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The Little Engine That Could:
Regularization by Denoising (RED)∗
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Abstract. Removal of noise from an image is an extensively studied problem in image processing. Indeed, the
recent advent of sophisticated and highly effective denoising algorithms has led some to believe that
existing methods are touching the ceiling in terms of noise removal performance. Can we leverage
this impressive achievement to treat other tasks in image processing? Recent work has answered this
question positively, in the form of the Plug-and-Play Prior (P 3) method, showing that any inverse
problem can be handled by sequentially applying image denoising steps. This relies heavily on the
ADMM optimization technique in order to obtain this chained denoising interpretation. Is this the
only way in which tasks in image processing can exploit the image denoising engine? In this paper
we provide an alternative, more powerful, and more flexible framework for achieving the same goal.
As opposed to the P 3 method, we offer Regularization by Denoising (RED): using the denoising
engine in defining the regularization of the inverse problem. We propose an explicit image-adaptive
Laplacian-based regularization functional, making the overall objective functional clearer and better
defined. With a complete flexibility to choose the iterative optimization procedure for minimizing
the above functional, RED is capable of incorporating any image denoising algorithm, can treat
general inverse problems very effectively, and is guaranteed to converge to the globally optimal
result. We test this approach and demonstrate state-of-the-art results in the image deblurring and
super-resolution problems.
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1. Introduction. We open this paper with a bold and possibly controversial statement:
To a large extent, removal of zero-mean white additive Gaussian noise from an image is a
solved problem in image processing.

Before justifying this statement, let us describe the basic building block that will be the
star of this paper: the image denoising engine. From the humble linear Gaussian filter to
the recently developed state-of-the-art methods using convolutional neural networks, there is
no shortage of denoising approaches. In fact, these algorithms are so widely varied in their
definition and underlying structure that a concise description will need to be made carefully.
Our story begins with an image x corrupted by zero-mean white additive Gaussian noise,

(1) y = x + e.
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REGULARIZATION BY DENOISING (RED) 1805

In our notation, we consider an image as a vector of length n (after lexicographic ordering).
In the above description, the noise vector is normally distributed: e ∼ N

(
0, σ2I

)
. In the most

general terms, the image denoising engine is a function f : [0, 255]n −→ [0, 255]n that maps
an image y to another image of the same size x̂ = f(y), with the hope of getting as close
as possible to the original image x. Ideally, such functions operate on the input image y to
remove the deleterious effect of the noise while maintaining edges and textures beneath.

The claim made above about the denoising problem being solved is based on the availability
of algorithms proposed in the past decade that can treat this task extremely effectively and
stably, getting very impressive results, which also tend to be quite concentrated (see, for
example, the work reported in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 42]). Indeed,
these documented results have led researchers to the educated guess that these methods are
getting very close to the optimally possible denoising performance [21, 22, 23]. This aligns
well with the unspoken observation in our community in recent years that investing more work
to improve image denoising algorithms seems to lead to diminishing returns.

While the above may suggest that work on denoising algorithms is turning to a dead-end
avenue, a new opportunity emerges from this trend: seeking ways to leverage the vast progress
made on the image denoising front in order to treat other tasks in image processing, bringing
their solutions to new heights. One natural path towards addressing this goal is to take an
existing and well-performing denoising algorithm and generalize it to handle a new problem.
This has been the logical path that has led to contributions such as [24, 25, 26, 27, 28, 29]
and many others. These papers, and others like them, offer an exhaustive manual adaptation
of existing denoising algorithms, carefully retailored to handle specific alternative problems.
This line of work, while often successful, is quite limited, as it offers no flexibility and no
general scheme for diverting image denoising engines to treat new image processing tasks.

Could one offer a more systematic way to exploit the abundance of high-performing im-
age denoising algorithms to treat a much broader family of problems? The recent work by
Venkatakrishnan, Bouman, and Wohlberg provides a positive and tantalizing answer to this
question, in the form of the Plug-and-Play Prior (P 3) method [30, 31, 32, 33]. This tech-
nique builds on the use of an implicit prior for regularizing general inverse problems. When
handling the obtained optimization task via the ADMM optimization scheme [57, 58, 59], the
overall problem decomposes into a sequence of image denoising tasks, coupled with simpler
L2-regularized inverse problems that are much easier to handle.

While the P 3 scheme may sound like the perfect answer to our prayers, reality is somewhat
more complicated. First, this method is not always accompanied by a clear definition of the
objective function, since the regularization being effectively used is only implicit, implied by
the denoising algorithm. Indeed, it is not clear at all that there is an underlying objective
function behind the P 3 scheme if arbitrary denoising engines are used [31]. Second, parameter
tuning of the ADMM scheme is a delicate matter, and especially so under a nonprovable
convergence regime, as is the case when using sophisticated denoising algorithms. Third,
being intimately coupled with the ADMM, the P 3 scheme does not offer easy and flexible
ways of replacing the iterative procedure. Because of these reasons, the P 3 scheme is neither
a turn-key tool, nor is it free from emotional involvement. Nevertheless, the P 3 method has
drawn much attention (see, e.g., [31, 32, 33, 34, 35, 36, 37, 38]), and rightfully so, as it offers a
clear path towards harnessing a given image denoising engine for treating more general inverseD
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1806 YANIV ROMANO, MICHAEL ELAD, AND PEYMAN MILANFAR

problems, just as described above.
Is there a more general alternative to the P 3 method that could be simpler and more

stable? This paper puts forward such a framework, offering a systematic use of such denoising
engines for regularization of inverse problems. We term the proposed method Regularization
by Denoising (RED), relying on a general structured smoothness penalty term harnessed to
regularize any desired inverse problem. More specifically, the regularization term we propose
in this work is the following:

(2) ρ(x) =
1
2

xT [x− f(x)] ,

in which the denoising engine itself is applied on the candidate image x, and the penalty
induced is proportional to the inner product between this image and its denoising residual.
This defined smoothness regularization is effectively using an image-adaptive Laplacian, which
in turn draws its definition from the arbitrary image denoising engine of choice, f(·). Sur-
prisingly, under mild assumptions on f(·), it is shown that the gradient of the regularization
term is manageable, given as the denoising residual, x − f(x). Therefore, armed with this
regularization expression, we show that any inverse problem can be handled while calling the
denoising engine iteratively.

RED, the newly proposed framework, is much more flexible in the choice of the optimiza-
tion method to use, not being tightly coupled to one specific technique, as in the case of the
P 3 scheme (relying on ADMM). Another key difference w.r.t. the P 3 method is that our
adaptive Laplacian-based regularization functional is explicit, making the overall Bayesian
objective function clearer and better defined. RED is capable of incorporating any image
denoising algorithm, and can treat general inverse problems very effectively, while resulting
in an overall algorithm with very simple structure.

An important advantage of RED over the P 3 scheme is the flexibility with which one can
choose the denoising engine f(·) to plug in the regularization term. While most of the discus-
sion in this paper keeps focusing on white Gaussian noise (WGN) removal, RED can actually
deploy almost any denoising engine. Indeed, we define a set of two mild conditions that f(·)
should satisfy and show that many known denoising methods obey these properties. As an ex-
ample, in our experiments we show how the median filter can become an effective regularizer.
Last but not least, we show that the defined regularization term is a convex function, implying
that in most cases, in which the log-likelihood term is convex too, the proposed algorithms are
guaranteed to converge to a global optimum solution. We demonstrate this scheme, showing
state-of-the-art results in image deblurring and single image super-resolution.

This paper is organized as follows: In the next section we present the background material
for this work, discussing the general form of inverse problems as optimization tasks, and
presenting the P 3 scheme. Section 3 focuses on the image denoising engine, defining it and
its properties clearly, so as to enable its use in the proposed Laplacian paradigm. Section 4
serves the main part of this work—introducing RED: a new way to use an image denoising
engine to handle general structured inverse problems. In section 5 we analyze the proposed
scheme, discussing convexity, an alternative formulation, and a qualitative comparison to the
P 3 scheme. Results on the image deblurring and single-image super-resolution problems are
brought in section 6, demonstrating the strength of the proposed scheme. We conclude theD
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REGULARIZATION BY DENOISING (RED) 1807

paper in section 7 with a summary of the open questions that we identify for future work.

2. Preliminaries. In this section we provide background material that serves as the foun-
dation to this work. We start by presenting the breed of optimization tasks we will work on
throughout the paper for handling the inverse problems of interest. We then introduce the
P 3 method and discuss its merits and weaknesses.

2.1. Inverse problems as optimization tasks. Bayesian estimation of an unknown image
x given its measured version y uses the posterior conditional probability, P (x|y), in order
to infer x. The most popular estimator in this regime is the maximum a posteriori proba-
bility (MAP), which chooses the mode (x for which the maximum probability is obtained)
of the posterior. Using Bayes’s rule, this implies that the estimation task is turned into an
optimization problem of the form

x̂MAP = Argmax
x

P (x|y) = Argmax
x

P (y|x)P (x)
P (y)

= Argmax
x

P (y|x)P (x)(3)

= Argmin
x
− log{P (y|x)} − log{P (x)}.

In the above derivations we exploited the fact that P (y) is not a function of x, and thus it can
be omitted. We also used the fact that the − log function is monotonic decreasing, turning
the maximization into a minimization problem.

The term − log{P (y|x)} is known as the log-likelihood term, and it encapsulates the
probabilistic relationship between the desired image x and the measurements y, under the
assumption that the desired image is known. We shall rewrite this term as

`(y,x) = − log{P (y|x)}.(4)

As a classic example for the log-likelihood that will accompany us throughout this paper, the
expression `(y,x) = 1

2σ2 ‖Hx − y‖22 refers to the case of y = Hx + e, where H is a linear
degradation operator and e is WGN contamination of variance σ2. Naturally, if the noise
distribution changes, we depart from the comfortable L2 form.

The second term in (3), − log{P (x)}, refers to the prior, bringing in the influence of the
statistical nature of the unknown. This term is also referred to as the regularization, as it
helps in better conditioning the overall optimization task in cases where the likelihood alone
cannot lead to a unique or stable solution. We shall rewrite this term as

λρ(x) = − log{P (x)},(5)

where λ is a scalar that encapsulates the confidence in this term.
What is ρ(x) and how is it chosen? This is the holy grail of image processing, with a

progressive advancement over the years of better modeling the image statistics and leveraging
this for handling various tasks in image processing. Indeed, one could claim that almost
everything done in our field surrounds this quest for choosing a proper prior, from the early
smoothness prior ρ(x) = λxTLx using the classic Laplacian [39], through total variation [40]
and wavelet sparsity [41], all the way to recent proposals based on patch-based GMM [42, 43]
and sparse-representation modeling [44]. Interestingly, the work we report here builds on theD
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1808 YANIV ROMANO, MICHAEL ELAD, AND PEYMAN MILANFAR

surprising comeback of the Laplacian regularization in a much more sophisticated form, as
reported in [47, 48, 49, 50, 51, 52, 53, 54, 55, 56].

Armed with a clear definition of the relation between the measurements and the unknown,
and with a trusted prior, the MAP estimation boils down to the optimization problem of the
form

x̂MAP = Argmin
x

`(y,x) + λρ(x).(6)

This defines a wide family of inverse problems that we aim to address in this work, which in-
cludes tasks such as denoising, deblurring, super-resolution, demosaicing, tomographic recon-
struction, optical-flow estimation, segmentation, and many other problems. The randomness
in these problems is typically due to noise contamination of the measurements, and this could
be Gaussian, Laplacian, Gamma-distributed, Poisson, and other noise models.

