
1

Linearized Kernel Dictionary Learning
Alona Golts and Michael Elad, IEEE Fellow

Abstract—In this paper we present a new approach of in-
corporating kernels into dictionary learning. The kernel K-SVD
algorithm (KKSVD), which has been introduced recently, shows
an improvement in classification performance, with relation to
its linear counterpart K-SVD. However, this algorithm requires
the storage and handling of a very large kernel matrix, which
leads to high computational cost, while also limiting its use to
setups with small number of training examples. We address these
problems by combining two ideas: first we approximate the kernel
matrix using a cleverly sampled subset of its columns using the
Nyström method; secondly, as we wish to avoid using this matrix
altogether, we decompose it by SVD to form new “virtual sam-
ples”, on which any linear dictionary learning can be employed.
Our method, termed “Linearized Kernel Dictionary Learning”
(LKDL) can be seamlessly applied as a pre-processing stage
on top of any efficient off-the-shelf dictionary learning scheme,
effectively “kernelizing” it. We demonstrate the effectiveness of
our method on several tasks of both supervised and unsupervised
classification and show the efficiency of the proposed scheme, its
easy integration and performance boosting properties.

Index Terms—Dictionary Learning, Supervised Dictionary
Learning, Kernel Dictionary Learning, Kernels, KSVD.

I. INTRODUCTION

THE field of sparse representations has witnessed great
success in a variety of applications in signal and image

processing. The basic operation in sparse representations is
called “sparse coding”, which involves the reconstruction of
the signals of interest using a sparse set of building blocks,
referred to as “atoms”. The atoms are gathered in a structure
called the “dictionary”, which can be manually crafted to con-
tain mathematical functions that are proven successful in repre-
senting signals and images, such as wavelets [1], curvelets [2]
and contourlets [3]. Alternatively, it can be learned adaptively
from input examples, a task referred to as “dictionary learning”
(DL). The latter approach has provided state-of-the-art results
in classic image processing applications, such as denoising
[4], inpainting [5], demosaicing [6], compression [7], [8] and
more. Popular algorithms for DL are the MOD [9] and the K-
SVD [10], which generalizes K-means clustering and learns
an overcomplete dictionary that best sparsifies the input data.

Although successful in signal processing applications, the
K-SVD algorithm “as-is” may not be suited for machine
learning tasks such as classification or regression, as its
primary goal is to achieve the best reconstruction of the input
data, ignoring any discriminative information such as labels or
annotations. Many suggestions have been made to extend DL
to deal with labeled data. The SRC method by Wright et al.
[11] achieved impressive results in face recognition by sparse
coding each test sample over a dictionary containing the train
samples from all classes, and choosing the class that presents

This research is funded under European Unions Seventh Framework Pro-
gram, ERC Grant agreement no. 320649.

the best reconstruction error. In [12], [13] Mairal et al. added
a discriminative term to the DL model, and later incorporated
the learning of the classifier parameters within the optimization
of DL. The work reported in [14] by Zhang et al. was the first
to incorporate the learning of the classifier parameters within
the framework of the K-SVD algorithm. A similar extension
has been made in [15], [16] by Jiang et al., where in addition
to the classifier parameters, another discriminative term for the
sparse codes was added and optimized using the regular K-
SVD. In [17] Yang et al. created an optimization function
which forces both the learned dictionary and the resulting
sparse coefficients to be discriminative. In [18], Cai et al.
extended the work in [17] and proposed assigning different
weights for each pair of sparse representation vectors, which
are optimized during the DL process. These algorithms and
others that relate to them have been shown to be competitive
with the best available learning algorithms, leading often times
to state-of-the-art results.

In machine learning, kernels have provided a straight-
forward way of extending a given algorithm to deal with
nonlinearities. Prominent examples of such algorithms include
kernel-SVM [19], kernel-PCA (KPCA) [20] and Kernel Fisher
Discriminant (KFD) [21]. Suppose the original data can be
mapped to a higher dimensional “feature space”, where tasks
such as classification and regression are far easier. Under the
proper conditions, the “kernel trick” allows one to train a
learning algorithm in the higher-dimensional feature space,
without using explicitly the exact mapping. This can be done
by posing the entire algorithm in terms of inner products
between the input signals, and later replacing these inner-
products with kernels. One fundamental problem when using
the kernel trick is that one is forced to access only the inner
products of signals in feature space, instead of the signals
themselves. A direct consequence of this is the need to store
and manipulate a large kernel matrix K of dimension N ×N
(N being the size of the training set), which contains the
modified inner products of all pairs of input examples.

In recent years, kernels have also been incorporated in
the field of sparse representations, both in tasks of sparse
coding [22]–[28] and DL [24], [29]–[34]. The starting point of
this paper is the kernel DL method termed “Kernel K-SVD”
(KKSVD) by Nguyen et al. The novelty in [29] is in the ability
to fully pose the entire DL scheme in terms of kernels, using a
unique-structured dictionary which is a multiplication of two
parts. The first, a constant matrix called the “base-dictionary”,
contains all of the mapped signals in feature space, and the
second, called the “coefficient-dictionary”, which is actually
updated during the learning process. The KKSVD suffers from
the same issues arising when applying the kernel trick in
general. Specifically, in large-scale datasets, where the number
of input samples is of the order of thousands and beyond, the

2

KKSVD quickly becomes impractical, both due to runtime and
in the required storage space.

While kernel sparse representation is becoming more com-
mon, the existing algorithms are still challenging as they suffer
from problems mentioned above. The arena of linear DL on
the other hand, has a vast selection of existing tools that are
implemented efficiently, enabling learning a dictionary quite
rapidly in various settings and even if the number of examples
to train on goes to the Millions. Indeed, in such extreme cases,
online learning becomes appealing [35], [36].

As we show hereafter, our proposed method, “Linearized
Kernel Dictionary Learning” (LKDL), enjoys the benefits of
both worlds. LKDL is composed of two stages: kernel matrix
approximation, followed by a linearization of the training
process by the creation of “virtual samples” [37]. In the first
stage, we apply the Nyström method to approximate the kernel
matrix K, using a sub-sampled set of its columns. We explore
and compare several such sub-sampling strategies, including
core-sets, k-means, uniform, column-norm and diagonal sam-
pling. Rather than using K (or its approximation), we proceed
with the assumption that it originates from a linear kernel, i.e.
K = FTF, and thus, instead of referring to K, we calculate
the virtual samples F, using standard eigen-decomposition.
After obtaining these virtual training and test sets, we apply
an efficient off-the-shelf version of linear DL and continue
with a standard classification scheme. This process essentially
“linearizes” the kernel matrix and combines the nonlinear
kernel information within that of the virtual samples.

We evaluate the performance of LKDL in four aspects: (1)
first, we assure that the added nonlinearity in the form of the
virtual datasets indeed improves classification results (with
relation to linear DL) and performs comparably well as the
exact kernelization performed in KKSVD; (2) we demonstrate
the differences in runtime between the two methods; (3) we
compare our method with other recent kernelized features [38],
[39], and (4) we show the easiness of integration of LKDL
with any existing DL algorithm, including supervised DL.

This paper is organized as follows: section II provides
background to classical reconstructive DL with emphasis on
the K-SVD and two methods of supervised DL, all of which
are used later in the experimental part as the linear foundations
over which our scheme is employed. Section III discusses
Nguyen’s KKSVD algorithm for kernel DL and discusses its
complexity. Section IV presents the details of our proposed
algorithm, LKDL, for kernel DL. This section also builds a
wider picture of this field, by surveying the relevant literature
of incorporating kernels into sparse coding and DL. Section V
shows results corroborating the effectiveness of our method,
and finally, section VI concludes this paper and proposes future
research directions.

II. LINEAR DICTIONARY LEARNING

This section provides background on classic reconstructive
DL, as well as two examples of discriminative, supervised DL.
The purpose of this section is to recall several key algorithms,
the MOD and K-SVD, the FDDL, and the LC-KSVD, which
we will kernelize in later sections.

A. Background
In sparse representations, given an input signal x ∈ Rp

and a “dictionary” D ∈ Rp×m, one wishes to find a “sparse
representation” vector, γ ∈ Rm such that x ≈ x̃ = Dγ.
The dictionary D = [d1, . . . ,dm] consists of “atoms” which
faithfully represent the set of signals x ∈ X . The task
of finding a signal’s sparse representation is termed “sparse
coding”1 or “atom decomposition” and can be solved using
the following optimization problem:

γ = argmin
γ
‖x−Dγ‖22 s.t. ‖γ‖0 ≤ q , (1)

where q is the number of nonzero coefficients in γ, often
referred to as the “cardinality” of the representation, and the
term ‖γ‖0 is the l0-norm which counts the number of non-
zeros in γ. This problem is known to be NP-hard in general,
implying that even for moderate m (number of atoms), the
amount of required computations becomes prohibitive. The
group of algorithms which attempt to find an approximated
solution to this problem are termed “pursuit algorithms”, and
they can be roughly divided into two main approaches. The
first are relaxation-based methods, such as the “basis-pursuit”
[40], which relaxes the norm to be l1 instead of l0. The l1-
norm still promotes sparsity while making the optimization
problem solvable with polynomial-time methods. The second
family of algorithms used to approximate the solution of (1)
are the greedy methods, such as the “matching-pursuit” [41],
which find an approximation one atom at a time. In this paper
we shall mostly address the latter group of pursuit algorithms,
and more specifically, the Orthogonal Matching Pursuit (OMP)
[42] algorithm, which is efficient and easy to implement.

