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A Fast Super-Resolution Reconstruction Algorithm
for Pure Translational Motion and Common

Space-Invariant Blur
Michael Elad, Member, IEEE,and Yacov Hel-Or

Abstract—This paper addresses the problem of recovering a
super-resolved image from a set of warped blurred and decimated
versions thereof. Several algorithms have already been proposed
for the solution of this general problem. In this paper, we con-
centrate on a special case where the warps are pure translations,
the blur is space invariant and the same for all the images, and
the noise is white. We exploit previous results to develop a new
highly efficient super-resolution reconstruction algorithm for this
case, which separates the treatment into de-blurring and measure-
ments fusion. The fusion part is shown to be a very simple non-
iterative algorithm, preserving the optimality of the entire recon-
struction process, in the maximum-likelihood sense. Simulations
demonstrate the capabilities of the proposed algorithm.

Index Terms—Maximum-likelihood, reconstruction, super-reso-
lution, translation motion.

I. INTRODUCTION

T HE super-resolution reconstruction problem is well known
and extensively treated in the literature [1]–[13]. The main

idea is to recover a single high-resolution image from a set of low
quality imagesof thesamephotographedobject. In thisprocess, it
is conceptually possible to remove some of the aliasing and to in-
creasetheeffectiveresolutionofthesensoruptotheopticalcut-off
frequency. Recent work [10]–[13] relates this problem to restora-
tion theory [14]. As such, the problem is shown to be an inverse
problem, where an unknown image is to be reconstructed, based
on measurements related to it through linear operators and addi-
tive noise. This linear relation is composed of geometric warp,
bluranddecimationoperations. In [13]asolution (using themax-
imum-likelihood (ML), maximuma-posteriori(MAP), and pro-
jectionontoconvexsets (POCS)methods) to thesuper-resolution
reconstruction problem is given in a simple yet general algebraic
form. The proposed solution can deal with a general geometric
warp, space-varying blur, spatially uniform decimation with ra-
tional resolution ratio, and colored Gaussian additive noise. The
solution is based on the knowledge of the operators involved and
the noise characteristics.

This paper concentrates on a special super-resolution case. It
is assumed that the blur is space invariant and the same for all the
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measured images; the geometric warps between the measured
images are pure translations; and the additive noise is white.
These assumptions are indeed very limiting, but in some cases
are quite practical. Such is the case in video sequences where the
photographed scene is static and the images are obtained with
slight translations. Another relevant application is increasing a
scanner resolution by scanning the same original document sev-
eral times with slight different initial points. Several papers al-
ready dealt with this special case [2], [4], [6], [7] and proposed
different reconstruction algorithms.

In this paper, we propose a new algorithm for the above spe-
cial super-resolution case. The algorithm is based on the general
solution proposed in [13]. Exploiting the properties of the op-
erations involved, the well-known fact that the de-blurring can
be separated from the fusion process is first established [2], [6].
The main contribution of this paper corresponds to the fusion
stage, where the measurements are merged into a higher reso-
lution image. It is shown that through a very simple nonitera-
tive algorithm, this fusion is achieved, while preserving the op-
timality in the Maximum-Likelihood sense. The new algorithm
is shown to be superior to the existing algorithms [2]–[13] in
terms of computational cost, and with high output quality.

II. GENERAL SUPER-RESOLUTION

In this section, we briefly describe the general super-reso-
lution model and solution. Detailed description of these topics
can be found in [13]. We denote the measured images by

. These images are to be fused into a single improved
quality image, denoted as . The images are represented lex-
icographically ordered column vectors. Each of these images
is related to the required super-resolution image through geo-
metric warp, blur, decimation, and additive noise

(1)

The matrix stands for the geometric warp operation that ex-
ists between the images and an interpolated version of the
image (interpolation is required in order to treat the image

in the higher resolution grid). The matrix is the blur
matrix, representing the camera’s PSF. The matrixstands
for the decimation operation, representing the reduction of the
number of observed pixels in the measured images. The vectors

represent Gaussian additive measurement noise with
zero mean and auto-correlation matrix .