2.2. The Plug-and-Play Prior (P 3) approach. For completeness of this exposition, we
briefly review the P 3 approach. Aiming to solve the problem posed in (6), the ADMM
technique [57, 58, 59] suggests handling this by variable splitting, leading to the equivalent
problem

{x̂MAP , v̂} = Argmin
x,v

`(y,x) + λρ(v) s.t. x = v.(7)

The constraint is turned into a penalty term, relying on the augmented Lagrangian method
(in its scaled dual form [57]), leading to

{x̂MAP , v̂} = Argmin
x,v

`(y,x) + λρ(v) +
β

2
‖x− v + u‖22,(8)

where u serves as the Lagrange multiplier vector for the set of constraints. ADMM addresses
the resulting problem by updating x, v, and u sequentially in a block-coordinate-descent
fashion, leading to the following series of subproblems:

1. Update of x: When considering v (and u) as fixed, the term ρ(v) is omitted, and
our task becomes

x̂ = Argmin
x

`(y,x) +
β

2
‖x− v + u‖22,(9)

which is a far simpler inverse problem, where the regularization is an L2 proximity
one, which is easy to solve in most cases.

2. Update of v: In this stage we freeze x (and u), and thus the log-likelihood term
drops, leading to

v̂ = Argmin
v

λρ(v) +
β

2
‖x− v + u‖22.(10)

This stage is nothing but a denoising of the image x + u, assumed to be contaminated
by a white additive Gaussian noise of power σ2 = 1/β. This is easily verified by
returning to (6) and plugging the log-likelihood term ‖v − x − u‖22/2σ2 referring to
this case. Indeed, this is the prime observation in [30], as the authors suggest replacingD
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REGULARIZATION BY DENOISING (RED) 1809

the direct solution of (10) by activating an image denoising engine of choice. This way,
we do not need to define explicitly the regularization ρ(·) to be used, as it is implied
by the engine chosen.

3. Update of u: We complete the algorithm description by considering the update of
the Lagrange multiplier vector u, which is done by û = u + x− v.

Although the above algorithm has a clear mathematical formulation and only two parameters,
denoted by β and λ, it turns out that tuning these is not a trivial task. The source of
complexity emerges from the fact that the input noise level to the denoiser is equal to

√
λ/β.

The confidence in the prior is determined by λ, and the penalty on the distance between x and
v is affected by β. Empirically, setting a fixed value of β does not seize the potential of this
algorithm; following previous work (see, e.g. [32, 37]), a common practical strategy to achieve
a high-quality estimation is to increase the value of β as a function of the iterations: starting
from a relatively small value, i.e., allowing an aggressive regularization, then proceeding to
a more conservative one that limits the smoothing effect, up to a point where β should be
large enough to ensure convergence [32] and to avoid an undesired oversmoothed outcome.
As one can imagine, it is cumbersome to choose the rate in which β should be increased,
especially because the corrupted image x + u is a function of the Lagrange multiplier, which
varies through the iterations as well.

In terms of convergence, the P 3 scheme has been shown to be well-behaved under some
conditions on the denoising algorithm used. While the work reported in [31] requires the
denoiser to be a symmetric smoothing and nonexpansive filter, the later work in [32] relaxes
this condition to much simpler boundedness of the denoising effect. However, both of these
prove at best a convergence to a steady-state outcome, which is very far from the desired
claim of getting to the global minimizer of the overall objective function. The work reported
in [33] offers clear conditions for a global convergence of P 3, requiring the denoiser to be
nonexpansive, and emerging as the minimizer of a convex functional. A recently released
paper extends the above by using a specific GMM-based denoiser, showing that these two
conditions are met, thus guaranteeing global convergence of their ADMM scheme [38].

Indeed, in that respect, a delicate matter with the P 3 approach is the fact that given a
choice of a denoising engine, it does not necessarily refer to a specific choice of a prior ρ(·), as
not every such engine could have a MAP-oriented interpretation. This implies a fundamental
difficulty in the P 3 scheme, as in this case we will be activating a denoising algorithm while
departing from the original setting we have defined, and having no underlying cost function
to serve. Indeed, the work reported in [31] addresses this very matter in a narrower setting,
by studying the identity of the effective prior obtained from a chosen denoising engine. The
author chooses to limit the answer to symmetric smoothing filters, showing that even in this
special case, the outcome is far from being trivial. As we are about to see in the next section,
this shortcoming can be overcome by adopting a different regularization strategy.

3. The image denoising engine. Image denoising is a special case of the inverse problem
posed in (6), referring to the case y = x + e, where e is WGN contamination of variance σ2.
In this case, the MAP problem becomes

x̂Denoise = Argmin
x

1
2σ2 ‖y− x‖22 + λρ(x).(11)
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The image denoising engine, which is the focal point of this work, is any candidate solver
to the above problem, under a specific choice of a prior. In fact, in this work we choose to
widen the definition of the image denoising engine to be any function f : [0, 255]n −→ [0, 255]n

that maps an image y to another image f(y) of the same size, and which aims to treat the
denoising problem by the operation x̂ = f(y), be it MAP-based, MMSE-based, or any other
approach.

Below, we accompany the definition of a denoiser with a few basic conditions on the
function f . Just before doing so, we make the following broad observation: Among the
various degradations that inverse problems come to remedy, removal of noise is fundamentally
different. Consider the set of all reasonable “natural” images living on a manifold M. If we
blur any given image or downscale it, it is still likely to live in M. However, if the image
is contaminated by an additive noise, it pops out of the manifold along the normal to M
with high probability. Denoising is therefore a fundamental mechanism for an orthogonal
“projection” of an image back onto M.1 This may explain why denoising is such a central
operation, which has been so heavily studied. In the context of this work, in any given step of
our iterations, this projection would allow us to project the temporary result back onto M,
so as to increase chances of getting a good-quality restored version of our image.

3.1. Conditions and properties of f(x). We pose the following two necessary condi-
tions on f(x) that will facilitate our later derivations. Both of these conditions rely on the
differentiability2 of the denoiser f(x).

• Condition 1: (Local) homogeneity. A denoiser applied to a positively scaled
image f(cx) should result in a scaled version of the original image. More specifically,
for any scalar c ≥ 0 we must have f(cx) = cf(x). In this work we shall relax this
condition and demand its satisfaction for |c− 1| ≤ ε for a very small ε.
A direct implication of the above property refers to the behavior of the directional
derivative of the denoiser f(x) along the direction x. This derivative can be evaluated
as

(12) ∇xf(x) x =
f(x + εx)− f(x)

ε

for a very small ε. Invoking the homogeneity condition this leads to

∇xf(x) x =
(1 + ε)f(x)− f(x)

ε
= f(x).(13)

Thus, the filter f(x) can be written as3

(14) f(x) = ∇xf(x) x.

1In the context of optimization, a smaller class of the general denoising algorithms we define is characterized
as “proximal operators” [60]. These operators are in fact direct generalizations of orthogonal projections.

2A discussion on this requirement and possible ways to relax it appear in Appendix D.
3This result is sometimes known as Euler’s homogeneous function theorem [65].D
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• Condition 2: Strong passivity. The Jacobian ∇xf(x) of the denoising algorithm
is stable, satisfying the condition

η (∇xf(x)) ≤ 1,(15)

where η(A) is the spectral radius of the matrix A. We interpret this condition as the
restriction of the denoiser not to magnify the norm of an input image, since

‖f(x)‖ = ‖∇xf(x)x‖ ≤ η (∇xf(x)) · ‖x‖ ≤ ‖x‖.(16)

Here we have relied on the relation f(x) = ∇xf(x)x that has been established in (14).
Note that we have chosen this specific condition over the natural weaker alternative,
‖f(x)‖ ≤ ‖x‖, since the strong condition implies the weak one.

A reformulation of the denoising engine that will be found useful throughout this work is the
one suggested in [51], where we assume that the algorithm is built of two phases—a first in
which highly nonlinear decisions are made, and a second in which these decisions are used
to adapt a linear filter to the raw noisy image in order to perform the actual noise removal.
Algorithms such as the NLM, kernel-regression, K-SVD, and many others admit this structure,
and for them we can write

x̂Denoise = f(y) = W(y)y.(17)

The matrix W is an n× n matrix, representing the (pseudo-) linear filter that multiplies the
n × 1 noisy image vector y. This matrix is image dependent, as it draws its content from
the pixels in y. Nevertheless, this pseudo-linear format provides a convenient description of
the denoising engine for our later derivations. We should emphasize that while this notation
is true for only some of the denoising algorithms, the proposed framework we outline in this
paper is general and applies to any denoising filter that satisfies the two conditions posed
above. Indeed, the careful reader will observe that this pseudo-linear form is closely related to
the directional derivative relation shown above: f(y) = ∇yf(y)y. In this form, the right-hand
side is now reminding us of the pseudo-linear form where the matrix W(y) is replaced by the
Jacobian matrix ∇yf(y).

As a side note we mention that yet another natural requirement on W (or ∇yf(y) in
a wider perspective) is that it is row-stochastic, implying that (i) this matrix is (entrywise)
nonnegative, and that (ii) the vector 1 is an eigenvector of W. This would imply a constancy
behavior—a denoiser f(y) does not alter a constant image. More specifically, defining 1 as an
n-dimensional column vector of all ones, for any scalar c ≥ 0 we have f(c1) = c1. Algorithms
such as the NLM [1] and its many variants all lead to such a row-stochastic Jacobian. We
note that this property, while nice to have, is not required for the derivations in this paper.

An interesting consequence of the homogeneity property is the following stability of the
pseudo-linear operator W. Starting with a first-order Taylor expansion of f(x + h), and
invoking the directional derivative relation f(y) = ∇yf(y) y, we get

f(y + h) ≈ f(y) +∇yf(y) · h(18)
≈ ∇f(y) · y +∇yf(y) · h
≈ ∇yf(y) · (y + h).D
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1812 YANIV ROMANO, MICHAEL ELAD, AND PEYMAN MILANFAR

This result implies that while W(y) = ∇yf(y) may indeed depend on y, its sensitivity to
its perturbation is negligible, rendering it as an essentially constant linear operator on the
perturbed image y + h.

3.2. Denoisers obeying the above conditions. We cannot conclude this section without
answering the key question: Which are the denoising engines to which we are constantly refer-
ring? While these could include any of the thousands of denoising algorithms published over
the years, we obviously focus on the best performing ones, such as the nonlocal means (NLM)
and its advanced variants [1, 2, 3], the K-SVD denoising method that relies on sparse repre-
sentation modeling of image patches [4] and its nonlocal extension [7], the kernel-regression
method that exploits local orientation [6], the well-known BM3D that combines sparsity and
self-similarity of patches [5], the EPLL scheme that suggests patch modeling based on the
GMM model [42], CSR and NCSR, which cluster the patches and sparsify them jointly [8, 9],
the group-Wiener filtering applied on patches [10], the multilayer perceptron method trained
to clean an image or the more recent CNN-based alternative called the trainable nonlinear
reaction-diffusion (TNRD) algorithm [11, 20], more recent work that proposed low-rank mod-
eling of patches and the use of the weighted nuclear norm [16], the nonlocal sparsity with
GSM model [17], and the list goes on and on. Each and every one of these options (and many
others) is a candidate engine that could be fit into our scheme.