B. Classic Dictionary Learning
In “dictionary learning” (DL), one attempts to compute the

dictionary D ∈ Rp×m that best sparsifies a set of examples,
serving as the input data X ∈ Rp×N . A commonly used
formulation for DL is the following optimization problem:

argmin
D,Γ

‖X−DΓ‖2F s.t. 1 ≤ i ≤ N ‖γi‖0 ≤ q , (2)

where || · ||F is the Frobenius norm and Γ = [γ1, . . . ,γN] ∈
Rm×N is a matrix containing the sparse coefficient vectors
of all the input signals. The problem of DL can be solved
iteratively using a Block Coordinate Descent (BCR) approach,
of alternating between the sparse coding and dictionary update
stages. Two such popular methods for DL are the MOD [9]
and K-SVD [10].

In MOD [9], once the sparse coefficients in iteration t,
Γt, are calculated using a standard pursuit algorithm, the
optimization problem becomes:

Dt = argmin
D
‖X−DΓt‖2F . (3)

This convex sub-problem leads to the analytical batch update
of the dictionary using Least-Squares:

Dt = XΓTt (ΓtΓ
T
t)−1 = XΓ†t . (4)

1The term “Sparse Coding” implies the quest for the sparse solution for an
approximate linear system, as opposed to the terminology used in machine
learning, where this refers to what we call “Dictionary Learning”.

3

The problem with MOD is the need to compute the pseudo-
inverse of the often very-large Γ. The K-SVD algorithm by
Aharon et al. [10] proposed alleviating this and speeding up
the overall convergence by updating the dictionary one atom
at a time. This amounts to the use of the standard SVD
decomposition of rank-1 for the update of each atom.

C. Fisher Discriminant Dictionary Learning (FDDL)
The work reported in [17] proposes an elegant way of

performing discriminative DL for the purpose of classification
between L classes by modifying and extending the objective
function posed in (2). A fundamental feature of this method
is the assumption that the dictionary is divided into L disjoint
parts, each serving a different class.

Let X = [X1, . . . ,XL] ∈ Rp×N be the input examples of
the L classes, where Xi ∈ Rp×ni are the examples of class i.
Denote D = [D1, . . . ,DL] ∈ Rp×M and Γ = [Γ1, . . . ,ΓL] ∈
RM×N the dictionary and the corresponding sparse represen-
tations. The part Γi ∈ RM×ni can be further decomposed
as follows: Γi = [(Γ1

i)
T , . . . , (Γji)

T , . . . , (ΓLi)T]T , where
Γji ∈ Rmj×ni are the coefficients of the samples Xi ∈ Rp×ni

over the dictionary Dj ∈ Rp×mj . Armed with the above
notations, we now turn to describe the objective function
proposed in [14] for the discriminative DL task. This objective
is composed of two parts. The first is based on the following
expression:

r (Xi,D,Γi) =

‖Xi −DΓi‖2F + ‖Xi −DiΓ
i
i‖2F +

L∑
j=1
j 6=i

‖DjΓ
j
i‖

2
F

(5)

The first term demands a good representation of the i-th
class samples using the whole dictionary, and the second term
further demands a good representation for these examples
using their own class’ sub-dictionary. The third term is of
different nature, forcing the i-th class examples to minimize
their reliance on the other sub-dictionaries. Naturally, the
overall penalty function will sum the expression in (5) for
all the classes i.

We now turn to describe the second part in the objective
function, which relies on the Fisher Discriminant Criterion
[43]. We define two scatter expressions, both applied to the
representations. The first, SW (Γ) computes the within class
spread, while the second, SB(Γ) computes the scatter between
the classes:

SW (Γ) =
∑L

i=1

∑
γk∈Γi

(γk − µi)(γk − µi)T

SB(Γ) =
∑L

i=1
ni(µi − µ)(µi − µ)T ,

(6)

and µ,µi ∈ RM×1 are the mean vectors of the learned sparse
coefficient vectors, Γ and Γi correspondingly. Naturally, we
aim to minimize the first while maximizing the second.

The final FDDL model is defined by the following opti-
mization expression:

J(D,Γ) = argmin
(D,Γ)

{∑L

i=1
r(Xi,D,Γi) + λ1‖Γ‖1+

λ2

[
tr (SW (Γ)− SB(Γ)) + η‖Γ‖2F

]}
.

(7)

The term ‖Γ‖2F serves as a regularization that ensures the
convexity of (6). The detailed optimization scheme of this
rather complex expression is described in [17], along with two
classification schemes, a global and a local one, depending on
the size of the input dataset.

D. Label Consistent KSVD (LC-KSVD)

In [15], [16], an alternative discriminative DL approach
is introduced, in which the learning of the dictionary, along
with the parameters of the classifier itself, is performed si-
multaneously, leading to the scheme termed “Label-Consistent
K-SVD” (LC-KSVD). These elements are combined in one
optimization objective, which is handled using the standard
K-SVD algorithm. In order to improve the performance of a
linear classifier, an extra term is added to the reconstructive
DL optimization function:

argmin
D,T,Γ

‖X−DΓ‖2F +α‖Q−TΓ‖2F s.t ∀i, ‖γi‖0 ≤ q. (8)

The second term encourages the sparse coefficients to be dis-
criminative. More specifically, the matrix Q = [q1, . . . ,qN] ∈
Rm×N stands for the “ideal” sparse-coefficient matrix for
discrimination, where the coefficients qi,j are ‘1’ if the classes
of the atom di and the input signal xj match, and ‘0’
otherwise. The matrix T ∈ Rm×m transforms the sparse codes
Γ to their idealized versions in Q. This term thus promotes
identical sparse codes for input signals from the same class
and orthogonal sparse codes for signals from different classes.

In addition to the discriminative term added above, the
authors in [15] propose learning the linear classifier within
the framework of the DL. A linear predictive classifier is used
of the form: f(γ,Θ) = Θγ, where Θ ∈ RL×m. The overall
objective function suggested is:

argmin
D,Θ,T,Γ

{
‖X−DΓ‖2F + α‖Q−TΓ‖2F

+ β‖H−ΘΓ‖2F
}
, s.t. ∀i, ‖γi‖0 ≤ q,

(9)

where the classification error is represented by the term
‖H − ΘΓ‖22, Θ contains the classifier parameters, H =
[h1, . . . ,hN] ∈ RL×N is the label matrix of all input ex-
amples, in which the vector hi = [0, 0, . . . , 0, 1, 0, . . . , 0]T

contains only zeros apart from the index corresponding to the
class of the example. The optimization function in (9) can also
be written as follows:

argmin
Dnew,Γ

‖Xnew −DnewΓ‖2F , s.t. ∀i, ‖γi‖0 ≤ q, (10)

where Xnew =
(
XT ,
√
αQT ,

√
βHT

)T ∈ R(p+m+L)×N and

Dnew =
(
DT ,
√
αTT ,

√
βΘT

)T
∈ R(p+m+L)×m. The uni-

fied columns in Dnew are all normalized to unit l2 norm. The
optimization objective in (10) can be solved using standard
DL algorithms, such as K-SVD.

The authors propose two cases of LC-KSVD: LC-KSVD2,
in which the parameters of the classifier are learned along
with the dictionary, as shown in (9) and the second, LC-
KSVD1, in which they are calculated separately by: Θ =

4

(
ΓΓT + τ2I

)−1

ΓHT . More details on these expressions and
the numerical scheme for minimizing the objective function
can be found in [15], [16]. A new sample x is classified by
first sparse coding over the dictionary D̂, and then, applying
the classifier Θ̂ to estimate the label j.

III. KERNEL DICTIONARY LEARNING

This section focuses on kernel sparse representations, with
emphasis of the kernel-KSVD method by Nguyen et al., which
we will compare with later on this paper.

A. Kernels - The Basics

In machine learning, it is well-known that a non-linear
mapping of the signal of interest to higher dimension may
improve its discriminability in tasks such as classification. Let
x ∈ X be a signal in input space, which is embedded to a
higher dimensional space F using the mapping Φ,x ∈ Rp →
Φ(x) ∈ RP (P � p and it might even be infinite). The space
in which this new signal Φ(x) lies is called the “feature space”.
The next step in machine learning algorithms, in particular
in classification, would be learning a classifier based on the
mapped input signals and labels. This task can be prohibitive if
tackled directly. A way around this hurdle is the “kernel trick”
[44], [45], which allows computing inner products between
pairs of signals in the feature space, using a simple nonlinear
function operating on the two signals in input space:

κ (x,x′) = 〈Φ(x),Φ(x′)〉 = Φ(x)TΦ(x′), (11)

where κ is the “kernel”. This relation holds true for positive-
semi-definite (PSD) kernels, which according to Mercer’s the-
orem, generate a RKHS (Reproducing Kernel Hilbert Space)
[19]. Thus, suppose that the learning algorithm can be fully
posed in terms of inner products. In such a case, one can
achieve a “kernelized” version by swapping the inner products
with the kernel function, without ever operating in the feature
space. In case there are N input signals X = [x1, . . . ,xN] ∈
Rp×N , the “kernel matrix” K ∈ RN×N holds the kernel values
of all pairs of input signals:

Ki,j = κ(xi,xj) = 〈Φ(xi),Φ(xj)〉 , ∀i, j = 1..N. (12)

An inherent constraint in kernel algorithms is the fact that
the solution vectors, for example the principal components in
KPCA, are expansions of the mapped signals in feature space:

v =

N∑
i=1

αiΦ(xi). (13)

The subspace in which the possible solutions lie, can be
viewed as an N dimensional surface residing in F [46].
Motivated by the inability to directly approach the mapped
signals in feature space, researchers have suggested embedding
the N dimensional surface to a finite Euclidean subspace,
where all geometrical properties, such as distances and angles
between pairs of Φ(xi)

′s, are preserved [47]. The embedding
is called the “kernel empirical map” and the resulting subspace
is referred to as the “empirical feature subspace”. One way to
embed a given signal x to the empirical feature space is by

calculating kernel values originating from inner products with
all input training examples: x → [κ(x,x1), . . . , κ(x,xN)]

T .
As we shall see hereafter, we will propose a better tuned
variation of this approach.