Ouraim is toestimate basedon theknown images ,
and the operations they went through. In order to do that we have
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to know and for all . is ob-
tained through motion estimation [15] between images
and the image (chosen as a reference image). In order to use
the geometric displacements in terms of the finer grid, the ob-
tained motion vectors are to be scaled by the resolution ratio. As
for the decimation operation, in most applications all the decima-
tion operations are equal— , and is defined by
the number of pixels in the camera detector array, and the reso-
lution ratio we want to obtain. Similarly, it is typically assumed
that all the obtained images go through the same PSF, and there-
fore . In order to determine , we can either guess
it or estimate it [14]. In most applications the noise is assumed to
be white, which means that . Otherwise, the
noise characteristics must be estimated as well.

Based on the assumptions that the additive noise vec-
tors are Gaussian and mutually independent, the
Maximum-Likelihood estimation of is done through the
following least-squares expression [13]:

(2)

Taking the first derivative of (2) with respect to and equating
to zero we get

where

(3)

In order to compute , the linear system must be
solved. This system has a unique solution (i.e., nonsingular)
provided that there are sufficient measurements [13], and that
the displacements between the images satisfy some indepen-
dence constraint [1]–[5], [13]. If these requirements are not met,
some regularization scheme must be applied [8]–[13].

Assuming that a unique solution exists, solving
directly is practically impossible due to its dimensions. If, for
example, the size of image is 1000 1000 pixels, the matrix

is a matrix. Inversion of such a huge matrix can be
obtained using iterative algorithms. Note that the actual inverse
of (namely ) is not required but rather the solution of
the linear equation . Such iterative methods are very
common and very efficient [10]–[16]. Among such algorithms,
the steepest descent (SD) algorithm is one of the simplest. The
SD algorithm suggests the following iterative equation for the
solution of :

(4)

where , the initialization vector, can be any vector. If R is
nonsingular, the above algorithm is guaranteed to converge to
the unique solution of , provided that is small
enough [15]. Putting the terms for and from (3) into the

above equation we get

(5)

III. SUPER-RESOLUTION—THE SPECIAL CASE

Let us first repeat the special case properties we intend to
exploit.

1) All the decimation operations are assumed to be the same,
i.e., .

2) All the blur operations are assumed to be the same, i.e.,
. Moreover, is assumed to be block circu-

lant, representing a linear space invariant blur [14].
3) All the warp operations correspond to pure translations.

Thus, the matrices are all block-circulant as well [14].
Moreover, we assume that is represented through
the nearest neighbor displacement paradigm [15], which
means that the displacement in the finer grid is rounded
and applies only integer translations. This assump-
tion simplifies the analysis and the obtained results. Its
implications on the output quality are negligible, since
the rounding is done in the finer resolution grid.

4) The additive noise is white and the same for all the mea-
surements, i.e., .

Putting these assumptions into (5), we get that the iterative equa-
tion becomes1 :

(6)

Exploiting the fact that block circulant matrices commute [14],
we get that and . Thus

(7)

Let us define the blurred super-resolution image by .
Multiplying both sides of Eq. (7) with we get

(8)

where we have used the notations

and (9)

1The constant� is absorbed by the parameter�
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Since the matrix is positive semi-definite, the above it-
erative equation stands as a general gradient descent algorithm
with a weight matrix [16]. It is known [16] that such an
iterative equation converges to the same final solution as the
one without the weight matrix, as long as this matrix is positive
semi-definite. Therefore, the steady-state solution of the differ-
ence (8) is given . In order to be precise, since the
matrix is typically singular, the steady-state solution consists
of two parts: the first is the part of the initialization vector,
which is in the null-space of , and the second is the solu-
tion , which is orthogonal to this null-space.