A fair and necessary question is whether the denoisers we work with obey the two condi-
tions we have posed above (homogeneity and passivity) and whether the preliminary require-
ment of differentiability is met. We choose to defer the discussion on the differentiability to
Appendix D, due to its relevance to several spread parts of this paper and focus here on the
homogeneity and passivity.

Starting with the homogeneity property, we give experimental evidence, accompanied by
theoretical analysis, to substantiate the fulfillment of this property by a series of well-known
denoisers. Figure 1 shows f((1 + ε)x) versus (1 + ε)f(x) as a scatter-plot, tested for K-SVD,
BM3D, NLM, EPLL, and TNRD. In all these experiments, the image x is set to be Peppers,
ε = 0.01 and σ = 5 (level of noise assumed within f). As can be seen, a tendency to an
equality f((1 + ε)x) ≈ (1 + ε)f(x) is obtained, suggesting that all these are indeed satisfying
the homogeneity property. The deviation from exact equality in each of these tests has been
evaluated as the standard deviation of the difference f((1 + ε)x) − (1 + ε)f(x), leading to
2.95e− 4, 3.38e− 4, 1.38e− 4, 1.46e− 4, 9.51e− 5, respectively. A further discussion on the
homogeneity property from a theoretical perspective is given in Appendix C.

Turning to the passivity condition, a conceptual difficulty is the need to explicitly obtain
the Jacobian of the denoiser in question. Assuming that we overcame this problem somehow
and got ∇xf(x), its spectral radius would be evaluated using the Power-Method [68] that
applies iterations of the form

hk+1 =
∇xf(x) · hk
‖∇xf(x) · hk‖2

.(19)

The spectral radius itself is easily obtained as

η (∇xf(x)) =
hTk+1hk
hTk hk

.(20)
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(a) K-SVD (2.95e− 4) (b) BM3D (3.38e− 4) (c) NLM (1.38e− 4)

(d) EPLL (1.46e− 4) (e) TNRD (9.51e− 5)

Figure 1. An empirical evaluation of the homogeneity property. These graphs show f((1 + ε)x) versus
(1 + ε)f(x) as a scatter-plot for K-SVD, BM 3D, NLM, EPLL, and TNRD. Equality implies satisfaction of the
homogeneity, and the numbers in the brackets provide the STD of the difference. Note that these results were
observed on various test images but are shown here for the image Peppers.

In order to bypass the need to explicitly obtain ∇xf(x)hk, we rely on the first-order Taylor
expansion again,

f(x + h) = f(x) +∇xf(x) · h,(21)

implying that ∇xf(x) · h ≈ f(x + h)− f(x), which holds true if ‖h‖2 is small enough. Thus,
our alternative Power-Method activates one denoising step per iteration,

hk+1 ≈
f(x + hk)− f(x)
‖f(x + hk)− f(x)‖2

.(22)

The vector hk is normalized in each iteration, and thus ‖hk‖2 = 1. This vector is an image,
and thus the gray values in it must be very small (hk(j) � 1), so as to lead to a sum of
squares to be equal to 1. This agrees with the need for the perturbation x + hk to be small.

This algorithm has been applied to K-SVD, BM3D, NLM, EPLL, and TNRD (x set to
be the image Cameraman, σ = 5, number of iterations set to give an accuracy of 1e − 5), all
resulting with values smaller than or equal to 1, verifying the passivity of these filters.D
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4. Regularization by Denoising (RED).

4.1. The image-adaptive Laplacian. The new and alternative framework we propose
relies on a form of an image-adaptive Laplacian which builds a powerful (empirical) prior that
can be used to regularize a variety of inverse problems. As a place to start and motivate this
definition, let’s go back to the description of the denoiser given in (17), namely4 W(x)x. We
may think of this pseudo-linear filter as one where a set of coefficients (depending on x) is
first computed in the matrix W and then applied to the image x. From this we can construct
the Laplacian form,

(23) ρL(x) =
1
2

xTL(x)x =
1
2

xT (I−W(x))x =
1
2

xT [x−W(x)x] .

This definition by itself is not novel, as it is similar to ideas brought up in a series of recent
contributions [47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. This expression relies on using an image-
adaptive Laplacian—one that draws its definition from the image itself.

Observing the obtained expression, we note that it can be interpreted as the unnormalized
cross-correlation between the image x and its corresponding residual x−W(x)x. As a prior
expression should give low values for likely images, in our case this would be achieved in one
of two ways (or their combination):

• A small value is obtained for ρL(x) if the residual is very small, implying that the
image x serves as a near fixed point of the denoising engine, x ≈W(x)x.
• A small value is obtained for ρL(x) if the cross-correlation of the residual to the image

itself is small, a feature that implies that the residual behaves like white noise or.
alternatively, if it does not contain elements from the image itself. Interestingly, this
concept has been harnessed successfully by some denoising algorithms such as the
Dantzig Selector [62] and by image denoising boosting techniques [51, 63, 64]. Indeed,
enforcing orthogonality between the signal and its treated residual is the underlying
force behind the normal equations in statistical estimation (e.g., least squares and
Kalman filtering).

Given the above prior, we return to the general inverse problem posed in (6) and define our
new objective,

x̂ = Argmin
x

`(y,x) +
λ

2
xT [x−W(x)x] .(24)

The prior expression, while exhibiting a possibly complicated dependency on the unknown
x, is well-defined and clear. Nevertheless, an attempt to apply any gradient-based algorithm
for solving the above minimization task encounters an immediate problem, due to the need
to differentiate W(x) w.r.t. to x. We overcome this problem by observing that W(x)x is in
fact the activation of the image denoising engine on x, i.e., f(x) = W(x)x. This observation
inspires the following more general definition of the Laplacian regularizer, which is the prime
message of this paper:

(25) ρL(x) =
1
2

xT [x− f(x)] .

4Note that we conveniently assume that the prior is applied to the clean image x, a matter that will be
clarified as we dive into our explanations.D
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This is the Regularization by Denoising (RED) paradigm that this work advocates. In this
expression, the residual is defined more generally for any filter f(x) even if it cannot be written
in the familiar (pseudo-) linear form. Note that all the preceding intuition about the meaning
of this prior remains intact; namely, the value is low if the cross-correlation between the image
and its denoising residual is small or if the residual itself is small due to x being a fixed point
of f .

Surprisingly, while this expression is more general, it leads to a better-managed optimiza-
tion problem, due to the careful properties we have outlined in section 3 on our denoising
engines f . The overall energy functional to minimize is

E(x) = `(y,x) +
λ

2
xT (x− f(x)) ,(26)

and the gradient of this expression is readily available by

∇xE(x) = ∇x`(y,x) +
λ

2
∇x
{
xT (x− f(x))

}
(27)

= ∇x`(y,x) +
λ

2
∇xxTx− λ

2
∇x
[
xT f(x)

]
= ∇x`(y,x) + λx− λ

2
[f(x) +∇xf(x)x] .

Based on our prior assumption regarding the availability of a directional derivative for the
denoising engine, the term ∇xf(x)x can be replaced5 by ∇xf(x) x = f(x), based on (14),
implying that the gradient expression is further simplified to be

∇xE(x) = ∇x`(y,x) + λx− λf(x) = ∇x`(y,x) + λ(x− f(x)),(28)

requiring only one activation of the denoising engine for the gradient evaluation. Interestingly,
if we now bring back the pseudo-linear interpretation of the denoising engine, the gradient
would be the residual, just as posed above, implying that

∇xE(x) = ∇x`(y,x) + λ(x−W(x)x).(29)

Observe that this is a nontrivial derivation of the gradient of the original penalty function
posed in (24).

4.2. Deploying the denoising engine for solving inverse problems. In the discussion
above we have seen that the gradient of the energy functional to minimize (given in (26))
is easily computable, given in (28). We now turn to showing several options for using this
in order to solve a general inverse problem. Common to all these methods is the fact that
the eventual algorithm is iterative, in which each step is composed of applying the denoising
engine (once or more), accompanied by other simpler calculations. In Figures 2, 3, and 4
we present pseudo-code for several such algorithms, all in the context of handling the case in
which the likelihood function is given by `(y,x) = ‖Hx− y‖22/2σ2.

5A better approximation can be applied in which we replace∇xf(x)x by the difference (f((1+ε)x)−f(x))/ε,
but this calls for two activations of the denoising engine per gradient evaluation.D
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Objective: Minimize E(x) = 1
2σ2 ‖Hx− y‖22 + λ

2 xT (x− f(x))

Input: Supply the following ingredients and parameters:
– Regularization parameter λ,
– Denoising algorithm f(·) and its noise level σf ,
– Log-likelihood parameters: H and σ, and
– Number of iterations N .

Initialization:

• Set x̂0 = y.

• Set µ = 2
1/σ2+λ .

Loop: For k = 1, 2 . . . , N do:

• Apply the denoising engine, x̃k = fσf (x̂k−1).

• Update the solution by x̂k = x̂k−1 − µ
[ 1
σ2 HT (Hx̂k−1 − y) + λ(x̂k−1 − x̃k)

]
.

End of Loop

Result: The output of the above algorithm is x̂N .

Figure 2. The proposed scheme (RED) via the SD method.

• Gradient descent methods: Given the gradient of the energy function E(x), steep-
est descent (SD) is the simplest option that can be considered, and it amounts to the
update formula

x̂k+1 = x̂k − µ∇x E(x)|x̂k(30)

= x̂k − µ
[
∇x `(y,x)|x̂k + λ(x̂k − f(x̂k))

]
.

Figure 2 describes this algorithm in more detail.
A line-search can be proposed in order to set µ dynamically per iteration, but this is
necessarily more involved. For example, in the case of the Armijo rule, it requires a
computation of the above gradient gk and then assessing the energy E(x̂k − µgk) for
different values of µ in a retracting fashion, each of which calling for a computation of
the denoising engine once.
One could envision using conjugate gradient (CG) to speed this method or, better yet,
applying the sequential subspace optimization (SESOP) algorithm [69]. SESOP holds
the current gradient and the last several update directions as the columns of a matrix
Vk (referring to the kth iteration), and seeks the best linear combination of these
columns as an update direction to the current solution, namely, xk+1 = xk + Vkαk.
When restricted to have only one column, this reduces to a simple SD with line-search.
When using two columns, it has the flavor (and strength) of CG, and when using more
columns, this method can lead to much faster convergence in nonquadratic problems.
The key points of SESOP are (i) the matrix V is updated easily from one iteration
to another by discarding the last direction, bringing in the last one, and adding the
new gradient; and (ii) the unknown weight vector αk is low-dimensional, and thus
updating it can be done using a Newton method. Naturally, one should evaluate theD
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first and second derivatives of the penalty function w.r.t. αk, and these will leverage
the relations established above. We shall not dive deeper into this option because it
will not be included in our experiments.
One possible shortcoming of the gradient approach (in all its manifestations) is the
fact that per activation of the denoising engine, the likelihood is updated rather mildly
as a simple step toward the current log-likelihood gradient. This may imply that the
overall algorithm will require many iterations to converge. The next two methods
propose a way to overcome this limitation, by treating the log-likelihood term more
“aggressively.”
• ADMM: Addressing the optimization task given in (26), we can imitate the path

taken by the P 3 scheme, and apply variable splitting and ADMM. The steps would
follow the description given in section 2 almost exactly, with one major difference—
the prior in our case is explicit, and, therefore, the stage termed “update of v” would
become

v̂ = Argmin
v

λ

2
vT (v− f(v)) +

β

2
‖v− x− u‖22.(31)

Rather than applying an arbitrary denoising engine to compute v̂ as a replacement to
the actual minimization, we should target this minimization directly by some iterative
scheme. For example, setting the gradient of the above expression to zero leads to the
equation

λ(v− f(v)) + β(v− x− u) = 0,(32)

which can be solved iteratively using the fixed-point strategy, by

λ(vj − f(vj−1)) + β(vj − x− u) = 0(33)

→ vj =
1

β + λ
(f(vj−1) + β(x + u)).