B. Kernel Dictionary Learning

A straightforward way to kernelize DL would be exchang-
ing all signals (and dictionary atoms) with their respective
representations in feature space: x → Φ(x),d → Φ(d)
and rephrasing the algorithm such that it contains solely
inner products between pairs of these ingredients. A difficulty
with this approach is that during the learning process, the
dictionary atoms are in feature space. As there is no exact
reverse mapping from the updated inner products to their
corresponding signals in input space, there is no direct way of
accessing the updated atoms, as practiced in linear DL.

In order to solve this problem, the authors in [29] suggest
decomposing the dictionary in feature space into: Φ(D) =
Φ(X)A, where Φ(X) is the constant part, called the “base-
dictionary”, which consists of all mapped input signals, and
A is the only part updated during the learning, called the
“coefficient-dictionary”. The kernel DL can now be formulated
as the following optimization problem:

argmin
A,Γ

‖Φ(X)− Φ(X)AΓ‖2F s.t. ∀i = 1..N ‖γi‖0 ≤ q .

(14)
Similarly to linear DL, this optimization problem can be
solved iteratively by first performing sparse coding with a
fixed dictionary A, then updating the dictionary according
to the computed sparse representations Γ, and so on, until
convergence is reached. The kernelized equivalent of sparse
coding is given by:

argmin
γ
‖Φ(z)− Φ(X)Aγ‖22 s.t. ‖γ‖0 ≤ q , (15)

where z is the input signal. As mentioned earlier, the sparse
coding algorithm we focus on in this paper, as well as in
Nguyen’s KKSVD [29], is the OMP [42] and its kernel
version, KOMP [29]. Table I presents two of the main stages
in the OMP algorithm, which are the Atom-Selection (AS)
and Least-Squares (LS) stages, and their kernelized version.
As can be seen, these stages can be completely represented
using the coefficient dictionary A, the sparse representation
vector γ and the kernel functions K(X,X) ∈ RN×N and
K(z,X) = [κ(z,x1), . . . , κ(z,xN)] ∈ R1×N .

The dictionary update stage, can also be kernelized. In the
MOD algorithm [9], the update of A in iteration t + 1 is
given by: At+1 = ΓTt (ΓtΓ

T
t)−1 = Γ†t , being the solution to:

argmin
A
‖Φ(X)−Φ(X)AΓ‖2F . A similar update can be derived

for the K-SVD algorithm, as described in depth in [29], [31].

C. Difficulties in KDL

There are a few difficulties that arise when dealing with
kernels, and specifically in kernel DL. In the input space, a
signal x ∈ Rp can be described using its own p features, while
in feature space it is described by its relationship with all of the
other N input signals. The runtime and memory complexity of

5

TABLE I
COMPLEXITY OF THE ATOM SELECTION (AS) AND THE LEAST SQUARE (LS) STAGES IN LINEAR AND KERNEL-OMP. IS IS THE SUPPORT VECTOR IN

ITERATION t, STATING THE CHOSEN DICTIONARY ATOMS AND |IS | ITS LENGTH, EQUAL TO t. DS , AS AND γS ARE SUB-MATRICES OF D, A, AND γ ,
RESPECTIVELY, CORRESPONDING TO IS . rt IS THE RESIDUAL.

Term Complexity

OMP-AS 〈rt,dj〉 = 〈z−DSγS ,dj〉 = zTdj − γT
SDT

Sdj O (p|IS |+ p)

KOMP-AS [29] K(z,X)aj − γT
SAT

SK(X,X)aj O
(
N2 + |IS |N +N

)
OMP-LS γS =

(
DT

SDS

)−1
DT

S z O
(
p|IS |2 + p|IS |+ |IS |3

)
KOMP-LS [29] γS =

[
AT

SK(X,X)AS

]−1
(K(z,X)AS)

T O
(
N2|IS |+N |IS |+ |IS |3

)

a kernel learning algorithm changes accordingly and depends
on the number of input signals, instead of on the dimension of
the signals. This observation is also true for Nguyen’s KDL
where the kernel matrix K is used during the sparse coding
and dictionary update stages, and must be stored in full. In
applications where the number of input samples is large, this
dependency on the kernel matrix becomes prohibitive. In table
I, one can see the complexity of the main stages in the KOMP
algorithm and compare it to the linear OMP version. It is clear
that both the atom-selection and the least-squares stages are
governed quadratically on the size of the input dataset.

Another inherent difficulty in kernel methods in general,
is the need to tailor each algorithm such that it is formulated
solely through inner products. This constraint creates complex
and cumbersome expressions and is not always possible, as
some steps in the algorithm may contain a mixture of the
signals and their mapped version, as in [24].

IV. THE PROPOSED ALGORITHM

Section II and III gave some background to the task we
address in this paper. We saw that kernelization of the DL
task can be beneficial, but unfortunately, we also identified
key difficulties this process is accompanied by. In this work
we aim to propose a systematic and simple path for kernelizing
existing DL algorithms, in a way that will avoid the problems
mentioned above. More specifically, we desire to be able to
kernelize any existing DL algorithm, be it unsupervised or
supervised, and do so while being able to work on massive
training sets without the need to compute, store, or manipulate
the kernel matrix K. In this section we outline such a solution,
by carefully describing its key ingredients.

A. Kernel matrix approximation

Let X ∈ Rp×N be the input signals and K ∈ RN×N their
corresponding kernel matrix. As long as the kernel satisfies
Mercer’s conditions of positive-semi-definiteness it can be
written as an inner product between mapped signals in feature
space: Ki,j = 〈Φ(xi),Φ(xj)〉. Assume, for the sake of the
discussion here, that the kernel function applies a simple inner
product, i.e.: Ki,j = 〈fi, fj〉 = fTi fj , where fi, fj are the
feature vectors of dimension k, corresponding to xi and xj ,
respectively. Thus, the kernel matrix would have the form:
K = FTF = Φ(X)TΦ(X), where F ∈ Rk×N and k (≤
rank(K) ≤ N) is the desired dimension of the approximated
feature space. One can refer to the vectors {fi}Ni=1 in F as

“Virtual Samples” [37]. This way, instead of learning using
the kernel matrix K, one could work on these virtual samples
directly using a linear learning algorithm, leading to the same
outcome. In the following, we will leverage on this insight.

The kernel matrix is generally PSD, and as such can be
approximated using eigen-decomposition as follows: K =
UΛUT , where Λ ∈ Rk×k is a diagonal matrix containing the
top-k eigenvalues of K in descending order and U ∈ RN×k
contains the matching orthonormal eigenvectors. The virtual
samples can be achieved by:

F = Λ1/2UT = Λ−1/2UTK. (16)

The virtual samples can be viewed as a mapping of the original
input signals to a k-dimensional empirical feature space.

x→ Λ−1/2UT (κ(x,x1), κ(x,x2), . . . , κ(x,xN))
T
. (17)

This “linearization” is the mediator between kernel DL which
is obligated to store and manipulate the kernel matrix K, and
linear DL that can deal with very large datasets. The decom-
position of the matrix K to its eigenvalues and eigenvectors
is a demanding task in itself, both in time O(N2k) and in
space O(N2). Next we will show how a good approximation
of the matrix K can be constructed with only a subset of its
columns, using the popular Nyström method.

B. Nyström method

A common necessity in many algorithms in signal process-
ing and machine learning is deriving a relatively accurate and
efficient approximation of a large matrix. An attractive method
that has gained popularity in recent years is the Nyström
method [48], which generates a low-rank approximation using
a subset of the input data. The original Nyström method,
first introduced by Williams and Seeger [48], proposed using
uniform sampling without replacement.

Let K ∈ RN×N be a symmetric PSD matrix, and in
particular for the discussion here, a kernel matrix. Suppose
c ≤ N columns from the matrix K are sampled uniformly
without replacement to form the reduced matrix C ∈ RN×c.
Without loss of generality, the matrices C and K can be
decomposed as follows:

C =

[
W
S

]
and K =

[
W ST

S B

]
, (18)

where W ∈ Rc×c is the kernel matrix of the intersection of
the chosen c columns with c rows, B ∈ R(N−c)×(N−c) is

6

the kernel matrix composed of the N − c remaining rows
and columns, and S ∈ R(N−c)×c, is a mixture of both.
The Nyström method uses both C and W to construct an
approximation of the matrix K as follows [48]:

K ≈ CW†CT , (19)

where (·)† denotes the pseudo-inverse. The symmetric matrix
W can also be posed in terms of eigenvalues and eigenvectors:
W = VΣVT , where Σ is a diagonal matrix containing the
eigenvalues of W in descending order and V contains the
matching orthonormal eigenvectors. The pseudo-inverse of W
is given by W† = VΣ†VT . The expression of (W†)1/2 can
be similarly derived: (W†)1/2 = (Σ†)1/2VT .

We can represent K as before, using linear inner-products
of the virtual samples, and plug in Nyström’s approximation:

K = FTF = CW†CT = CVΣ†VTCT , (20)

and derive the final k-dimensional (k ≤ c) expression of the
virtual samples by:

Fk =
(
Σ†k

)1/2

VT
k CT , (21)

where Σk = diag(σ1, . . . , σk) ∈ Rk×k contains the k
largest eigenvalues of W and Vk ∈ Rc×k, the corresponding
orthonormal eigenvectors.

After performing the Nyström approximation, the space
complexity of kernel DL reduces from O(N2) to O(Nc), the
size of the matrix C, which is used during the computation
of the virtual samples. The time complexity of the Nyström
method is O(Nck + c2k), where O(Nck) represents the
multiplication of VT

k CT and O(c2k) stands for the eigenvalue
decomposition (and inversion) of the reduced matrix Wk.

