the constraints are ellipsoids this
approach suggests finding the ellipsoid bounding
the intersection of all the participating constraints,
and to choosing its center as the output result. In [6]
it is shown that the equation for the bounding
ellipsoid center is exactly (for a specific case) the
ML solution as given in equation (7).

4. The Hybrid Reconstruction Algorithm
While the ML and the MAP are numerically
simpler to apply, the POCS is more general and can
incorporate  non-linear constraints into the
reconstruction process as well. In order to gain both
these properties, a hybrid algorithm is proposed.
We start by defining a new convex optimization
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problem which combines a quadratic scalar error
with M convex constraints:

e* ={[x - Hx]" WY - HX]+ B[sX]" V[sX]}

subjectto {XeCy 1<k<M}

(15)

where the quadratic error takes care of the model
and the smoothness errors, and the M additional

constraints refer to the non-ellipsoids a-priori
knowledge.

Following the iterative methods presented by [1],
we propose a simple yet effective two-phase
iterative algorithm to solve the above optimization
problem. Analysis of this method can be found in
[6]. Suppose that an efficient iterative algorithm
which is known to converge to the minimum of the
scalar squared error is given - denoted by I;.
Algorithms such as the Conjugate Gradient or the
Gauss-Siedel can be considered as excellent
candidates for I,. Beyond this first iterative

algorithm I, M projection operators denoted by J k
ke[1+M] can be constructed, each of them

projects onto a convex set representing a given
constraint. Assuming that the M projections are all
given using the Euclidean metric, we suggest the
following global iterative step:

Xy +1 =JM{J{VI~1{ """ J{{It{zk}}}} (16)

This interlaced approach is generally converging
to the sub-optimal point of the problem given in
equation (15). Adding several new iterations, where
now I is replaced by the (notoriously slow [7])
Steepest Descent, updates the previous result and
assures that the final convergence is to the optimal
point, as is proved in [6].

5. Simulation Results

In this section we present elementary example
which demonstrate the effectiveness of the proposed
method for the super-resolution restoration
problem. A single [100x100] image was taken
(gray values in the range 0-63), and from it we have
generated 16 blurred, down-sampled and noisy
images of size [50x 50]. The degradation includes
random affine motion (with zoom in the range 0.9+
1.1, rotation in the range 0+50°, and translation in
the range -5+5), blur with the 1-D separable kernel
[07 10 07]/24, a 2:1 decimation ratio, and



additive white Gaussian noise with 6 =3. Figure 1
presents the ideal image, Figure 2 presents 4 images
from the measurements, and Figure 3 show the
reconstructed image using the hybrid restoration
algorithm with regularization. Beyond the ellipsoids

forming the quadratic error, the amplitude
constraint was applied. 10 GS iterations followed
by 30 SD iterations were applied. The

regularization approach is explained in details in

[6].

Figure 3 - A reconstructed result
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6. Conclusion

This paper presents the problem of Super-
Resolution Reconstruction, and its solution. A new
general model is introduced, which enables a direct
generalization of the classic tools from restoration
theory - the ML, the MAP and the POCS methods.
A hybrid algorithm is proposed which combines the
benefits of the simple ML estimator, and the ability
of the POCS to incorporate non-ellipsoids
constraints. An efficient iterative two phases
algorithm is presented to solve the new defined
problem, and convergence is assured to the optimal
point.
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