This means that our approach in this case is computationally more expensive, as it will
require several activations of the denoising engine. However, a common approach to
speed up the convergence (in terms of runtime) of ADMM is called “early termination”
[57], suggesting approximating the solution of the v-update stage. We found this
approach useful for our setting, especially because the application of a denoiser is
computationally expensive. To this end, we may choose to apply only one iteration of
the iterative process described in (33), which amounts to one operation of a denoising
algorithm. Figure 3 describes this specific algorithm in more detail. If one changes
all of Part 2 (in Figure 3) with the computation v̂k = f1/

√
β(z∗), we obtain the P 3

scheme for the same choice of the denoising engine. While this difference is quite
delicate, we should remind the reader that (i) this bridge between the two approaches
is valid only when we deploy ADMM on our scheme, and (ii) as opposed to the P 3

method, our method is guaranteed to converge to the global optimum of the overall
penalty function, as will be described hereafter.
We should point out that when using ADMM, the update of x applies an aggressive
inversion of the log-likelihood term, which is followed by the above optimization task.D
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Objective: Minimize E(x) = 1
2σ2 ‖Hx− y‖22 + λ

2 xT (x− f(x))

Input: Supply the following ingredients and parameters:
– Regularization parameter λ,
– Denoising algorithm f(·) and its noise level σf ,
– Log-likelihood parameters: H and σ,
– Number of outer and inner iterations, N , m1, and m2, and
– ADMM coefficient β.

Initialization: Set x̂0 = y, v̂0 = y, and û0 = 0.

Outer Loop: For k = 1, 2 . . . , N do:

Part 1: Solve x̂k = Argmin
z

1
2σ2 ‖Hz− y‖22 + β

2 ‖z− v̂k−1 + ûk−1‖22 by

• Initialization: z0 = x̂k−1, and define z∗ = v̂k−1 − ûk−1.

• Inner Iteration: For j = 1, 2 . . . ,m1 do:
− Compute the gradient ej = 1

σ2 HT (Hzj−1 − y) + β(zj−1 − z∗).
− Compute rj = 1

σ2 HTHej + βej .
− Compute the step size µ = eTj ej/eTj rj .
− Update the solution by zj = zj−1 + µej .
− Project the result to the interval [0, 255].

• End of Inner Loop

• Set x̂k = zm1 .

Part 2: Solve v̂k = Argmin
z

λzT (z− fσf (z)) + β
2 ‖z− x̂k − ûk−1‖22 by

• Initialization: z0 = v̂k−1, and define z∗ = x̂k + ûk−1.

• Inner Iteration: For j = 1, 2 . . . ,m2 do:
− Apply the denoising engine, z̃j = fσf (ẑj−1).
− Compute the gradient zj = 1

β+λ (λz̃j + βz∗).

• End of Inner Loop

• Set v̂k = zm2 .

Part 3: Update ûk = ûk−1 + x̂k − ûk.

End of Outer Loop

Result: The output of the above algorithm is x̂N .

Figure 3. The proposed scheme (RED) via the ADMM method.

Thus, the shortcoming mentioned above regarding the lack of balance between the
treatments given to the likelihood and the prior is mitigated.
• Fixed-point strategy: An appealing alternative to the above exists, obtained via

the fixed-point strategy. As our aim is to find x that nulls the gradient, this could be
posed as an implicit equation to be solved directly,

∇x`(y,x) + λ(x− f(x)) = 0.(34)

Using the fixed-point strategy, this could be handled by the iterative formula

∇x`(y,xk+1) + λ(xk+1 − f(xk)) = 0.(35)D
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As an example, in the case of linear degradation model and Gaussian white additive
noise, this equation would be

1
σ2 HT (y−Hxk+1) + λ(xk+1 − f(xk)) = 0,(36)

leading to the recursive update relation

xk+1 =
[

1
σ2 HTH + λI

]−1 [ 1
σ2 HTy + λf(xk)

]
.(37)

This formula suggests one activation of the denoising per iteration, followed by what
seems to be a plain Wiener filtering computation.6 The matrix inversion itself could
be done in the Fourier domain for block-circulant H, or iteratively using, for example,
the Richardson algorithm: Defining

A =
1
σ2 HTH + λI and b =

1
σ2 HTy + λf(xk),(38)

our goal is to solve the linear system Ax = b. This is achieved by a variant of the SD
method,7 xj+1 = xj−µ(Axj−b) = xj−µej , where we have defined ej = Axj−b. By
setting the step size to be µj = eTj Aej/eTj ATAej , we greedily optimize the potential
of each iteration.
Convergence of the above algorithm is guaranteed, since∣∣∣∣∣

[
1
σ2 HTH + λI

]−1

λ∇xf(xk)

∥∥∥∥∥ < 1.(39)

This approach, similarly to ADMM, has the desired balance mentioned above between
the likelihood and the regularization terms, matching the efforts dedicated to both. A
pseudo-code describing this algorithm appears in Figure 4.

A basic question that has not been discussed so far is how to set the parameters of f(x)
in defining the regularization term. More specifically, assuming that the denoising engine
depends on one parameter—the noise standard-deviation σf—the question is which value to
use. While one could envision using varying values as the iterations progress and the outcome
improves, the approach we take in this work is to set this parameter to be a small and fixed
value. Our intuition for this choice is the desire to have a clear and fixed regularization term,
which in turn implies a clear cost function to work with. Furthermore, the prior we propose
should encapsulate in it our desire to get to a final image that is a stable point of such a weak
denoising engine, x ≈ f(x). Clearly, more work is required to better understand the influence
of this parameter and its automatic setting.

6Note that (33) refers to the same problem posed here under the choice H = I and β = 1/σ2.
7All of this refers to a specific iteration k within which we apply inner iterations to solve the linear system

and thus the use of the different index j.D
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Objective: Minimize E(x) = 1
2σ2 ‖Hx− y‖22 + λ

2 xT (x− f(x))

Input: Supply the following ingredients and parameters:
• Regularization parameter λ,
• Denoising algorithm f(·) and its noise level σf ,
• Log-likelihood parameters: H and σ, and
• Number of outer and inner iterations, N and m.

Initialization: x̂0 = y.

Outer Loop: For k = 1, 2 . . . , N do:

• Apply the denoising engine, x̃k = fσf (x̂k−1).

• Solve Az = b for A = 1
σ2 HTH + λI and b = 1

σ2 HTy + λx̃k

- Initialization: z0 = x̃k.

- Iterate: For j = 1, 2 . . . ,m do:
• Compute the residual rj = Azj−1 − b.
• Compute the vector ej = Arj .
• Compute the optimal step µ = rTj ej/eTj ej .
• Update the solution by zj = zj−1 + µ · rj .
• Project the result to the interval [0, 255].

- End of Inner Loop

- Set x̂k = zm.

End of Outer Loop

Result: The output of the above algorithm is x̂N .

Figure 4. The proposed scheme (RED) via the fixed-point method.

5. Analysis.

5.1. Convexity. Is our proposed regularization function ρL(x) convex? At first glance,
this may seem like too much to expect. Nevertheless, it appears that for reasonably performing
denoising engines obeying the conditions posed in section 3, this is exactly the case. For the
function ρL(x) = xT (x − f(x)) to be convex, we should demand that the second derivative
be a positive semidefinite matrix [66]. We have already seen that the first derivative is simply
x− f(x), which leads to the conclusion that the second derivative is given by I−∇xf(x).

As already mentioned earlier, in the context of some algorithms such as the NLM and the
K-SVD, this is associated with the Laplacian I −W(x), and it is positive semidefinite if W
has all its eigenvalues in the range8 [0, 1]. This is indeed the case for the NLM filter [1], the
K-SVD-denoising algorithm [56], and many other denoising engines.

In the wider context of general image denoising engines, convexity is assured if the Jacobian
∇xf(x) of the denoising algorithm is stable, as indeed required in Condition 2 in section 3,
η(∇xf(x)) ≤ 1. In this case we have that ρL(·) is convex, and this implies that if the log-
likelihood expression is convex as well, the proposed scheme is guaranteed to converge to
the global optimum of our cost function in (6). In this respect the proposed algorithm is
superior to the P 3 scheme in its most general form, which at best is known to get to a stable-

8We could in fact allow negative eigenvalues for W, but this is unnatural in the context of denoising.D
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point [30, 32]. Furthermore, this result may seem similar to the one posed in [33, 38], as
our two conditions for global convergence are homogeneity and passivity of f , while in these
papers the requirements are passivity of f , along with a convex energy functional whom f
minimizes. The second condition—having a convex origin to derive f(x)—is in fact more
restrictive than demanding homogeneity, as it is unclear which of the known denoisers meet
this requirement.

5.2. An alternative prior. In section 4 we motivated the choice of the proposed prior by
the desire to characterize the unknown image x as one that is not affected by the denoising
algorithm, namely, x ≈ f(x). Rather than taking the route proposed, we could have suggested
a prior of the form

ρQ(x) = ‖x− f(x)‖22.(40)

This prior term makes sense intuitively, being based on the same desire to see the denoising
residual being small. Indeed, this choice is somewhat related to the option we chose, since

ρQ(x) = ‖x− f(x)‖22 = ρL(x) + f(x)T (f(x)− x),(41)

suggesting a symmetrization of our own expression.
In order to understand the deeper meaning of this alternative, we resort again to the

pseudo-linear denoisers, for which this prior is nothing but

ρQ(x) = ‖x−W(x)x‖22 = xT (I−W(x))T (I−W(x))x.(42)

This means that rather than regularizing with the Laplacian, we do so with its square. While
this is a worthy possibility which has been considered in the literature under the term “fourth
order regularization” [70], it is known to be more delicate. We leave this and other possibilities
of formulating the regularization with the use of f(x) for future work.