Note that the process of computing the virtual samples may
seem inefficient, but it is performed only once, after which
the complexity of the DL is dictated by the chosen algorithm,
and not by the “kernelization”. In addition, in scenarios where
the number of input examples is very large, the ratio c/N in
Nyström’s method can be reduced greatly, i.e. c� N , making
the approximation even less dominant in terms of runtime and
memory, while retaining almost the same accuracy.

C. Sampling Techniques

Since the Nyström method creates an approximation of a
large symmetric matrix based on a subset of its columns,
the chosen sampling scheme plays an important part. The
basic method proposed originally by Williams and Seeger
was uniform sampling without replacement [48]. The columns
of the Gram matrix can be alternatively sampled from a
nonuniform distribution. Two such examples of nonuniform
sampling include “column-norm sampling” [49], where the
weight of the i-th column ki is its l2 norm: pi = ‖ki‖2/‖K‖2F ,
and “diagonal sampling” [50] where the weight is proportional
to the corresponding diagonal element2: pi = K2

ii/
∑N
i=1 K2

ii.
These methods can be made more sophisticated but require
additional complexity: O(N) in time and space for diagonal

2This is ineffective for constant diagonal values as in RBF.

sampling and O(N2) for column-norm sampling. A compre-
hensive theoretical and empirical comparison of these three
methods is provided in [51].

In [52], Zhang et al. suggested an alternative approach
of selecting a few “representative” columns in K by first
performing K-means clustering, then computing the reduced
matrix C based on these so-called “cluster centers”. Denote by
XR the resulting c cluster centers, created from the original
data X. The computation of the kernel matrices C and W
would be: C = K(X,XR) and W = K(XR,XR). Zhang et
al. also show that the combination of k-means clustering with
the Nyström method minimizes the approximation error.

Another appealing sampling technique has been suggested
in the context of coresets [53]. The idea is to sample the given
data by emphasizing unique samples that are ill-represented
by the others. In the context of our problem, we sample c
signals from X according to the following distribution: pi =
err(xi,µ)/

∑
xi∈X err(xi,µ), where err(xi,µ) = ||xi −

µγ||22 is the representation error of the signal xi, correspond-
ing to the mean of all training signals µ = (1/N)

∑N
i=1 xi

and γ is a scalar.

D. Linearized Kernel Dictionary Learning (LKDL)

Let {xi, yi}Ni=1 be a labeled training set, arranged as a
structure in L categories: Xtrain = [X1, . . . ,XL] ∈ Rp×N ,
where Xi contains the training samples that belong to the i-th
class and N =

∑L
i=1 ni. Our process of kernel DL is divided

in two parts: the first, a pre-processing stage that creates new
virtual training and test samples, followed by a second stage
of applying a standard DL. This whole process is termed
“Linearized Kernel Dictionary Learning” (LDKL).

The pre-processing stage is shown in algorithm 1. First,
the initial training set Xtrain is sampled using one of the
techniques mentioned in section IV-C, creating the reduced set
XR = [xR1

, . . . ,xRc
] ∈ Rp×c. Then the matrix C ∈ RN×c in

Nyström’s method is calculated by simply applying the chosen
kernel on each and every pair of columns in Xtrain and XR.
Next, the reduced matrix W ∈ Rc×c is both calculated and
later on inverted using rank-k eigen-decomposition. Finally the
virtual training samples Ftrain ∈ Rk×N are calculated using
equation (21). The Nyström method permits approximating a
new test vector ftest using equation (17), by using the mapping
already calculated based on the training set, and multiplying by
the joint kernel vector of the sampled set XR and the current
test sample: K(XR,xtest):

f test =
(
Σ†k

)1/2

VT
k [κ(xR1 ,xtest), . . . , κ(xRc ,xtest))]

T
.

(22)
Once the training and test sets are represented as virtual
samples: Ftrain and Ftest, any linear DL-based classification
method can be implemented. In the context of classification
we follow Nguyen’s “distributive” approach [31] of learning
L separate dictionaries [D1, . . . ,DL] per each class, then
classifying each test sample by first computing its sparse
coefficient vector over each of the dictionaries {Di}Li=1,
and finally choosing the class corresponding to the smallest
reconstruction error: ri = ‖f test −Diγi‖2, ∀i = 1..L.

7

Algorithm 1 LKDL Pre-Processing
1: Input: Xtrain = [X1, . . . ,XL], Xtest, the kernel κ,
smp method, c, k

2: XR = sub sample(Xtrain, smp method, c)
3: Compute Ctrain = K(Xtrain,XR)
4: Compute W = K(XR,XR)
5: Approximate Wk using k largest eigenvalues and eigen-

vectors Wk = VkΣkV
T
k

6: Compute virtual train set Ftrain =
(
Σ†k

)1/2

VT
k CT

train

7: Compute Ctest = K(Xtest,XR)

8: Compute virtual test set Ftest =
(
Σ†k

)1/2

VT
k CT

test

9: Output: Ftrain = [F1, . . . ,FL], Ftest

E. Limitations and Improvements

The largest limitation of Nyström-based kernelized features
is the need to perform pre-training on part of the input data to
calculate the matrices C and W and eigen-decompose them.
The need to calculate the embedding before the actual DL
requires the storage of a rather large matrix C ∈ RN×c. For
this purpose and the case where input training or test examples
do not fit into memory, we propose “mini-batch LKDL”.

Let the N input training samples be separately stored
in disk (labels can be scrambled) in nB equally sized
mini-batches: X = [X1, ...,XnB

], where Xi ∈ Rp×N/nB .
Each mini-batch is read into memory, sampled using one
of the sampling strategies shown above, and stored in a
matrix XR = [XR1

, ...,XRnB
] ∈ Rp×c, where XRi

∈
Rp×c/nB ∀i = [1..nB]. After collecting samples from all mini-
batches (one mini-batch at a time), we compute the matrix
W = K(XR,XR) ∈ Rc×c and decompose it using eigen-
decomposition Wk = VkΣkV

T
k , exactly as in steps 4-5 in al-

gorithm [1]. The virtual training set Ftrain = [F1, ...,FnB
] ∈

Rk×N is computed, one mini-batch at a time, using a subset
of the matrix C = [K(X1,XR), ...,K(XnB

,XR)]T ∈ RN×c,
and an already computed decomposition of W:

Fi =
(
Σ†k

)1/2

VT
k CT

i ∀i = 1..nB , (23)

where Ci ∈ RN/nB×c is the i-th portion of the matrix C. The
virtual test samples can similarly be stored in mini-batches or
computed one sample at a time using equation 22. Once we
have the virtual training and test examples we can deploy any
mini-batch or online DL algorithm, e.g. [36].

After dealing with the matrix C, mini-batch LKDL still
has scaling issues in the form of W ∈ Rc×c. For example,
suppose our dataset has 10 million training examples and we
sample only 1%. The corresponding matrix W will be of
size 100, 000× 100, 000, which cannot be stored in memory,
nor can we compute the eigen decomposition of such a
matrix. As one last point we add the following: in some
problems/datasets, the Nyström approximation may not deliver
a sufficient performance due to the inability to effectively
subsample the data.

F. Data-independent kernel empirical maps

The field of kernel empirical maps can be divided to two
categories: The first refers to data dependent features where the
kernel matrix is approximated using a subset of the data. The
Nyström method (on which our virtual samples are based), is
a classic example of such an approach. The second category
suggests data independent features where these are created
randomly, without prior training, with the goal of mimicking
the numerical values of the kernel function. In this section we
describe two related methods pertaining to the latter category.
Later on in the results section we shall provide comparisons
between these two and our scheme.

In 2007, Rahimi and Recht [38] proposed a revolutionary
idea of creating randomized kernel features, without any
prior training, termed “Random Fourier Features” or generally
referred to as “Random Kitchen Sinks”. This method relied
strongly on Bochner’s theorem which states: “A continuous
kernel κ(x,x′) = κ(x − x′) on Rp is positive definite
if and only if κ(δ) is the Fourier transform of a non-
negative measure”. The immediate result from this, is that
the Fourier transform of a PSD shift-invariant kernel (which
can be expressed as κ(x,x′) = κ(x − x′)), κ(δ), can be
treated as a probability distribution function. One can thus
create k-dimensional feature vectors, whose inner product
approximates the kernel’s numerical value as follows:

κ(x− x′) =

∫
Rp

pκ(ω)ejω
T (x−x′)d(ω) ≈

≈ 1

k

k∑
i=1

ejωi
T (x−x′) = z(x)T z(x′) ωi ∼ pκ(ω) iid

(24)

where the samples ωi ∈ Rp are drawn i.i.d. from the distribu-
tion function pκ(ω), which is essentially the Fourier transform
of the shift invariant kernel. The vectors z(x) and z(x′) are
the low dimensional kernelized features, p is the original
signal’s dimension and k is the desired new dimension of the
approximated signal. Instead of using k complex features, one
can create a 2k-dimensional embedding using sin(·) and cos(·)
functions. The full scheme is given in algorithm 2.

Algorithm 2 Random Fourier Features [38]
1: Input: A positive definite shift invariant kernel κ(x,x′) =
κ(x− x′).

2: Output: A randomized feature map z(x) : Rp → R2k so
that z(x)T z(x′) ≈ κ(x− x′)

3: Compute the Fourier transform of the kernel: pκ(ω) =
1

2Π

∫
e−jω∆κ(∆)d∆.

4: Draw k iid samples ω1, ...,ωk ∈ Rp from pκ(ω).
5: z(x) ≡

√
1
k

[
cos(ωT1 x)... cos(ωTk x) sin(ωT1 x)... sin(ωTk x)

]
.