Assuming that we somehow found , the above analysis
implies that an image restoration process must be applied in
order to remove the effect of the blur matrix. This way, based
on , we recover the required image . The fact
that the treatment of the blur can be separated from the fusion of
the measurements part was already proposed in other work [2],
[3], [6]. For nonsingular matrix we can say that this process,
of first finding a blurred version of the super-resolution image
and later restoring the image itself, is as optimal as the direct
approach. Since is typically singular, some regularization el-
ement must be added into the recovery process, as we shall show
in the following.

We return now to the recovery of the image . As it
turns out, computing is very easy because of the fol-
lowing result—Based on the above assumptions, the matrix

turns out to be a diagonal matrix. In the
Appendix we prove this property. Since the matrixis diagonal,
obtaining is easy to achieve. The super-resolution
reconstruction process thus consists of the following stages.

1) Compute the pair and based on (9). Both of them are
stored as images of the same size as the image. Note
that their computation requires only additions as both the
entries of and are zeros and ones.

2) Compute . This operation requires only one
division per pixel. One possible problem with this stage is
the possibility that some of the entries on the diagonal of
maybezero.Suchsituationsoccurif thereinsufficientmea-
surements,or if thesemeasurementsaredependent [1]–[5].
Inthesezeropositions,thedivision becomes
singular. As it turns out, however, it is easy to verify that
whenever , it is guaranteed that ,
and thus, we get that . Some interpola-
tioncanbeusedto fill-in thesepositions.This interpolation
playsarollof regularization inour recoveryprocess,where
we regard the equation as a constraint, and seek
formaximallysmoothedsolution.Better/different regular-
ization paradigms may be applied in order to obtain edge-
preserving behavior [14].

3) Restore from , which can be done in various
ways [14]. This part of the process is the computationally
demanding part.

There is a simple and intuitive interpretation for the values on
the diagonal of and the vector . It is easy to show that
each diagonal entry in corresponds to one pixel in the super-
resolution image. Its value is a nonnegative integer, counting
the number of measurements contributing to it. The vector

is simply the addition of the measurements after proper zero-
filling interpolation and motion compensation. Thus,

is none-other than the pixel-wise average of the mea-
surements.

IV. RELATION TO OTHER METHODS

Several papers addressed the general super-resolution
problem and suggested practical reconstruction algorithms for
solving it [8]–[13]. These include the IBP method [10], [11],
the POCS-based solution [8], [9], [13], and the MAP based
algorithms [12], [13]. These algorithms typically tend to be
complex, as they attempt to treat the general problem. In [10],
[11], it was suggested to initialize the iterative super-resolution
reconstruction process by the image

where is a bilinear interpolator. As it turns out, for the special
case treated here, this is not far from the ML optimal solution.
There are, however, two important differences: 1) the proper
interpolation to use is , which is also simpler and 2) The
averaging should be done in a pixel-wise manner, as does.

The algorithm proposed in this paper performs interpolation
and fusion of the different images into a single canvas. This
idea was already proposed in [7] based on intuition only. The
novelty of our work is in the theoretic justification of such an
interpolation-fusion scheme. When facing the special simplified
super-resolution problem treated in this paper, one can use one
of the following three options:

1) frequency domain methods [2], [3];
2) generalized sampling theorems [4]–[6];
3) interpolation based methods, as the one described in this

paper and in [7].
In these three approaches, the ability to separate the treatment
of the blur from the fusion of the images can be (and actually
is) exploited.

The frequency approach [2], [3] suggests applying a 2-D DFT
to each of the input images, combining the images in the fre-
quency domain, exploiting aliasing relationships, and then ap-
plying an inverse 2-D DFT. As in our case, blur treatment is done
at the end of the recovery algorithm. One of the benefits of the
frequency domain algorithm is its ability to be recursive, i.e.,
the ability to add more measurements as they come. Actually,
similar behavior can be identified in our algorithm, since both

and are computed as a direct summation of terms, which
correspond to different measurements.