5.3. When is Plug-and-Play-Prior = RED? In section 4 we described the use of ADMM
as one of the possible avenues for handling our proposed regularization. When handling
the inverse problem posed in (26) with ADMM, we have shown that the only difference
between this and the P 3 scheme resides in the update stage for v. Here we aim to answer
the following question: Assuming that the numerical algorithm used is indeed ADMM, under
what conditions would the two methods (P 3 and ours) become equivalent? The answer to
this question resides in the optimization task for updating v, which is a denoising task. Thus,
purifying this question, our goal is to find conditions on f(·) and λ such that the two treatments
of this update stage coincide. Starting from our approach, we would seek the solution of

x̂ = Argmin
x

β

2
‖x− y‖22 +

λ

2
xT (x− f(x))(43)

or, putting it in terms of nulling the gradient of this energy, require

β(x− y) + λ(x− f(x)) = 0.(44)D
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The x̂ that is the solution of this equation is our updated image. On the other hand, the
P 3 scheme would propose to simply compute9 x̂ = f(y) as a replacement to this minimiza-
tion task. Therefore, for the two methods to coincide, we should demand that the gradient
expression posed above be solved for the choice of the P 3 scheme, namely,

β(f(y)− y) + λ(f(y)− f(f(y))) = 0,(45)

or, posed slightly different,

f(y)− f(f(y)) =
β

λ
(y− f(y)).(46)

This means that the denoising residual should remain the same (up to a constant) for the first
activation of the denoising engine y− f(y) and the second one applied on the filtered image
f(y).

In order to get a better intuition towards this result, let’s return to the pseudo-linear case,
f(y) = Wy, with the assumption that W is a fixed and diagonalizable matrix. Plugged into
the above condition, this gives

Wy−W2y =
β

λ
(y−Wy)(47)

or, posed differently, (
β

λ
I−W

)
(I−W) y = 0.(48)

As the above equation should hold true for any image y, we require that(
β

λ
I−W

)
(I−W) = 0.(49)

Without loss of generality, we can assume that W is diagonal, after multiplying the above
equation from the left and right by the diagonalizing matrix. With this simplification in mind,
we now consider the eigenvalues of W, and the above equation implies that exact equivalence
between our scheme and the P 3 one is obtained only if our denoising engine has eigenvalues
that are purely 1’s or β/λ. Clearly, this is a very limiting case, which suggests that for all
other cases, the two methods are likely to differ.

Interestingly, the above analysis is somewhat related to the one given in [31]. Both [31]
and our treatment assume that the actual applied denoising engine is f(y) = Wy within
the ADMM scheme. While we ask for the conditions on W to fit our regularization term
xT (x−Wx), the author of [31] seeks the actual form of the prior to match this step, reaching
the conclusion that the prior should be xT (I−W)W†x. Bearing in mind that the conditions
we get for the equivalence between the two methods are too restricting and rarely met, the
result in [31] shows the actual gap between the two methods: While we regularize with the

9A delicate matter not considered here is that P 3 may apply 1
c
f(cy) in order to tune to a specific noise

level. We assume c = 1 for simplicity.D
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expression xT (I −W)x, an equivalence takes place only if P 3 modifies this to involve W†,
getting a far more complicated and less natural term.

Just before we conclude this section, we turn briefly to discuss the computational complex-
ity of the proposed algorithm and its relation to the complexity of the P 3 scheme. Put very
simply, RED and P 3 are roughly of the same computational cost. This is the case when RED
is deployed via ADMM and assuming only one iteration in the update of v, as shown above.
Similarly, when using the fixed-point option, RED has the same cost as P 3 per iteration.

To conclude, we must state that this paper is about a more general framework rather than
a comparison to P 3. Indeed, one could consider this work as an attempt to provide more solid
mathematical foundations for methods like P 3. In addition, when comparing P 3 and RED,
one can identify several major differences that are far more central than the complexity issue,
such as (1) a lack of a clear objective function that P 3 serves, while our scheme has a very
well-defined penalty; (2) the inability to claim much in terms of convergence of P 3, while our
penalty is shown to be convex; and (3) the complications of tuning the P 3 algorithm, which
is very different from the experience we show with RED.

6. Results. In this section we compare the performance of the proposed framework to
the P 3 approach, along with various other leading algorithms that are designed to tackle
the image deblurring and super-resolution problems. To this end, we plug two substantially
different denoising algorithms into the proposed scheme. The first is the (simple) median
filter, which surprisingly turns out to act as a reasonable regularizer to our ill-posed inverse
problems. This option is brought as a core demonstration of the idea that an arbitrary denoiser
can be deployed in RED without difficulties. The second denoising engine we use is the
state-of-the-art trainable nonlinear reaction diffusion (TNRD) [20] method. This algorithm
trains a nonlinear reaction-diffusion model in a supervised manner. As such, in order to treat
different restoration problems, one should retrain the underlying model for every specific
task—something we aim to avoid. In the experiments below we build upon the published
pretrained model by the authors of TNRD, tailored to denoise images that are contaminated
by WGN with a fixed10 noise level, which is equal to 5. Leveraging this, we show how state-
of-the-art deblurring and super-resolution results can be achieved simply by integrating the
TNRD denoiser in RED. In all the experiments that follow, the parameters were manually
set in order to enable each method to get its best possible results over the subset of images
tested.

6.1. Image deblurring. In order to have a fair comparison to previous work, we follow the
synthetic nonblind deblurring experiments conducted in the state-of-the-art work that intro-
duced the nonlocally centralized sparse representation (NCSR) algorithm [9], which combines
the self-similarity assumption [1] with the sparsity-inspired model [67]. More specifically, we
degrade the test images, supplied by the authors of NCSR, by convolving them with two com-
monly used point spread functions (PSFs); the first is a 9× 9 uniform blur, and the second is
a 2D Gaussian function with a standard deviation of 1.6. In both cases, an additive Gaussian
noise with σ =

√
2 is then added to the blurred images. Similarly to NCSR, restoring an RGB

image is done by converting it to the YCbCr color-space, applying the deblurring algorithm

10In order to handle an arbitrary noise level, σf , we rely on the relation fσf (y) = 1
c
f5(c·y), where c = 5/σf .D
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Table 1
Deblurring results measured in PSNR [dB] and evaluated on the set of images provided by the authors of

NCSR [9]. P 3 and RED build upon TNRD [20] as the denoising engine. We also provide the results obtained
by integrating the median filter with the SD RED scheme. PSNR scores being less than 0.01[dB] away from
the highest result are highlighted. Note that P 3 does not converge when setting TNRD to be the denoising
algorithm. Therefore, we run P 3 for a fixed number of iterations, chosen to achieve the best PSNR on average
(otherwise the restoration quality would be significantly inferior). Please refer to Figure 10 and section 6.3 for
more details regarding the sensitivity of P 3 to the choice of parameters.

Image Butterfly Boats C. Man House Parrot Lena Barbara Starfish Peppers Leaves Average
Deblurring: Uniform kernel, σ =

√
2

Total variation [71] 28.37 29.04 26.82 31.99 29.11 28.33 25.75 27.75 28.43 26.49 28.21
IDD-BM3D [27] 29.21 31.20 28.56 34.44 31.06 29.70 27.98 29.48 29.62 29.38 30.06
ASDS-Reg [72] 28.70 30.80 28.08 34.03 31.22 29.92 27.86 29.72 29.48 28.59 29.84

NCSR 29.68 31.08 28.62 34.31 31.95 29.96 28.10 30.28 29.66 29.98 30.36
P3-TNRD 30.32 31.19 28.73 33.90 31.86 30.13 27.21 30.27 30.11 30.08 30.38

RED: SD-median filter 26.10 28.03 25.57 29.81 28.67 27.29 25.62 27.84 27.40 25.45 27.18
RED: SD-TNRD 30.20 31.20 28.67 33.83 31.62 29.98 27.35 30.47 30.10 29.72 30.31

RED: ADMM-TNRD 30.40 31.12 28.71 33.77 31.86 30.03 27.27 30.58 30.11 30.12 30.40
RED: FP-TNRD 30.41 31.12 28.76 33.76 31.83 30.02 27.27 30.57 30.12 30.13 30.40

Deblurring: Gaussian kernel, σ =
√

2
Total variation [71] 30.36 29.36 26.81 31.50 31.23 29.47 25.03 29.65 29.42 29.36 29.22

IDD-BM3D [27] 30.73 31.68 28.17 34.08 32.89 31.45 27.19 31.66 29.99 31.4 30.92
ASDS-Reg [72] 29.83 30.27 27.29 31.87 32.93 30.36 27.05 31.91 28.95 30.62 30.11

NCSR [9] 30.84 31.49 28.34 33.63 33.39 31.26 27.91 32.27 30.16 31.57 31.09
P3-TNRD 31.73 31.67 28.08 33.95 33.43 31.52 27.11 32.71 30.94 32.18 31.33

RED: SD-median filter 29.02 30.01 26.45 31.59 31.32 30.00 25.02 30.29 28.53 28.69 29.09
RED: SD-TNRD 31.57 31.53 28.31 33.71 33.19 31.47 26.62 32.46 29.98 31.95 31.08

RED: ADMM-TNRD 31.66 31.55 28.31 33.73 33.33 31.40 26.76 32.49 30.48 31.93 31.16
RED: FP-TNRD 31.66 31.55 28.38 33.74 33.33 31.39 26.76 32.49 30.51 31.93 31.17

on the luminance channel only and then converting the result back to the RGB domain.
Table 1 provides the restoration performance of the three RED schemes—the SD, the

ADMM, and the fixed-point (FP) methods—along with the results of the11 P 3, the state-of-
the-art NCSR and IDD-BM3D [27], and two additional baseline deblurring methods [71, 72].
For brevity, only the SD scheme is presented when considering the basic median filter as a
denoiser. The performance is evaluated using the peak signal to noise ratio (PSNR) measure,
higher is better, computed on the luminance channel of the ground truth and the estimated
image. The parameters of the proposed approach, as well as the ones of P 3, are tuned to
achieve the best performance on this dataset; in the case of the TNRD denoiser, these are
depicted in Table 2 and 3, respectively. In the setting of the median filter, which extracts
the median value of a 3× 3 window, we choose to run the suggested SD scheme for N = 400
iterations with λ = 0.12 for the uniform PSF and N = 200 with λ = 0.225 for the Gaussian
PSF.

Several remarks are to be made with regard to the obtained results. When the image is
degraded by a Gaussian blur kernel, integrating the median filter in the proposed framework
leads to a surprising restoration performance that is similar to the total variation deblurring
[71]. Furthermore, by choosing the state-of-the-art TNRD to be our denoising engine we
achieve results that are competitive with the impressive NCSR and IDD-BM3D methods,
which are specifically designed to tackle the deblurring task. Notice that the three versions
of the proposed framework obtain a similar PSNR score. However, while ADMM and the
fixed-point variants are of similar complexity, SD requires many more steps to converge and

11We note that P 3 using TNRD has never appeared in an earlier publication, and it is brought here in order
to let P 3 perform as best as it possibly can.D
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Table 2
The set of parameters being used in our framework, leading to the deblurring results reported in Table 1

when plugging the TNRD [20] denoiser.

PSF
Proposed approach: Deblurring

Parameter
Steepest Fixed

ADMM
descent point

U
ni

fo
rm

N 1500 200 200
σf 3.25 3.25 3.25
λ 0.02 0.02 0.02
m1 – closed-form using FFT closed-form using FFT
m2 – – 1
β – – 0.001

G
au

ss
ia

n

N 1500 200 200
σf 4.1 4.1 4.1
λ 0.01 0.01 0.01
m1 – closed-form using FFT closed-form using FFT
m2 – – 1
β – – 0.001

Table 3
The set of parameters being used by the P 3 method, leading to the deblurring results reported in Table 1

when plugging the TNRD [20] denoiser.