The Fourier transform of the commonly used RBF kernel
κ(∆) = exp−∆2/2σ2

is very conveniently the normal proba-
bility distribution: pκ(ω) ∼ N (0, 1

σ2). Furthermore, if σ = 1,
the computation of the features amounts to drawing a random
matrix Ω ∈ Rk×p, where ωi,j ∼ N (0, 1), multiplying it by
the signal x for which we want to compute the feature and
computing the sin(·), cos(·) functions of each component.

8

The Fastfood algorithm by Le. et al. [39] goes one step
further. Instead of storing the Gaussian matrix, Ω ∈ Rk×p, and
multiplying by it each time we compute a new feature vector,
one could decompose it into a multiplication of Hadamard
and Gaussian scaling matrices. The authors show that the
result of this multiplication approximates a natural Gaussian
distribution matrix. Each matrix in the decomposition is either
diagonal or can be generated efficiently in FFT-like fashion.
This decomposition reduces runtime and storage complexity
from O(kp) to O(k log p).

At first sight, these two techniques of random kernelized
feature creation can pose an alternative to our Nyström-based
features. However, both these methods focus on optimizing
the training and evaluation process of SVM and its variants,
while we target the use of such features in tasks of DL. While
the motivation may appear the same, the above-mentioned
algorithms are essentially different. For example, the classifi-
cation process in linear SVM consists of evaluating a decision
function that applies only one inner product: f(x) = θTx
(θ being the classifier parameters). This evaluation becomes
at least N times slower in the case of kernel SVM: f(x) =∑N
i=1 αiκ(x,xi), where N is the number of support vectors

(which is correlated with the size of the training set). Great
efforts have been involved in optimizing each component of
the described evaluation process, including creating efficient
matrices for faster multiplication as in Fastfood. In contrast, in
DL, the classification process consists of sparse coding over
a trained dictionary, where the dimension of the signals plays
a considerable role in the complexity of the algorithm. While
in SVM one can afford to use larger sized features (since
evaluation amounts to a simple inner product between two
vectors), in DL and sparse coding-based classification, this
becomes a critical matter.

Furthermore, a recent analysis [54] of Nyström features
versus Random Fourier ones shows that Nyström approxima-
tion, being data-dependent, captures the spectrum of the actual
data distribution faster (smaller approximation dimension) than
randomized feature approaches, especially in natural signals,
where the spectrum of the kernel matrix decays rapidly. As a
final note we add that the mentioned randomized features suit
shift-invariant kernels only, while our method has complete
freedom in choosing the kernel function.

G. Relation to Past Work

The existing works on kernel sparse representations can
be roughly divided to two categories. The first corresponds
to ‘analytical’ methods that operate solely in the feature
domain and use the kernel trick to find an analytical solution,
be it sparse coding or dictionary update [24], [25], [29],
[32]. The other category refers to ‘empirical’ or ‘approximal’
methods that operate in the input space, while making some
approximation or assumption regarding the mapped signals in
feature space, in order to alleviate some of the constraints
when working with kernels [22], [23], [26]. Naturally, our
work belongs to the second group of contributions.

In 2002, Vincent and Bengio [22] kernelized the matching
pursuit algorithm by using the kernel empirical map of the

input training examples as dictionary atoms. By referring to the
kernel empirical map Φe instead of the actual mapped signals
in F , the authors could perform standard linear matching
pursuit without having to rewrite the algorithm in terms of
inner products. In this case, the constraint of a PSD kernel
was no longer mandatory. In 2005 [23], a similar concept
of embedding the signals to a kernel empirical map was
used to kernelize the basis pursuit algorithm. This approach
of working in the input domain with an approximation of
the kernel feature space is very similar to ours and can be
described by the following embedding, evaluated over the
entire training dataset {xi}Ni=1:

x→ Φe(x) = [κ(x1,x), . . . , κ(xN ,x)]
T
. (25)

The case in our algorithm, where all the training signals are
involved in the approximation of the kernel matrix (c =
N,C = W = K), results in a similar expression for the
virtual samples (where we have used K† = VΣ†VT):

F = (Σ1/2)†VTCT = (Σ1/2)†VTKT , (26)

where Σ and V are the eigenvalues and eigenvectors of the
matrix K. The embedding in this case is thus

Φe(x) = (Σ1/2)†VT [κ(x1,x), . . . , κ(xN ,x)]
T
. (27)

Contrary to [22], [23], our embedding preserves the similari-
ties in the high-dimensional feature space, represented by the
inner products, i.e,

Φe(x)TΦe(x
′) ≈ κ(x,x′) = Φ(x)TΦ(x′), (28)

In addition, both [22] and [23] focus on sparse coding only and
do not address the accuracy of the kernel empirical map, nor
its dimension, which can be highly restrictive in large-scale
datasets.

Both Gao et al. in 2010 [24] and Li et al. in 2011
[25], proposed an analytical approach of kernelizing the basis
pursuit and orthogonal matching pursuit algorithms. Contrary
to [22] and [23], the authors replaced all the inner products
by kernels and worked entirely in the feature domain. Clas-
sification of faces and objects were achieved in [24] using a
similar approach as in the SRC algorithm [11]. Aside from
kernelizing the SRC algorithm, [24] also suggested updating
the dictionary one atom at a time. By zeroing the derivative
of the optimization function with respect to each atom, the
authors acquired in the same term, a mixture of both the atom
itself and its kernel with the input examples. As the resulting
equation could not be solved analytically, an iterative fixed
point update was implemented.

In 2012 Zhang et al. [26] provided an alternate approach
of kernelizing the SRC algorithm. Instead of working with
the implicit mapped signals in the feature space Φ(x), the
authors performed dimensionality reduction first, using the
KPCA algorithm, then fed the resulting nonlinear features to
a linear l1 basis pursuit solver. It can be shown that kernel
PCA eventually entails the eigendecomposition of the kernel
matrix (more accurately, the centered kernel matrix), as does
our algorithm. The difference is that our method, apart from
providing an accurate kernel mapping which aims to preserve

9

similarities in feature space, also avoids dealing with the kernel
matrix altogether in the training stage, making it possible to
work with large datasets.

Instead of using a constant dimensionality reduction (DR)
matrix, such as KPCA, another approach is learning the matrix
as part of a sparse representation learning algorithm [55], [56].
In [55], the DR matrix is incorporated in the optimization
of the SRC algorithm, leading to comparable accuracy with
existing features, with smaller dimension. A kernelized version
of [55], called “Sparse Embedding”, is proposed in [56]. The
authors learn a kernel DR matrix/embedding in conjunction
with sparse representations and DL. The resulting features are
then fed to a linear KSVD and provide improved classification
accuracies, competitive with KDL.

This approach is similar to ours, since after performing
dimensionality reduction, the authors are no longer restricted
by the number of training samples N , in the sparse coding
process, i.e. they perform regular linear OMP and KSVD.
Nonetheless, the embedding depends on the dictionary and
sparse representations, thus requires update in each iteration
of DL. This update entails the storage of the sometimes huge
kernel matrix K, in addition to the eigen-decomposition of
an exact sized matrix. Our method circumvents the use in the
kernel matrix all-together by computing the virtual samples. In
addition, the work in [56] provides a tailored embedding for
the specific case of reconstructive DL (i.e. MOD or KSVD).
Our method provides a broader, general solution for utilizing
the nonlinearities in the input data. Finally this method cannot
be scaled to deal with hundreds of thousands of input exam-
ples, and since the embedding requires the computation of the
eigen-decomposition of a full rank N × N matrix, it cannot
be performed online or in mini-batches.

V. EXPERIMENTAL RESULTS

The following section highlights the three main benefits
of incorporating LKDL with existing DL: (1) improvement
in discriminability, which results in better classification (2)
a small added computational effort by LKDL in comparison
with typical kernel methods and (3) the ability to incorporate
LKDL seamlessly in virtually any linear DL algorithm.

In these series of experimentations, all parameters were
chosen using a combination of educated guessing and random
or grid search. The choice of kernel parameters was fairly
straightforward. Most datasets (pre-processed by l2 unit nor-
malization) reacted well to the Gaussian kernel with σ values
of [0.5, 1, 2] or Polynomial kernel of degree 2-4. The exact
hyper-parameter of the kernel was determined using cross-
validation. As for the Nyström approximation parameters, k
was usually chosen as the signal’s original dimension. This
choice is rather arbitrary and suits to compare the performance
of linear DL and LKDL. Finally the ratio of sampled signals in
Nyström approximation, c/N , was chosen between 10− 20%
in larger databases, such as USPS, MNIST and 50 − 100%
in smaller databases such as YaleB and AR-Face. We have
seen that for a fixed value of k, c does not have an effect on
the overall classification result (see Fig. 1b), thus choosing a
smaller number of samples: 1 − 10% is also possible (when
there are sufficient training examples).

A. Unsupervised Dictionary Learning

In this part we demonstrate the performance of our al-
gorithm in digit classification on the USPS and MNIST
databases. Our method of classification consists of first pre-
processing the training and test data using LKDL, then per-
forming standard DL, using existing tools and finally de-
ploying the classification scheme in section IV-D. For sparse
coding and DL, we use the OMP and KSVD implementa-
tions from the latest OMP-Box (v10) and KSVD-Box (v13)
libraries3 [57]. During all experiments we use the KKSVD
algorithm explained in section III-B [29], [31] as our reference,
in addition to linear KSVD. We use the code of Nguyen’s
KKSVD4. A fair comparison in accuracy and runtime, between
LKDL and KKSVD can be made, as KKSVD uses the same
functions from the OMP and KSVD libraries mentioned ear-
lier. The k-means5 and coreset6 sampling techniques were also
adopted from existing code. All of the tests were performed
on a 64-Bit Windows7 Intel(R) Core(TM) i7-4790K CPU with
16GB memory. The initial dictionary is a random subset of m
columns from the training set in each class.

