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Abstract
    This paper presents a new approach towards the
problem of recursive optical flow estimation from
image sequences based on the differential framework
proposed by Horn & Schunck. We show that gain is
achieved both from computational and accuracy
points of view when treating the estimation task
recursively. Incorporation of the temporal axis into
the estimation process is done by combining a
temporal smoothness assumption on the optical
flow. RLS and LMS recursive optical flow
estimation algorithms are derived and tested.

1. Introduction
    Optical flow is the displacement field related to
each of the pixels in an image sequence. Such
displacement field results from the apparent motion
of the image brightness in time. Estimating the
optical flow is a fundamental problem in low level
vision, and can undoubtedly serve many applications
in image sequence processing. There are many
different methods to estimate the optical flow. This
paper focuses on a generalization of the method
proposed by Horn & Schunck, which is a
differential based method [1].

    Most of the algorithms for the estimation of
optical flow concentrate on the goal of estimating
the motion field between succeeding images in a
sequence, disregarding the estimates obtained for the
previous image pair [1,2]. However, several
attempts  have already been made to efficiently
combine the temporal axis into the optical flow
estimation process. Both Singh [3] and Chin &
Willsky [4] proposed the application of Kalman
filter as a mechanism to estimate the optical flow
sequence in time. However, these proposed methods
are computationally very complex. Fleet & Langley
[5] proposed a different approach for the same task,
based on Lucas & Kanade [2] optical flow method.

    The purpose of this paper is to generalize Horn &
Schunck algorithm to inherently include the
temporal axis, while preserving simplicity and low
computational algorithms. This paper is organized
as follows: In Section 2 we present the differential

framework and Horn & Schunck algorithm. Section
3 presents the new spatial-temporal optical flow
model and recursive algorithms estimating it.
Simulation results are presented in Section 4, and
conclusion is in Section 5.

Note: A thorough description, analytical analysis
and simulations can be found in [9].

2. Horn & Schunck Optical Flow estimation
    The image sequence brightness is denoted by
I(x,y,t), where (x,y,t) represent the spatial and
temporal location. The brightness constraint
equation is thus:
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where dx x y t dy x y t( , , ), ( , , )  is the motion vector

corresponding to the pixel positioned at (x,y,t).
Using Tailor series expansion, and neglecting higher
derivative terms we get:
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The above equation poses one constraint per each
pixel. Combining all the those equations together is
possible by defining the following:
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Thus we have the model equation:

Y t H t X t E t E t E t t IT
e( ) ( ) ( ) ( ) ( ) ( ) ( )= + =        E 
 � σ2   (6)

where X t( )  is the optical flow to be estimated, and
E t( )  is the model error [1]. Additional spatial
smoothness constraint should be combined in order
to assure single solution and regularized problem.
Denoting S as the  Laplacian operator, the optical
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flow estimate should be the solution of the following
quadratic minimization  problem:
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The parameter β  controls the relative smoothness
required. The minimizing solution is:
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Instead of inverting the matrix shown above, the
iterative Gauss-Siedel algorithm is suggested [1].

3. OF Estimation Along the Time Axis
Our aim is to propose a mechanism that will

combine the time axis into the optical flow
estimation process.

3.1 Kalman Filter (KF) approach
The Kalman filter the Minimum Mean Square

Error (MMSE) estimate of the state of a linear
system, represented by state-space equations [7].
Thus, in order to use the Kalman filter for the
optical flow estimation task we must represent the
problem in a state-space form. The unknown optical
flow at time t, X t( ) , will serve as the state-vector to
be estimated. The temporal smoothness constraint
can be represented by:

X t X t N t N t N t v W t vT
N( ) ( ) ( ), ( ) ( ) ( ) ( )= − + − =1    E
 � δ  (9)

which simply says that the change in time in the
optical flow is white (in time) vector N t( ) . Taking
equation (6) and combining the regularization gives:
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where the spatial smoothness serves here as an
additional measurements of zeros. Having the above
two equations enables the use of the Kalman filter
directly. However, the dimensions of the matrices
involved (though sparse) are very large, and direct
application of the Kalman filter is impossible. In [4],
a Square Root Information (SRI) Kalman filter is
suggested [6] which propagates the square root of

the inverse of the autocorrelation matrix in time.
Yet, the computational complexity of the final
algorithm is far too high, and only parallel
implementation can cope with it effectively.

3.2 CWLS Approach
     Instead of the state-space model presented above,
we can suggest the following alternative model:
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This model simply states that the optical flow vector
X t( )  matches the model equations for all casual
times t k t− ≤ , and this way the temporal
smoothness is applied. But, since we know that there
are changes in the optical flow in time, we allow
them by exponentially raising the variance of the
model error for far away model equations, and the
parameter 0 1<< <λ  acts as a forgetting factor for
this very purpose. Having the new model, we can
define a quadratic error:
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Differentiating with respect to the vector X t( )  yields
the following equations:
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3.3 The P-RLS OF Estimation Algorithm
     One way to solve the minimization problem in
equation (12) is a direct solution of the linear system
in equation (13). The matrix R(t) is a positive - thus
ensuring unique solution. The matrix R(t) is also
sparse and can be easily updated in time and stored.
The number of unknowns in the vector X t( )  is 2N

2

and the size of the matrix R(t) is[2 2
2 2

N N× ]. Since
N is typically large, this means that a direct
inversion of R(t) is impossible and indirect methods
are required in order to solve (13). Many iterative
algorithms can be suggested [8]. The reason we call
such procedures Pseudo-RLS algorithms comes



from the fact that we update the matrix R(t) and the
vector P t( ) recursively, as can be done in the
Recursive Least Squares (RLS) algorithm [6].
However, in contrast to the classic RLS, we do not
propagate nor compute the matrix Q t R t( ) ( )= −1 .