PSF
P 3: Deblurring

Parameter Value

U
ni

fo
rm

N 200
α 1.02
β0 0.0007
βk αk · β0

λ 512 · β0

σf
√
λ/βk

G
au

ss
ia

n

N 200
α 1.02
β0 0.0007
βk αk · β0

λ 320 · β0

σf
√
λ/βk

thereby more applications of the denoiser. As our last observation, based on the obtained
results we conclude that the proposed approach is equivalent in quality to the alternative P 3

framework. However, tuning the parameters of the proposed algorithm is significantly simpler
than the ones of P 3; while in P 3 the parameters should be modified throughout the iterations,
in our approach these are always fixed (refer to section 6.3 for a broader discussion).

An illustration of the convergence of the proposed approach using the three different
numerical schemes (SD, ADMM, and fixed-point) and the two denoisers (median filter and
TNRD) is given in Figure 5. As can be observed, the three algorithms indeed converge, but
at different rates; SD is the slowest, while ADMM is the fastest. The fixed-point strategy is
slightly slower than the ADMM alternative, but requires only one application of the denoiserD
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(a) RED, Denoising Engine: Median Filter
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(b) RED, Denoising Engine: TNRD

Figure 5. An illustration of the convergence of RED using three proposed numerical schemes—SD (red),
ADMM with m2 = 1 (green), ADMM with m2 = 3 (blue), and fixed-point (black). These are applied on the
image Leaves, degraded by a Gaussian PSF, when two denoising engines are tested: (a) the median filter and
(b) TNRD [20].

per iteration while ADMM demands m2 = 3 such operations. However, when comparing
fixed-point to ADMM with the setting m2 = 1 (now both have the same computational cost)
we observe that fixed-point is faster.

The above discussion is also supported visually in Figures 6 and 7, comparing the proposed
method to P 3 and NCSR both for uniform and Gaussian PSFs. As can be seen, by plugging the
median filter into RED we improve the quality of the blurry image, yet the gap in performance
between this simplistic approach and the state-of-the-art one is substantial. Once relying on
TNRD, we obtain an efficient deblurring machine that has comparable results to P 3, and both
are competitive or even slightly better than NCSR.

6.2. Image super-resolution. Similarly to the previous subsection, we imitate the super-
resolution experiments done in [9]. To this end, a low-resolution image is generated by blurring
the ground-truth high-resolution one with a 7 × 7 Gaussian blur kernel with standard devi-
ation 1.6, followed by downsampling by a factor of 3 in each axis. Next, WGN of standard
deviation 5 is added to the low-resolution images. The upscaling of an RGB image is done by
transforming it first to the YCbCr color-space, super-resolving the luminance channel using
the proposed approach (or the baseline methods), while the chroma channels are upscaled by
bicubic interpolation. Finally, the outcome is converted back to the RGB color-space.

In terms of PSNR, Table 4 presents the restoration performance of the three variants of
the proposed approach in addition to the ones of the P 3, the NCSR, and the ASDS-Reg [72]
algorithms. Similarly to the deblurring case, the PSNR is computed on the luminance channelD

ow
nl

oa
de

d 
10

/1
9/

17
 to

 3
8.

98
.2

19
.1

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REGULARIZATION BY DENOISING (RED) 1827

(a) Ground Truth (b) Input 20.83dB (c) RED: SD-Median filter 25.87dB

(d) NCSR 28.39dB (e) P 3-TNRD 28.43dB (f) RED: FP-TNRD 28.82dB

Figure 6. Visual comparison of deblurring a cropped area from the image Starfish, degraded by a uniform
PSF, along with the corresponding PSNR [dB] score.

only. In the case of the TNRD denoiser, the parameters that are used in our approach and in
P 3 are listed in Tables 5 and 6, respectively. In the simpler case of the median filter (defined
by a 3× 3 window), the number of iterations of the proposed SD algorithm is set to N = 50
with a parameter λ = 0.0325.

Interestingly, when setting the median filter to be our denoising engine we get a 2.19dB
improvement (on average) over the bicubic interpolation. Alternatively, when choosing a
stronger denoiser such as TNRD, we achieve state-of-the-art results. Notably, P 3 and the three
variants of the proposed approach lead to similar restoration performance, consistent with the
observation that was made in the context of the deblurring problem. These support once
again the claim that our framework is a tangible alternative to P 3. Figures 8 and 9 visually
compare the proposed method to P 3 and also to the state-of-the-art NCSR. As shown, the
three algorithms offer an impressive restoration with sharp and clear edges, complying with
the quantitative results which are given in Table 4.
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1828 YANIV ROMANO, MICHAEL ELAD, AND PEYMAN MILANFAR

(a) Ground Truth (b) Input 21.40dB (c) RED: SD-Median filter
27.87dB

(d) NCSR 30.03dB (e) P 3-TNRD 30.36dB (f) RED: ADMM-TNRD
30.40dB

Figure 7. Visual comparison of deblurring a cropped area from the image Leaves, degraded by a Gaussian
PSF, along with the corresponding PSNR [dB] score.

Table 4
Super-resolution results, measured in terms of PSNR [dB] and evaluated on the set of images provided by

the authors of NCSR [9]. The P 3 and our SD, ADMM, and fixed-point (FP) methods build upon TNRD [20]
as the denoising engine. We also provide the results obtained by integrating the median filter in the SD scheme.
PSNR scores being less than 0.01[dB] away from the highest result are highlighted. Similarly to the deblurring
case, the P 3 does not converge here as well. Therefore, we run it for a fixed number of iterations, manually
tuned to achieve the highest PSNR on average. This behavior is demonstrated in detail in Figure 10 and
discussed in section 6.3.

Super-resolution, scaling = 3, σ =
√

2
Image Butterfly flower Girl Parth. Parrot Raccoon Bike Hat Plants Average

Bicubic 20.74 24.74 29.61 24.04 25.43 26.20 20.75 27.00 27.62 25.13
ASDS-Reg [72] 26.06 27.83 31.87 26.22 29.01 28.01 23.62 29.61 31.18 28.16

NCSR [9] 26.86 28.08 32.03 26.38 29.51 28.03 23.80 29.94 31.73 28.48
P3-TNRD 27.13 28.23 32.08 26.50 29.65 27.95 24.04 30.30 31.78 28.63

RED: SD-median filter 24.44 27.24 31.13 25.80 27.76 27.65 22.89 28.69 30.24 27.32
RED: SD-TNRD 27.37 28.23 32.08 26.54 29.43 27.98 24.04 30.36 31.79 28.65

RED: ADMM-TNRD 27.22 28.24 32.08 26.51 29.41 27.97 23.96 30.35 31.77 28.61
RED: FP-TNRD 27.26 28.24 32.08 26.52 29.42 27.97 23.97 30.35 31.77 28.62

6.3. Robustness to the choice of parameters. In this subsection we test the robustness
of RED to the choice of its parameters and contrast it to P 3. To this end, we choose the
single image super-resolution problem as a case study, described in the previous subsection.
Figure 10(a) plots the average PSNR obtained by the different approaches as a function of theD
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Table 5
The set of parameters being used in our framework, leading to the super-resolution results reported in

Table 4 when plugging the TNRD [20] denoiser.

Proposed approach: Super-resolution

Parameter
Steepest Fixed

ADMM
descent point

N 1500 200 200
σf 3 3 3
λ 0.008 0.008 0.008
m1 – 200 (until convergence) 200 (until convergence)
m2 – – 1
β – – 0.001

Table 6
The set of parameters being used in the P 3 method, leading to the super-resolution results reported in

Table 4 when plugging the TNRD [20] denoiser.

P 3: Super-resolution
Parameter Value

N 200
α 1.02
β0 0.001
βk αk β0

λ 360 β0

σf
√
λ/βk

outer iterations. One can observe that RED (in all its forms) converges to a similar PSNR
value. Also, an increase of m2 (the number denoising steps within each iteration) leads to an
improved rate of convergence of ADMM. On the other hand, the curve describing P 3 shows
an unstable behavior and tendency to decrease in the PSNR after the first 200 iterations.
Note that no tool has been suggested in the literature so far to automatically stop P 3 for
extracting the best performing outcome.

This unstable nature of P 3 appears again as we modify the values of α and β0. Figure
10(b) shows the behavior of P 3 for several settings of these two parameters, clearly exhibit-
ing an erratic behavior. One could observe that for specific choices of these two parameters,
convergence is obtained, as manifested by the flattened curves. However, this is a fake con-
vergence, caused by a large enough value of βk. We stress that, in principle, a change in β0
is expected to modify the convergence rate of ADMM, but the steady-state outcome should
remain the same. However, when observing the curves in Figure 10(b), it is clear that this is
not the case in P 3.

Back to RED, we repeat a similar experiment and test the sensitivity (or better yet the
robustness) of ADMM to the choice of β. Figure 10(c) shows that different values of β indeed
affect the convergence rate (as expected), but the PSNR of the final outcome is always the
same. This figure also indicates that the more accurate the solution of Part 2 in Figure 3
(obtained by increasing the value of m2), the better the convergence rate.

The sensitivity of RED to the choice of σf—the input noise level to the denoiser—is
depicted in Figure 10(d). Notice that the choice of σf directly affects the proposed regularizer,D
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(a) Bicubic 20.68dB (b) NCSR 26.79dB

(c) P 3-TNRD 26.61dB (d) Ours: SD-TNRD 27.39dB

Figure 8. Visual comparison for upscaling by a factor of 3 for the image Butterfly, along with the corre-
sponding PSNR [dB] score.

given by λρ(x, σf ) = λ
2 xT

[
x− fσf (x)

]
. As such, a change in σf is expected to modify the

objective and thereby the resulting PSNR, as shown empirically in Figure 10(d) for the fixed-
point method.12 Clearly, a similar behavior is expected to occur when modifying the weight
of the regularizer, λ, in which we choose to omit from this experimental part for brevity.

7. Conclusions. The idea put forward in this paper is strange—using a denoising engine
within the regularization term in order to handle general inverse problems. A surprising
outcome of this proposal is the fact that differentiation of the regularization terms remains
tractable, still using the very same denoiser engine and not its derivative. This led us to the
proposed scheme, termed Regularization by Denoising (RED). We have shown and discussed
various appealing properties of this approach, such as convexity and its relation to advanced
Laplacian smoothing. We have contrasted this scheme with the Plug-and-Play Prior (P 3)

12One expects that we could tune this parameter using existing techniques such as SURE, but we leave this
topic for future research.D
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(a) Bicubic 20.44dB (b) NCSR 22.97dB

(c) P 3-TNRD 23.25dB (d) Ours: ADMM-TNRD 23.28dB

Figure 9. Visual comparison for upscaling by a factor of 3 for the image Bike, along with the corresponding
PSNR [dB] score.

method [30], and we have provided experiments that demonstrate the validity of the regular-
ization strategy and the resulting competitive performance.

Is there a wider message in this work? Could it be that one could use more general f
functions and still form the proposed regularization? We have seen that all that it takes is
the availability of the directional derivative of this function in order to follow all through.
Strangely enough, we have shown how even a median filter could fit into this scheme, despite
the fact that it does not have any relation to Gaussian denoising. More work is required to
investigate the ability to further generalize RED to other and perhaps more daring regular-
ization functionals.