A note about over-completeness of the dictionary: In the
following experiments, most of the dictionaries with which
we represent the virtual samples are “compact”, i.e. not over-
complete, even with respect to the finite dimensions of the
features we produce. Yet, this should pose no problem, because
the goal of these dictionaries is not to fully represent the signal
in reconstructive tasks, but rather serve classification needs.

1) USPS dataset: The USPS dataset consists of 7,291
training and 2,007 test images of digits of size 16 × 16.
All images are stacked as vectors of dimension p = 256,
mean extracted and normalized to unit l2 norm. Following the
experiment in [31], we choose the following parameters: 300
dictionary atoms per class, cardinality of 5 and 5 iterations
of DL. The chosen kernel is polynomial of order 2, i.e.
κ(x,x′) = (xTx′)2. The approximation parameters were set
to: c = 20% of N training samples and k = 256, the original
dimension of the digits. The displayed results are an average
of 10 repeated iterations with different initialization of the sub-
dictionaries and different sampled columns XR in Nyström’s
method.

First we evaluate the quality of the representation of the
kernel matrix using Nyström’s method. We randomly choose
2,000 samples and approximate the resulting kernel matrix.
In order to isolate the effect of column sub-sampling, we do
not perform additional dimensionality reduction using eigen-
decomposition and thus choose k = 256. Five sampling tech-
niques were examined: uniform [48], diagonal [50], column-
norm [49], k-means [52] and coreset [53]. We also added the
ideal reconstruction using rank-c SVD decomposition, which
is optimal with respect to minimizing the approximation error,
but takes much longer time to compute. We perform the

3Found in http://www.cs.technion.ac.il/∼ronrubin/software.html
4Found in http://www.umiacs.umd.edu/∼hien/KKSVD.zip
5K-means - http://www.mathworks.com/matlabcentral/fileexchange/

31274-fast-k-means/content/fkmeans.m
6Coreset - http://web.media.mit.edu/∼michaf/index.html

10

comparison using the normalized approximation error:

err =
‖K− K̃‖F
‖K‖F

, (29)

where K is the original kernel matrix and K̃ its Nyström
approximation. Fig. 1a shows the quality of the approximation
versus the c/N ratio, the percent of samples chosen for the
Nyström approximation. As expected, SVD performs the best,
as it is meant exactly for the purpose of providing the ideal
rank-c approximation of K. The second best approximation is
obtained by k-means, which provides 97% accuracy in terms
of the normalized approximation error, with only 10% of the
samples. All other methods perform roughly the same. The
differences in approximation quality reduce as the percent of
chosen samples grows to half of the input dataset.

Next we examine the effect of sub-sampling on the clas-
sification accuracy of the entire database of USPS. Fig. 1b
shows the classification accuracy as a function of c/N , along
with the constant results of linear KSVD and KKSVD. There
is a gap of 0.5% between the results of linear KSVD and its
kernel variants, which suggests that kernelization improves the
discriminability of the input signals. It can be seen that most
sampling strategies give roughly the same results, competitive
with KKSVD, with only a fraction of the samples. In general,
the percent of samples in Nyström approximation does not
have much impact on the final classification accuracy (apart
from small fluctuations that arise from the randomness of each
run). This can be explained by the simplicity of the digit
images and the relatively large number of training examples.

Following Nguyen’s setup in [29] and [31], we inspect the
effect of corrupting the test images with white Gaussian noise
and missing pixels. We use the same parameters as before and
repeat the experiment 10 times with random corruptions. The
results of classification accuracy versus the standard deviation
of the noise and the percent of missing pixels are given in Fig.
2a and 2b. It is evident that adding the kernel improves the
robustness of the database to both noise and missing pixels.
The performance of LKDL follows that of KKSVD with a only
20% of the training samples. The trend shown in our results is
similar to that in [31], although the results are slightly lower.
This can be explained by the fact that in [31], the authors did
not use the traditional partitioning of training and test data
of the USPS dataset. The only sampling method shown is
“coresets”, due to the fact that it performed best.

2) MNIST dataset: Next we demonstrate the differences in
runtime between our method and KKSVD using the larger-
scale digit database of MNIST, which consists of 60,000
training and 10,000 test images of digits of size 28×28. Same
as before, the digits were stacked in vectors of dimension
p = 784 and normalized to unit l2 norm. We examine
the influence of gradually increasing the training set on the
classification accuracy and training time of the input data.
In this simulation, the entire training set of 60,000 examples
is reduced by randomly choosing a defined fraction of the
samples, while maintaining the test set untouched. The training
runtime measured in LKDL includes the time needed to
prepare the virtual train samples, along with training the entire
input dataset using linear KSVD. The test runtime includes

TABLE II
CLASSIFICATION PERFORMANCE OF RLS-DLA WITH AND WITHOUT
LKDL ON THE EXTENDED MNIST. TIME MEASURED IN SECONDS.

Algorithm Accuracy Training Test Virt. Samples
RLS-DLA 97.49 837.63 6.42
RLS-DLA+LKDL 98.4 846.59 6.47 703.13

the time needed to compute the virtual test samples and the
actual evaluation of all 10,000 test examples. As for KKSVD,
the runtime includes the preparation of the kernel sub-matrices
for each class and the kernel DL using KKSVD. Parameters in
the simulation were: 2 DL iterations7, cardinality of 11, 700
atoms per digit, polynomial kernel of order 2, c = 15% and
k = 784. The results were averaged over 5 runs.

The results can be seen in Fig. 3a-3c. Again, the coreset
sampling method was chosen, as it provided the best results.
The accuracy of LKDL is competitive with KKSVD and
at times even better. Moreover, LKDL is 35-times faster in
training, and 445-times faster in evaluating the entire database
of MNIST. The training and test runtimes of LKDL follow
the ones of KSVD, along with a component of calculating the
virtual datasets. This is expected since our method “piggy-
backs” on KSVD’s performance and complexity. KKSVD’s
performance however, is dependent quadratically on the num-
ber of input samples in each class. When the database is large,
the calculation of the virtual datasets (which is performed only
once), is negligible versus the alternative of performing kernel
sparse coding thousands of times during the DL process.

Next we show that our algorithm can work with an even
larger input dataset. We use an enlarged version of MNIST
where each digit’s image is translated by one pixel in each
direction (including diagonal). The result is a training set of
540,000 images and the original test set of 10,000 images. We
randomly permute the train set and divide it to 9 batches of
size 60,000 examples each. Now we perform RLS-DLA [36]8

with and without batch-LKDL, with the same parameters of
the original MNIST experiment. The results in Table II show
an almost 1% improvement in accuracy over linear RLS-DLA.

B. Comparison with random kernel empirical maps

In this section we test the effect of extracting different
kernelized features. We compare our data-dependent method
(LKDL) with two data-independent randomized kernel fea-
tures: Random Fourier Features [38] (RFF) and Fastfood [39].
The datasets we use are the USPS and MNIST, combined
with the Gaussian kernel with σ = 1. This kernel choice9

is necessary since the RFF and Fastfood methods rely on
the kernel being shift invariant. In this experiment we record
the accuracy versus the dimension of the kernelized feature.
Once the features are created they are combined with standard
KSVD DL, exactly as in the previous sections (including

7Note that we chose a relatively small number of DL iterations in order
to reduce the already-long computation time of KKSVD. A larger number
of DL iterations will lead to an even greater difference in runtime between
KKSVD and LKDL.

8Code can be found in: http://www.ux.uis.no/∼karlsk/dle/index.html
9Note that this is not the optimal choice for LKDL, but nonetheless we use

it, due to its shift-invariant structure, in order to maintain a fair comparison.

11

5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

(c/N) ratio

N
or

m
al

iz
ed

 A
pp

ro
xi

m
at

io
n

E
rr

or

Coreset
Kmeans
Uniform
Diag
Col−norm
SVD

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.954

0.956

0.958

0.96

0.962

0.964

0.966

0.968

(c/N) ratio

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

LKDL Coreset
LKDL Kmeans
LKDL Uniform
LKDL Diag
LKDL Col−norm
KSVD
KKSVD

(b)

Fig. 1. Approximation error (a) and classification accuracy (b) as a function of c/N , percent of samples used in Nyström method.

0 0.5 1 1.5 2

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Level

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

KSVD

KKSVD

LKDL Coreset

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% Missing Pixels

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

KSVD

KKSVD

LKDL Coreset

(b)

Fig. 2. Classification accuracy in the presence of Gaussian noise (a) and missing pixels (b).

10,000 20,000 30,000 40,000 50,000 60,000
0.97

0.972

0.974

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

Training Samples

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

KSVD

KKSVD

LKDL Coreset

(a)

10,000 20,000 30,000 40,000 50,000 60,000
10

0

10
1

10
2

10
3

10
4

Training Samples

T
ra

in
in

g
T

im
e

lo
g[

se
c]

KSVD

KKSVD

LKDL Coreset

(b)

10,000 20,000 30,000 40,000 50,000 60,000
10

0

10
1

10
2

10
3

10
4

Training Samples

T
es

t T
im

e
lo

g[
se

c]

KSVD

KKSVD

LKDL Coreset

(c)

Fig. 3. Accuracy (a) training time (b) and test time (c) versus the number of input training examples in MNIST. Runtime is shown in logarithmic scale.

the DL parameters: number of atoms, sparsity and number
of iterations). We use the original code by the creators of

RFF10 and Fastfood11. In case of LKDL, we fix the number
of examples in Nyström’s approximation to be 20% (of the

10Found in: https://keysduplicated.com/∼ali/random-features/
11Found in: http://www.mathworks.com/matlabcentral/fileexchange/

49142-fastfood-kernel-expansions

12

entire number of available training data) in USPS and 3% in
MNIST, and change the final dimension of the virtual samples,
portrayed by the parameter k. The sampling method we use
is K-means sampling. In RFF we sample k

2 , p-dimensional
random vectors ωi, in order to create k-dimensional features.
In Fastfood, we first create a larger sized, power of 2, random
matrix12, then extract k

2 rows from it at random, from which
the k-dimensional final features are created exactly as in RFF.
Finally we add for reference the results of linear KSVD (with-
out kernelized features) and KKSVD. The shown accuracies
are the average result of 20 independent runs.