     The amount of computations required is similar
to the amount required by the original Horn &
Schunck algorithm. This is because we need to
compute the update terms for the matrix R(t) and the
vector P t( ), which are exactly the terms computed
for the Horn & Schunck algorithm, we have to add
them to R(t) and P t( ) which require only additions,
and then we have to apply an iterative algorithm
similar to what is done in the original Horn &
Schunck algorithm.

     One important question is the connection
between the KF and the proposed estimation
approach. In [9], a thorough analysis is given,
showing that the Pseudo-RLS algorithm yields an
unbiased, and bounded variance estimation,
compared to the KF.

3.4 The M-SD and the M-LMS Algorithms
     A different approach that can be taken in order to
minimize the temporal squared error in equation (12)
is suggested by the Least Mean Square (LMS)
algorithm [6]. First, instead of a full minimization of
this error at each time instant, we can simply take
the previous result 

�
( )X t −1  and update it using the

instantaneous gradient of the temporal squared error
and get the following recursive equation:
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Equation (16) is simply one iteration of the Steepest
Decent algorithm. Thus, instead of performing many
iterations at each time instant as was proposed in the
Pseudo-RLS algorithm, all we are proposing to do
here is a single iteration, and continue to the next
temporal point. Therefore, we can suggest also a
midway algorithm, namely, at each temporal point,
update the matrix and the vector R(t) and P t( ) as
usual using equations (14) and (15), and then
perform M Steepest Decent iterations. We already
know that for 1 << → ∞M  we get the Pseudo-RLS.
We will refer to the above algorithm with M

iterations per each time instant as M-SD algorithm.
A desired property of the M-SD algorithm is it's
flexibility with regard to the computational
requirements. The more iterations performed the
better is the quality of the estimated optical flow.
Moreover, the M-SD estimation error with fixed M
is bounded [9].

     Using equation (16) as our estimation process is
an approximation of the Pseudo-RLS estimator
presented in equation (12). Using the recursive
equations (14) and (15) in equation (16), we get:

�
( )

�
( ) ( ) ( )

�
( )

( ) ( ) ( ) ( )
�

( )

X t X t P t R t X t

H t Y t H t H t X tT T T

= − + − − − − +

+ − + −

1 1 1 1

1

µλ

µ µ β         S S
 (17)

If we assume that the previous solution 
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( )X t −1  is
close to the optimal one, we can say that
P t R t X t( ) ( )
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omitted from the above equation, yielding
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which is a simpler algorithm with even more reduced
computations, since this algorithm no longer
requires the propagation of R(t) and P t( ) in time.
The above equation is a single SD iteration of the
original Horn & Schunck algorithm. Interesting as it
may seem, Horn & Schunck in their original paper
[1] suggested this very algorithm based on intuition
only as an alternative to the application of  their
algorithm with many iterations per one step.
Following the same reasoning as in the M-SD
algorithm, we can propose here that M iterations of
equation (18) can be performed per one time step,
which might improve the overall performance of the
algorithm, when compared to single iteration
algorithm. We choose to call such algorithm the M-
LMS algorithm for obvious reasons.

4. Simulations and Analysis
     The presented test is performed on a synthetic
image sequence with a-priori known optical flow, in
order to quantify the results. The tested image
sequence consist of a constant rotation of 1.2° per
image with additional zoom in and out in the form of
half a cycle of a sine function in the range [0.85-
1.15]. The optical flow sequence thus change in



time. The test sequence contains 101 images of size
[50 50× ] pixels. A Gaussian white random noise
with variance σn = 4  is added to each image, where
the dynamic range of the images is [0,255].

      Figure 1 presents the actual optical flow, the
estimation results using the M-SD, and the M-LMS
algorithms. The M-SD and the M-LMS results were
obtained using M=5 iterations, whereas the Horn &
Schunck results were obtained by performing 200
NSD iterations per each temporal point, thus using
much more computations. Based on these results, we
can say that the performance of the M-SD and the
M-LMS algorithms on this test are significantly
better than the Horn & Schunck approach.

5. Conclusion
     In this paper we have presented new algorithms
for the estimation of optical flow for image
sequences. These new algorithms are based on Horn
& Schunck algorithm, generalized to include
temporal smoothness. The undertaken approach
starts from state-space equations modeling the
estimation problem, but instead of applying Kalman
filter which seems natural at this point, we further
simplify the model leading to adaptive filtering
formulations resembling the RLS and the LMS
algorithms [6]. The new estimation methods are
shown to give low complexity requirement, while
providing more accurate results compared to Horn
& Schunck algorithm.
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Figure 1 - The Optical Flow A: true, B: M-SD, C: M-LMS, D: Horn & Schunck