A key question we have left open at this stage is the setting of the parameter σf . We
chose this to be a fixed value, but we did not address the question of its influence on the
overall performance or whether a varying value strategy could lead to a benefit. More work
is required here as well.
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(a) Comparison between RED and P 3
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(b) P 3: Sensitivity to change in β0 and α
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(c) RED: Robustness to change in β and m2
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(d) RED: The effect of a change in σf

Figure 10. Image super-resolution. Average PSNR as a function of the iterations of the different methods.
The test images are those of Table 4.

Appendix A. Can we mimic any prior? So far we have shown that denoisers f(x) can be
used to define the powerful family of priors xT (x − f(x)) that can regularize a wide variety
of inverse problems. Now, let’s consider the reverse question: For a given ρ(x), what is the
effective f(x) behind it (if any)? More specifically, given ρ(x), we wish to find f(x) such that

(50)
1
2
xT (x− f(x)) = ρ(x).

Recall that one of the key conditions we assumed for the denoiser f(x) is that it is homogeneous
of degree 1,

(51) f(cx) = cf(x).

This immediately notifies us that the ρ(x) we wish to mimic in (50) must be 2-homogeneousD
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because

(52) ρ(cx) =
1
2

(cx)T (cx− f(cx)) =
1
2
c2xT (x− f(x)) = c2ρ(x).

Of course, not all priors satisfy this condition, but the class of priors that do is wide. For
instance, while the total-variation function TV(x) = ‖∇x‖1 is only 1-homogeneous, its square
‖∇x‖21 keeps us in business. More generally, since any norm is by definition 1-homogeneous,
all regularizers of the type ρ(x) = ‖Ax‖2q for q = 1, 2, . . . ,∞ are 2-homogeneous:13

(53) ρ(cx) = ‖A(cx)‖2q = (c‖Ax‖q)2 = c2‖Ax‖2q = c2ρ(x).

Squared norms are not the only functions at our disposal. Beyond norms, any k-homogeneous
function (such as homogeneous polynomials of degree k) can be made 2-homogeneous by
raising to power 2/k. As well, order statistics such as maximum, minimum, and median are
1-homogeneous and can be squared to the same end.

With the above discussion, we move forward with the assumption that we have a 2-
homogeneous prior ρ(x) in our hands. Let’s recall that the task is to find f(x) so that

(54)
1
2
xT (x− f(x)) = ρ(x).

We proceed by differentiating both sides:

x− 1
2
∇
(
xT f(x)

)
= ∇ρ(x),

x− 1
2

(f(x) +∇f(x) x) = ∇ρ(x),

x− 1
2

(f(x) + f(x)) = ∇ρ(x),

x− f(x) = ∇ρ(x),

where in the last step we have invoked the directional derivative expression developed in (14).
The solution, f(x), is a denoiser explicitly defined in terms of the prior,

(55) f(x) = x−∇ρ(x).

This is quite a natural result in retrospect—it resembles an SD step.14 To see this, consider
the denoising problem regularized by ρ(x):

(56) Argmin
x

1
2
‖x− y‖2 + ρ(x).

One step of SD with a step-size of 1 and initial condition x0 = y would read as

(57) x1 = x0 − (x0 − y +∇ρ(x0)) = y−∇ρ(y),

13The sparsity-inspired L0 is an exception that cannot be treated this way.
14It is interesting to note the resemblance of this expression to a similar expression that holds for proximal

operators (see [60]). In this context, the class of denoisers we have described using Conditions 1 and 2 is a
more general form of proximal mappings.D
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1834 YANIV ROMANO, MICHAEL ELAD, AND PEYMAN MILANFAR

just as shown above as a denoising on y.

Appendix B. Kernelizing priors. We showed in the previous section that a prior with
the right properties implies a denoiser beneath and that this denoiser is directly given by the
gradient of the prior. Next, let’s address a related, but more specific question: Given a prior
ρ(x), does it imply a denoising filter of the pseudo-linear form f(x) = W(x)x? These types
of filters are of course of great interest because they reveal the kind of weighted averaging
done by the denoiser, and they are easy to implement. Given x, we can compute the weights
W(x) in one step and apply them as W(x)x to the image in another step. Some of the most
popular filters to date, such as bilateral, NLM, and K-SVD, are of this convenient form.

Before we go about finding the hidden filter matrix W(x), let’s illustrate a useful property
of the pseudo-linear filters. Take f(x) = W(x)x, and again invoke the expression f(x) =
∇f(x)x developed in (14). Substitution gives

(58) W(x)x = ∇f(x)x =⇒ (∇f(x)−W(x))x = 0

for all x. From this we conclude that the gradient of pseudo-linear filters is in fact the weight
matrix

(59) ∇f(x) = W(x).

Now we can go after the weight matrix by taking the analysis from the previous section
one step further and computing the second derivative of (50). Starting with the expression
(55) that arose from the first derivative, we differentiate again,

f(x) = x−∇ρ(x),
∇f(x) = I−∇(∇ρ(x)),
∇f(x) = I−H(ρ(x)).

Replacing ∇f(x) = W(x), we obtain the pleasing result that the weight matrix implied by
the prior is the identity matrix minus the Hessian of the prior,

(60) W(x) = I−H(ρ(x)),

or, posed another way, L(x) = I−W(x) = H(ρ(x)) (i.e., the Laplacian filter is directly given
by the Hessian of the prior, which is not surprising, bearing in mind that we seek a relation
of the form ρ(x) = xTL(x)x). What we have done here is to “kernelize” the regularizer and
find an explicit expression for the weights of the implied filter. Several observations about
this result are in order:

• Convexity: If ρ(x) is convex, then its Hessian is symmetric positive semidefinite
(PSD), and therefore L(x) is PSD. Furthermore, if η (L(x)) ≤ 1, we get that (i) W(x)
has spectral radius equal or smaller than 1, implying that strong passivity condition
(Condition 2) is guaranteed; and (ii) W(x) = I − L(x) is also PSD—a desirable
property [19].D
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REGULARIZATION BY DENOISING (RED) 1835

• Homogeneity: Since ρ(x) is 2-homogeneous, its gradient is 1-homogeneous. We can
show this by differentiating:

ρ(cx) = c2ρ(x),
∇xρ(cx) = c2∇xρ(x),

∂cx
∂x
∇cxρ(cx) = c2∇xρ(x),

c∇cxρ(cx) = c2∇xρ(x),
∇cxρ(cx) = c∇xρ(x).

Similarly the Hessian H(ρ(x)) is invariant15 to scaling of the image x, and so is the
implied filter matrix W(x). Consequently, the applied filter W(x)x is 1-homogeneous,
which again is consistent with our earlier conditions.
• Row stochasticity: Let’s recall the expression we derived above for the filter in terms

of the Hessian of the prior,

(61) W(x) = I−H(ρ(x)).

If a filter defined this way is to be row-stochastic, we would have (for every x),
W(x)1 = (I−H(ρ(x))) 1 = 1, or equivalently

(62) H(ρ(x))1 = 0.

This relation does not hold in general. However, consider defining the prior in terms
of the gradient of the image instead of the image itself. Namely, this involves a change
of variables in the prior ρ(x) from x to Dx, where D is the gradient (e.g., difference)
operator. For instance, instead of ρ(x) = ‖x‖21, consider ρD(x) = ‖Dx‖21. The Hessian
of the prior under this linear transformation is given by the chain rule as

(63) H(ρD(x)) = DTH(ρ(x))D.

This Hessian, when applied to the constant vector 1, will vanish for all x, since D1 = 0:

(64) DTH(ρ(x))D 1 = 0,

so the filter resulting from this Hessian is row-stochastic. In fact, the same can be said
for column stochasticness, since 1TDT = 0.

Appendix C. More on homogeneity. The concept of homogeneity of a filter played an
important role in the development of the key results of the paper. So it is worth saying a
bit more about it and to question whether this condition is satisfied for some popular and
familiar filters.

15Or 0-homogeneous.D
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C.1. Nonlocal means and bilateral filter. A general construction of a denoising filter
could be based on a symmetric positive semidefinite kernel Ki,j(x) = K(xi, xj) ≥ 0 from
which the filter matrix W(x) is constructed by normalization. More specifically,

(65) Wi,j(x) =
Ki,j(x)∑n
i=1 Ki,j(x)

.

Whether such a denoiser is homogeneous very much depends on the choice of the kernel K.
For instance, if the kernel is homogeneous of any degree p, then the resulting filter matrix is
invariant to scaling through cancellation,

(66) Wi,j(cx) =
Ki,j(cx)∑n
i=1 Ki,j(cx)

=
cpKi,j(x)∑n
i=1 c

pKi,j(x)
= Wi,j(x).

Examples of homogeneous kernels include (homogeneous) polynomials and several others [45]
which are not in common use in image processing. Most commonly used kernels are the
exponentials (Gaussian to be exact), which are used in the bilateral or NLM cases. The
Gaussian function is not homogeneous, but as we will show below, the resulting pseudo-linear
filter is nearly so. We will show that for c = 1 + ε with very small ε we have 1-homogeneity
for the NLM-type filters, namely,

(67) f(cx) = W(cx)(cx) = cW(x) x = cf(x).

The i, jth element of the filter weight matrix for the NLM filter16 is

(68) Wi,j(x;σ) =
eij(σ)
dj(σ)

,

where

eij(σ) = exp(−‖Rix−Rjx‖2/2σ2),

dj(σ) =
n∑
i=1

exp(−‖Rix−Rjx‖2/2σ2),

where Rix is a patch centered at pixel position i, extracted from the image; the normalization
constant dj(σ) is given by summing across the rows of the kernel matrix.

Do these weights change much when the image x is replaced by a scaled version cx? First,
note that if σ is nearly zero, then all weights are essentially equal to 1/n and therefore they
are automatically invariant to scaling of the image. Next, let’s consider the other extreme
where the value of σ is away from zero. Now, note that the scaling in x can be absorbed in
the parameter σ as follows:

(69) exp(−‖cRix− cRjx‖2/2σ2) = exp(−‖Rix−Rjx‖2/2(σ/c)2).

16The bilateral filter, which includes a spatial distance weight, can be treated similarly, since the spatial
weights are invariant to scaling of the values of the image in any case.D
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Second, the effect of this (multiplicative) scaling can be approximated by an additive pertur-
bation,

(70)
σ

c
=

σ

1 + ε
≈ σ − εσ = σ + δ.

We now compute an approximation to Wi,j(x, σ + δ) using a Taylor series:

Wi,j((1 + ε)x;σ) ≈Wi,j(x;σ + δ)

≈Wi,j(x;σ) + δ
∂Wi,j(x;σ)

∂σ
.

The derivative of the weight values will be calculated in terms of the functions eij(σ) and
dj(σ) as follows:

∂Wi,j(x;σ)
∂σ

=
∂

∂σ

(
eij(σ)
dj(σ)

)
=
e′ij(σ)dj(σ)− eij(σ)d′j(σ)

d2
j (σ)

=
e′ij(σ)
dj(σ)

− eij(σ)
dj(σ)

d′j(σ)
dj(σ)

=
‖Rix−Rjx‖2

σ3
eij(σ)
dj(σ)

− eij(σ)
dj(σ)

d′j(σ)
dj(σ)

=
‖Rix−Rjx‖2

σ3 Wi,j(x;σ)−
d′j(σ)
dj(σ)

Wi,j(x;σ)

=
(
‖Rix−Rjx‖2

σ3 −
d′j(σ)
dj(σ)

)
Wi,j(x;σ).