As can be seen in Fig. 4a and 4b, LKDL features are
more accurate than the randomized ones. While randomized
features require larger dimensional vectors for higher accuracy,
our method can manage with a smaller dimension. This is
especially important for the task of DL. However, it can be
seen that for larger signal dimensions, all features provide
similar results. This suggests that randomized features are of
important value in some applications and their relation to DL
is definitely worth further investigation.

C. Supervised Dictionary Learning

In the following set of experiments we demonstrate the
easiness of combining our pre-processing stage with any DL
algorithm, in particular the LC-KSVD [15] and FDDL [17],
both of which are supervised DL techniques that were men-
tioned earlier. We do so using the original code of LC-KSVD13

and FDDL14. Throughout all tests, the training and test sets
were pre-processed using LKDL to produce virtual training
and test sets, which were later on fed as input to the DL and
classification stages of each method. In all experiments, no
code has been modified, except for exterior parameters which
can be tuned to provide better results. The point in this setup
is using an existing technique of supervised DL and showing
the improvement that our method can provide.

1) Evaluation on the USPS Database: We start with com-
paring the classification accuracy of USPS, same as before.
First we perform regular FDDL with the following parameters:
5 DL iterations, 300 dictionary atoms per class, where the
dictionary is first initialized using K-means clustering of the
training examples. The scalars controlling the tradeoff in the
DL and optimization expressions remained the same as in
[17]: λ1 = 0.1, λ2 = 0.001 and g1 = 0.1, g2 = 0.005
(in [17], these are referred to as γ1, γ2). As for LKDL pre-
processing, the chosen parameters were: Polynomial kernel of
degree 2, K-means based sub-sampling of 20% (c/N = 0.2)
and k = 256. All results were averaged over 10 iterations with
different initializations. Table III shows classification results
with and without LKDL. The results clearly improve when
adding LKDL as pre-processing. However the obtained results
in this experiment are lower than those reported in [17]. This
can be explained by the fact that we used the original database

12Fastfood relies on Hadamard matrices which are of size that divides by
the power of 2, thus to get a random sized feature, we truncate the final
Gaussian random matrix by taking a subset of its rows

13Found in http://www.umiacs.umd.edu/∼zhuolin/LCKSVD/
14Found in http://www.vision.ee.ethz.ch/∼yangme/database mat/FDDL.zip

TABLE III
CLASSIFICATION ACCURACY OF FDDL ON THE USPS DIGIT DATABASE,

WITH AND WITHOUT LKDL PRE-PROCESSING

Algorithm Accuracy
FDDL 95.79
FDDL + LKDL 96.049

TABLE IV
CLASSIFICATION ACCURACY OF LC-KSVD1 AND LC-KSVD2 ON THE

YALEB AND AR-FACE DATABASES, WITH AND WITHOUT LKDL

Algorithm Yale-B AR-Face
LC-KSVD1 94.49 92.5
LC-KSVD1 + LKDL 96.08 94.8
LC-KSVD2 94.99 93.7
LC-KSVD2 + LKDL 96.58 94.8

of USPS, while the provided code had a demo intended for
an extended translation-invariant version of USPS. In addition,
the exterior parameters λ1, λ2, g1, g2 were tweaked especially
for the extended USPS, thus may have provided worse results
in our case.

2) Evaluation on the Extended YaleB Database: Next, we
show the benefit of combining our method with LC-KSVD
on the “Extended YaleB” face recognition database, which
consists of 2,414 frontal images that were taken under varying
lighting conditions. There are 38 classes in YaleB and each
class roughly contains 64 images, which are split in half to
training and test sets, following the experiment described in
[15]. The original 192 × 168 images are projected to 504-
dimensional vectors using a randomly generated constant ma-
trix from a zero-mean normal distribution. We use a dictionary
size of 570 (in average 15 images per class) and sparsity
factor of 30, same as in [15]. The kernel chosen for LKDL
was Gaussian of the form: κ(x,x′) = exp

(
−‖x− x′‖22/2σ2

)
,

where σ = 2. Due to the small size of the dataset, no sub-
sampling was performed and c was set to be the entire size
of the training set. The value of the parameter k was set to
504, the initial dimension of the signals. In order to use the
Gaussian kernel, the samples in the training and test sets were
l2 normalized, thus the original parameters in [15], [16] of√
α and

√
β in expression (9) had to be changed. The final

parameters:
√
α = 1/200 in case of LCKSVD1, and

√
α =

1/600,
√
β = 1/900 in case of LCKSVD2, were chosen using

a coarse-to-fine grid search and provided the best classification
results. We use the original classification scheme in [15], [16].
Table IV shows classification results of LC-KSVD1 and LC-
KSVD2, with and without LKDL. It is clear that the addition
of the nonlinearity increases the discriminability of the input
samples and improves classification results by up to 1.6% in
both LC-KSVD1 and LC-KSVD2.

3) Evaluation on the AR Face Database: The AR Face
database consists of 4,000 color images of faces belonging
to 126 classes. Each class consists of images taken over
two sessions, containing different lighting conditions, facial
variations and facial disguises. Following the experiment in
[16], 2,600 images were chosen, first 50 classes of males
and first 50 classes of females. Out of 26 images in each
class, 20 were chosen for training and the rest for evaluation.

13

64 128 256 512 784 1024
0.935

0.94

0.945

0.95

0.955

0.96

k − approximation dimension

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

LKDL Kmeans

RFF

Fastfood

KSVD

KKSVD

(a)

256 512 784 1024 2048
0.97

0.975

0.98

0.985

k − approximation dimension

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

LKDL Kmeans

Random Fourier

Fastfood

KSVD

KKSVD

(b)

Fig. 4. Classification accuracy versus feature dimension of USPS (a) and MNIST (b) databases.

We use the already-processed dataset15 in [16], where the
original images of size 165×120 pixels were reduced to 540-
dimensional vectors using random projection as in Extended
YaleB. The cardinality is same as before set to 30 and the
number of atoms in DL is set to 500 (5 atoms per class).
As before, we normalized all the signals to unit l2-norm. The
parameters σ of the Gaussian kernel,

√
α and

√
β have been

determined using a coarse-to-fine random search strategy. We
chose σ ∈ [0.25, 0.5, 0.75, 1, 1.25] and α, β ∈ 1/[1..100] and
ran the search 100 times. Eventually a local maxima has been
found at: σ = 0.5. The optimal parameter for LCKSVD1
was

√
α = 1/14, whereas the ones for LCKSVD2 were:√

α = 1/15 and
√
β = 1/17. The parameter c was set to the

size of the entire database, i.e. no sub-sampling was performed
and k was set to the original dimension of the data, 540. In
table IV we compare the classification results of LC-KSVD1
and LC-KSVD2, with and without LKDL pre-processing. As
can be seen our method improves the performance of LC-
KSVD1 by 2.3% and LC-KSVD2 by 1.1%.

VI. CONCLUSION

In this paper we have discussed some of the problems
arising when trying to incorporate kernels in DL, and payed
special attention to the kernel-KSVD algorithm by Nguyen et
al. [29], [31]. We proposed a novel kernel DL scheme, called
“LKDL”, which acts as a kernelizing pre-processing stage,
before performing standard DL. We used the concept of virtual
training and test sets and described the different aspects of cal-
culating these signals. We demonstrated in several experiments
on different datasets the benefits of combining our LKDL
pre-processing stage, both in accuracy of classification and in
runtime. Lastly, we have shown the easiness of integrating
our method with existing supervised and unsupervised DL
algorithms. It is our hope that the proposed methodology
will encourage users to consider kernel DL for their tasks,
knowing that the extra-effort involved in incorporating the

15Found in http://www.umiacs.umd.edu/∼zhuolin/LCKSVD/

kernel layer is near-trivial. We intend to freely share the code
that reproduces all the results shown in this paper.

Our future research includes combining LKDL with com-
plicated signals that do not adhere to Euclidean distances, for
example region covariance matrices. We would also like to
examine the benefit of applying LKDL to the sparse coeffi-
cients instead of the input signals and maybe combining both
options. Lastly, our goal is improving the sampling ratio and
the size of the matrix W, using advanced sampling techniques,
and maybe combining Nyström data-dependent features with
randomized ones, in order to enjoy both worlds.

REFERENCES

[1] S. Mallat, A wavelet tour of signal processing. Academic Press, 1999.
[2] E. J. Candes and D. L. Donoho, “Recovering edges in ill-posed inverse

problems: Optimality of curvelet frames,” Ann. Statist., vol. 30, no. 3,
pp. 784–842, Jun. 2002.

[3] M. N. Do and M. Vetterli, “Contourlets: a directional multiresolution
image representation,” Proc. IEEE Int. Conf. Image Process. (ICIP),
2002.

[4] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[5] J. M. Fadili, J. L. Starck, and F. Murtagh, “Inpainting and zooming using
sparse representations,” J. Comput., vol. 52, no. 1, pp. 64–79, 2007.

[6] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image
restoration,” IEEE Trans. Image Process., vol. 17, no. 1, pp. 53–69, Jan.
2008.

[7] O. Bryt and M. Elad, “Compression of facial images using the K-SVD
algorithm,” J. Visual Commun. Image Representation, vol. 19, no. 4, pp.
270–282, May 2008.

[8] J. Zepeda, C. Guillemot, and E. Kijak, “Image compression using sparse
representations and the iteration-tuned and aligned dictionary,” IEEE J.
Sel. Top. Signal Process., vol. 5, no. 5, pp. 1061–1073, Sep. 2011.

[9] K. Engan, S. Aase, O. Hakon, and J. Husoy, “Method of optimal
directions for frame design,” IEEE Int. Conf. Acoustics, Speech, and
Signal Process. (ICASSP), vol. 5, pp. 2443–2446, 1999.

[10] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD an algorithm for
designing overcomplete dictionaries for sparse representations,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[11] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[12] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. R. Bach, “Supervised
dictionary learning,” Advanc. Neural Inform. Process. Syst. (NIPS), pp.
1033–1040, 2009.

14

[13] J. Mairal, F. R. Bach, and J. Ponce, “Task driven dictionary learning,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 4, pp. 791–804,
Apr. 2012.

[14] Q. Zhang and B. Li, “Discriminative K-SVD for dictionary learning in
face recognition,” IEEE conf. Comput. Vision Pattern Recog. (CVPR),
pp. 2691–2698, 2010.

[15] Z. Jiang, Z. Lin, and L. S. Davis, “Learning a discriminative dictionary
for sparse coding via label consistentlabel consistent K-SVD,” IEEE
Conf. Comput. Vision Pattern Recog. (CVPR), pp. 1697–1704, 2011.

[16] ——, “Label consistent K-SVD: Learning a discriminative dictionary for
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11,
pp. 2651–2664, 2013.

[17] M. Yang, L. Zhang, X. Feng, and D. Zhang, “Fisher discrimination
dictionary kearning for sparse representation,” IEEE Int. Conf. Comput.
Vision (ICCV), pp. 543–550, 2011.

[18] S. Cai, W. Zuo, L. Zhang, X. Feng, and P. Wang, “Support vector guided
dictionary learning,” pp. 624–639, 2014.

[19] V. Vapnik, The nature of statistical learning theory. Springer, 2000.
[20] B. Scholköpf, A. Smola, and K. R. Müller, “Kernel principal component

analysis,” Artific. Neural Networks ICANN, pp. 583–588, 1997.
[21] B. Scholköpf and K. R. Müller, “Fisher discriminant analysis with

kernels,” Proc. IEEE Signal Process. Soc. Workshop Neural Networks
for Signal Process., pp. 23–25, 1999.

[22] P. Vincent and Y. Bengio, “Kernel matching pursuit,” Mach. Learn.,
vol. 48, no. 1–3, pp. 165–187, 2002.

[23] V. Guigue, A. Rakotomamonjy, and S. Canu, “Kernel basis pursuit,”
Mach. Learn. (ECML) 2005, pp. 146–157, 2005.

[24] S. Gao, I. W. H. Tsang, and L. T. Chia, “Kernel sparse representation
for image classification and face recognition,” Comput. Vision – ECCV,
pp. 1–14, 2010.

[25] H. Li, Y. Gao, and J. Sun, “Fast kernel sparse representation,” IEEE
Int. Conf. Digital Image Comput. Techniques and Applicat. (DICTA),
pp. 72–77, 2011.

[26] L. Zhang, W. D. Zhou, P. C. Chang, J. Liu, T. Wang, and F. Z.
Li, “Kernel sparse representation-based classifier,” IEEE Trans. Signal
Process., vol. 60, no. 4, pp. 1684–1695, Apr. 2012.

[27] M. Jian and C. Jung, “Class-discriminative kernel sparse representation-
based classification using multi-objective optimization,” IEEE Trans.
Signal Process., vol. 61, no. 18, pp. 4416–4427, Sep. 2013.

[28] Y. Zhou, K. Liu, R. E. Carrillo, K. E. Barner, and F. Kiamilev, “Kernel-
based sparse representation for gesture recognition,” Pattern Recog.,
vol. 46, no. 12, pp. 3208–3222, Dec. 2013.

[29] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa, “Kernel
dictionary learning,” IEEE Int. Conf. Acoustics, Speech, and Signal
Process. (ICASSP), pp. 2021–2024, 2012.

[30] M. T. Harandi, C. Sanderson, R. Hartley, and B. C. Lovell, “Sparse
coding and dictionary learning for symmetric positive definite matrices:
A kernel approach,” Comput. Vision ECCV 2012, pp. 216–229, 2012.

[31] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa, “Design
of non-linear kernel dictionaries for object recognition,” IEEE Trans.
Image Process., vol. 22, no. 12, pp. 5123–5135, Dec. 2013.

[32] M. J. Gangeh, A. Ghodsi, and M. S. Kamel, “Kernelized supervised
dictionary learning,” IEEE Trans. Signal Process., vol. 61, no. 19, pp.
4753–4767, Oct. 2013.

[33] A. Shrivastava, H. V. Nguyen, V. M. Patel, and R. Chellappa, “Design of
non-linear discriminative dictionaries for image classification,” Comput.
Vision-ACCV 2012, pp. 660–674, 2012.

[34] Z. Chen, W. Zuo, Q. Hu, and L. Lin, “Kernel sparse representation for
time series classification,” Inform. Sci., vol. 292, pp. 15–26, 2015.

[35] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” Proc. Ann. Int. Conf. Mach. Learn. (ICML), pp. 689–
696, 2009.

[36] K. Skretting and K. Engan, “Recursive least squares dictionary learning
algorithm,” IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2121–2130,
Apr. 2010.

[37] K. Zhang, L. Lan, Z. Wang, and F. Moerchen, “Scaling up kernel SVM
on limited resources: A low-rank linearization approach,” Int. Conf.
Artificial Intell. and Stat., pp. 1425–1434, 2012.

[38] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” pp. 1177–1184, 2007.

[39] Q. Le, T. Sarlos, and A. Smola, “Fastfood-approximating kernel expan-
sions in loglinear time,” 2013.

[40] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[41] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–
3415, 1993.

[42] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” IEEE Comput. Soc. Press, pp. 40–44, 1993.

[43] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley-
Interscience, 2000.

[44] N. Aronszajn, “Theory of reproducing kernels,” Trans. Amer. Math. Soc.,
vol. 68, pp. 337–404, 1950.

[45] J. Mercer, “Functions of positive and negative type and their connection
with the theory of integral equations,” Philos. Trans. Roy. Soc. London,
pp. 415–446, 1909.

[46] B. Scholköpf, S. Mika, C. J. Knirsch, K. R. Müller, G. Ratsch, and
A. J. Smola, “Input space versus feature space in kernel-based methods,”
IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1000–1017, 1999.

[47] H. Xiong, M. N. S. Swamy, and M. O. Ahmad, “Optimizing the kernel
in the empirical feature space,” IEEE Trans. Neural Networks, vol. 16,
no. 2, pp. 460–474, Mar. 2005.

[48] C. Williams and M. Seeger, “Using the Nyström method to speed
up kernel machines,” Proc. Annu. Conf. Neural Inform. Process. Syst.
(NIPS), pp. 682–688, 2002.

[49] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast monte carlo algo-
rithms for matrices i: Approximating matrix multiplication,” SIAM J.
Computing, vol. 36, no. 1, pp. 132–157, Jan. 2006.

[50] P. Drineas and M. W. Mahoney, “On the Nyström method for approx-
imating a gram matrix for improved kernel-based learning,” J. Mach.
Learn. Research, no. 6, pp. 2153–2175, 2005.

[51] S. Kumar, M. Mohri, and A. Talwalkar, “Sampling techniques for the
Nyström method,” Int. Conf. Artific. Intell. and Stat., pp. 304–311, 2009.

[52] K. Zhang, I. W. Tsang, and J. T. Kwok, “Improved Nyström low-rank
approximation and error analysis,” Proc. Int. Conf. Mach. Learn. (ACM),
pp. 1232–1239, 2008.

[53] D. Feldman, M. Feigin, and N. Sochen, “Learning big (image) data via
coresets for dictionaries,” J. Math. Imaging and Vision, vol. 46, no. 3,
pp. 276–291, Jul. 2013.

[54] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou, “Nyström method
vs random fourier features: A theoretical and empirical comparison,” pp.
476–484, 2012.

[55] L. Zhang, M. Yang, Z. Feng, and D. Zhang, “On the dimensionality
reduction for sparse representation based face recognition,” Int. Conf.
Pattern Recog. (ICPR), pp. 1237–1240, 2010.

[56] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa,
“Sparse embedding: A framework for sparsity promoting dimensionality
reduction,” pp. 414–427, 2012.

[57] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation
of the K-SVD algorithm using batch orthogonal matching pursuit,” CS
TECHNION, vol. 40, 2008.

Alona Golts received her B.Sc. (2009) in Electrical
Engineering and Physics, from the department of
Electrical Engineering at the Technion, Israel, where
she is currently pursuing her M.Sc degree. Alona has
served in the Israeli Air Force from 2009 to 2015,
under the reserve excellence program “Psagot”.

Michael Elad received his B.Sc. (1986), M.Sc.
(1988) and D.Sc. (1997) from the department of
Electrical engineering at the Technion, Israel. Since
2003 he is a faculty member at the ComputerScience
department at the Technion, and since 2010 he holds
a full-professorship position. Michael Elad works in
the field of signal and image processing, specializing
in particular on inverse problems, sparse represen-
tations and superresolution. Michael received the
Technions best lecturer award six times, he is the
recipient of the 2007 Solomon Simon Mani award

for excellence in teaching, the 2008 Henri Taub Prize for academic excellence,
and the 2010 Hershel-Rich prize for innovation. Michael is an IEEE Fellow
since 2012. He is serving as an associate editor for SIAM SIIMS, and ACHA.
Michael is also serving as a senior editor for IEEE SPL.