Therefore,

(71) Wi,j(x;σ + δ) ≈
[
1 + δ

(
‖Rix−Rjx‖2

σ3 −
d′j(σ)
dj(σ)

)]
Wi,j(x;σ).

Replacing δ = −εσ, we obtain

Wi,j((1 + ε)x;σ) ≈
[
1− ε

(
‖Rix−Rjx‖2

σ2 − σ
d′j(σ)
dj(σ)

)]
Wi,j(x;σ)

= (1− ε φ(σ)) Wi,j(x;σ).

We can simplify further, but this is not necessary, since φ(σ) does not depend on ε. For its
part, φ(σ) behaves like n/σ2. To see this note that the first term in the definition of φ is at
worst n/σ2, since ‖Rix−Rjx‖2 is bounded by n, given that the pixel values are in the range
[0, 255].

Similarly, d is on the order of n · exp(‖Rix − Rjx‖2/2σ2), and its derivative d′ is on
the order of n · ‖Rix − Rjx‖2 · d/σ3. Consequently, the second term σ · d′/d behaves likeD
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‖Rix −Rjx‖2/σ2 is also on the order of n/σ2. Therefore, choosing ε = 1/n, for sufficiently
large σ, the term εφ(σ) becomes negligible.

What we have shown is that the filter weights change very little as a result of the scaling
(1 + ε)x as long as ε is very small. Therefore, the NLM (and bilateral) filters are (almost
exactly) 1-homogeneous, as we had hoped.

C.2. Tikhonov regularizer and Wiener filtering. We now turn to show that Tikhonov
regularization obeys the homogeneity condition. In this case, the denoised image is the solution
of

x̂ = Argmin
x

1
2σ2 ‖x− y‖22 +

λ

2
‖Bx‖22 ,(72)

where B, for example, can be a discrete approximation of a derivative operator. The closed-
form expression of the above minimization is given by

x̂ = f(y) =
(
I + λσ2BTB

)−1
y(73)

= Wy.

When we feed this linear denoiser with the scaled image (1 + ε)y, it gives

f((1 + ε)y) =
(
I + λσ2BTB

)−1
(1 + ε)y,(74)

which is trivially the same as (1 + ε)f(y).
A more challenging case is obtained when the denoiser adapts to the input such that when

we apply f((1 + ε)y), the denoiser modifies λ to be λ(1 + ε)2. In what follows we return to
(74), but this time with the modified λ, and study the behavior of the filter for infinitesimal
change in ε, i.e.,

lim
ε→0

W(ε) = lim
ε→0

(
I + λ(1 + ε)2σ2BTB

)−1
.(75)

By relying on the first-order Taylor expansion of the above expression and taking the limit
ε→ 0 we get the following:

W(ε) ≈W(0)− ε W(ε)
(
λ(1 + ε)2σ2BTB

)T
W(ε)|ε=0(76)

= W− ε 2λσ2WBTBW

= (I− ε 2λσ2WBTB)W,

where W = W(0). Therefore, we obtain that the adaptive filter W(ε) changes linearly with
ε. Moreover, ‖σ2WBTB‖ < 1, and thus if λ� 1, the second term becomes negligible (similar
to what we have shown for the NLM filter). Therefore, we conclude that the image-adaptive
Wiener filtering satisfies the homogeneity condition under mild conditions.

C.3. Patch-based denoising. We now turn to discuss state-of-the-art patch-based de-
noising algorithms. These methods clean the input noisy image by (i) breaking it into small
overlapping patches, (ii) applying a local denoising step, and (iii) reconstructing the outputD
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by averaging the denoised overlapping patches to form the final image. The wisdom of these
algorithms relies on the choice of the local nonlinear prior. Moreover, in most cases, the
denoising process can be divided into two parts; the first contains all the nonlinear decisions
made by the prior, while the second is nothing but a linear filter that cleans the noisy patches
followed by a patch-averaging step. Clearly, the latter fulfills the homogeneity condition due
to its linearity. In what follows we argue that the nonlinear part of various popular denois-
ers is stable to an infinitesimal change in scale, thus leading to an overall satisfaction of the
homogeneity property.

Gaussian mixture model. We start by EPLL, which can be considered as an iterative
GMM denoising algorithm. The nonlinear part of the GMM prior is the choice of a (pretrained)
Gaussian model that best fits the input noisy patch, and its linear part is the subsequent
Wiener filtering step. Consider a Gaussian model for an n-dimensional patch xi ∼ N(0,Σk),
where Σk ∈ Rn×n is the kth Gaussian, taken from the mixture. Following the derivations
in [43], the MAP estimate is formulated by

x̂ki = Argmin
xi

1
2
‖xi − yi‖22 + σ2xTi Σ−1

k xi(77)

=
(
I + σ2Σ−1

k

)−1
yi

= Wk
i yi,

which is nothing but the Wiener filter that cleans the ith noisy patch yi. The best model for
the ith patch, k∗i , is the one that maximizes the MAP over all the possible models, given by

k∗i = Argmin
k
‖x̂ki − yi‖22 + σ2(x̂ki )

TΣ−1
k (x̂ki ) + σ2 log |Σk|.(78)

By plugging (77) into the above we get

k∗i = Argmin
k
‖(Wk

i − I)yi‖22 + σ2(Wk
i yi)

TΣ−1
k (Wk

i yi) + σ2 log |Σk|(79)

= Argmin
k

Ψ(y, σ,Σk).

When we feed the denoiser with (1 + ε)yi, the above can be written as

k∗,εi = Argmin
k

(1 + ε)2‖(Wk
i − I)yi‖22 + (1 + ε)2σ2(Wk

i yi)
TΣ−1

k (Wk
i yi) + σ2 log |Σk|(80)

= Argmin
k
‖(Wk

i − I)yi‖22 + σ2(Wk
i yi)

TΣ−1
k (Wk

i yi) +
σ2

(1 + ε)2
log |Σk|.

By relying on the relation 1/(1 + ε)2 ≈ 1− 2ε we further simplify the above and obtain

k∗,εi = Argmin
k
‖(Wk

i − I)yi‖22 + σ2(Wk
i yi)

TΣ−1
k (Wk

i yi) + σ2 log |Σk| − 2εσ2 log |Σk|(81)

= Argmin
k

Ψ(y, σ,Σk)− 2εσ2 log |Σk|.

Now we turn to compare (79) to the one derived above and get the following condition on ε
that guarantees that k∗,εi = k∗i :

(82) Ψ(y, σ,Σk)− 2εσ2 log |Σk| > Ψ(y, σ,Σk∗)− 2εσ2 log |Σk∗ |.D
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Since Ψ(y, σ,Σk) > Ψ(y, σ,Σk∗), one can always choose ε→ 0, which will keep this inequality
intact. In an extremely rare case, when Ψ(y, σ,Σk) = Ψ(y, σ,Σk∗), we can modify the GMM
denoiser and propose a simple rule for choosing the model that has a smaller log |Σk| term,
ensuring that k∗,εi = k∗i . To conclude, the nonlinear part of the GMM denoising algorithm is
stable to small scaling of the input.

Sparsity-inspired denoisers: K-SVD. Given a dictionary, the nonlinear mechanism of
K-SVD is the orthogonal matching pursuit (OMP) [61] algorithm, which estimates the sparse
representation of an input noisy patch. This is a greedy method, aiming to approximate the
solution of

α̂i = Argmin
αi
‖αi‖0 s.t. ‖yi −Dαi‖22 ≤ nσ2,(83)

where n is the size of the patch, and D ∈ Rn×m is a (possibly redundant, m > n, and
nonorthogonal) dictionary. At each step, denoted by k, OMP picks a new atom (a column
from D) that minimizes the residual. Formally, the rule for choosing the first atom dj1 can
be written as

j1 = Argmax
j
|dTj yi|,(84)

while in the tth step of the OMP, it is the one that maximizes

jt = Argmax
j
|dTj rti|,(85)

where rti = yi−DSti
αti is the residual. We denoted by Sti the set of chosen atoms, obtained in

the previous steps, and by DSti
∈ Rn×|Sti | the corresponding dictionary—a matrix having the

chosen atoms as its columns. This expression can be further simplified by relying on the fact
that the representation is the outcome of a least-squares solution, given by

αti =
(
DT
Sti

DSti

)−1
DT
Sti

yi.(86)

Substituting the above in (85) results in

jt = Argmax
j
|dTj ri| = Argmax

j

∣∣∣∣dTj (I−
(
DT
Sti

DSti

)−1
DT
Sti

)
yi

∣∣∣∣ .(87)

This process is repeated until reaching the error constraint.
Trivially, scaling the input patch would not modify the result of (84) and (87). However,

scaling the input may modify the stopping rule and thereby the number of atoms that the
OMP picks. This will happen only when ‖yi − Dαi‖22 = nσ2, which is an extremely rare
case. Notice that given the final set of chosen atoms, S∗i , the cleaned patch is given by
x̂i = DS∗i

(
DT
S∗i

DS∗i

)−1DT
S∗i

yi, which clearly satisfies the homogeneity condition. To conclude,
we showed that the nonlinear part of OMP is stable to an infinitesimal change in scale, and
since the cleaned patch is simply obtained by a linear projection onto the chosen atoms we
have that with high probability OMP (and thus K-SVD) fulfills our hope for homogeneity.
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Appendix D. The differentiability requirement. In the opening of section 3.1, we required
the denoising engine f(x) to be differentiable. Why? There are several benefits for having
this behavior:

1. The directional derivative property, ∇xf(x)x = f(x), which emerges from the homo-
geneity condition, becomes possible.

2. The passivity condition, which refers to the spectral radius of ∇xf(x), stands on solid
ground.

3. The convergence of the fixed-point algorithm discussed in section 4.2 is guaranteed.
4. The convexity of the regularization term ρL(x), discussed in section 5.1 and emerging

from Condition 2, becomes possible.
All these are good reasons for demanding differentiability of the denoiser f(x), and yet the
question is whether it is too limiting or whether this requirement could be circumvented.

Observe that point 1 above could rely on the availability of a far weaker requirement
of the availability of all directional derivatives of the form ∇xf(x)x. Indeed, the passivity
mentioned in point 2 could also be posed in terms of a directional derivative, replacing (15)
by the somewhat weaker requirement

∀x 6= 0,
xT∇xf(x)x

xTx
≤ 1,

under the assumption that ∇xf(x) is symmetric.
The question we leave as open at this stage is whether points 3 and 4 above (convergence of

the fixed-point algorithm and the convexity of our regularization) could rely on the existence
of all directional derivatives. At worst, if indeed the denoising engine is not differentiable but
has all its directional derivatives, points 3 and 4 are lost, and the behavior of the proposed
algorithm is not clear from a theoretical standpoint.

A different and more practical question is whether a differentiability assumption on f(x) is
feasible in existing algorithms. NLM and the Bilateral filter are clearly differentiable. TNRD
is differentiable as well, since its nonlinearities are smooth (linear combination of Gaussian
RBFs). EPLL, BM3D, and K-SVD are more challenging, since their nonlinear parts include
sharp decisions. Each of these methods could be ε-modified to have a fuzzy decision, thus
rendering all of them differentiable with hardly any change in their actual behavior.
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