As for the computational complexity of the frequency domain
algorithm, in the nonrecursive approach, the frequency domain
algorithm requires the accumulation of a complex matrix of size

per pixel2 and the inversion of it. The recursive approach
requires an inversion of a matrix, and more multiplications
in order to apply the RLS algorithm. We have to remember that
above all these computations, the DFT operations must be taken
into account. Thus, the frequency domain approach is far more
complicated, compared to our way of fusing the measurements.

2r is the resolution ratio andN is the number of given images
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(a) (b) (c)

Fig. 1. Results of the synthetic test. (a) Reference image, (b) original image, and (c) reconstruction results.

(a) (b)

Fig. 2. Results of the second sequence. (a) Original measured images and (b) result.

The generalized sampling theorems by Yen [4] and later by
Papoulis [5] were used as the basis for the method proposed by
Ur and Gross [6]. Their method also separates the treatment of
the blur from the fusion process. Being based on a sampling
theorem, the proposed algorithm is numerically unstable if the
measurements have close spatial positions. Similar instability
is obtained when there are too many measurements.3 This al-
gorithm totally disregards the possibility of additive noise. The

3Too many implies more than the critical number of required samples.

given samples are considered as the ground truth, and the recon-
struction result is merely an interpolation between them.

As for the computational complexity of this algorithm, the
recovered signal is computed by summing sufficiently many
interpolation functions, which are based on a generalization of
theSincfunction. In [5] it is claimed that multiplications
per output pixel are required for the fusion process. Our
method, on the other hand, requires only one division per
output pixel.

It should be noted that the above complexities refer to the fu-
sion stage only. Assuming that the deblurring part is applied by
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Fig. 3. Result on the third sequence. (Top) One of the measured images and (bottom) super-resolution result.

Wiener filter, both [5], [7] and our algorithm require a convolu-
tion with a relatively large kernel (from 7 7 to 15 15). In
the frequency approach, the deconvolution can be done directly

on the frequency signal, then requiring an additional one multi-
plication per one pixel, however, the PSF must be transformed
as well.
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(a) (b)

Fig. 4. Results of the third sequence; sections taken from the full images given in Fig. 3. (a) Measured image and (b) result.

V. RESULTS

We start with a simple synthetic example. We have taken an
image of size 720 884 pixels, and created from it nine dif-
ferent 240 294 images by 3 : 1 decimation at each axis and
starting at the nine possible different locations. Each of these
images is shifted by an integer multiplication of 1/3 at each
axis, and these displacements are exactly known. Furthermore,
by simply interlacing these images together, we get the original
image, which stands for 3 : 1 resolution improvement result. We
have applied the reconstruction process on these nine images.
The displacements were estimated using an algorithm described
in [14], and were found to be (after the rounding for the nearest
neighbor) the exact ones. Thus, the vectorconsists of exactly
the required image, and the main diagonal ofis actually con-
stant and equals to 1. Thus is the exact super-res-
olution image. We have assumed a 2-D separable PSF kernel
built from the 1D blur . A Wiener filter of
size 15 15 was applied for restoration, manually searching for
the best parameter in this filter.

Fig. 1 presents the results for the synthetic example. We have
chosen to show two informative blocks from the input, the output
andtheoriginal images.The inputblocksare taken fromtherefer-
ence image (we could take it from any of the images—the quality
is the same), and scaled up by a factor 3 using a interpola-
tion. The output and the original blocks correspond to the same
portions of the image, and the improvement is self-evident.

Figs.2–4correspondtosimulationsonrealsequencesacquired
byadigital camera. In these twocases, there isnoreference image

to compare to, as done before. Fig. 2 presents the results for a se-
quenceof12imagesofsize318411.Theresolutionis increased
by a factor 2. Again, two blocks are shown for comparison, and
the improvement is evident—the result is sharper and with more
details.Theoriginal isadither image,whichexplains the textured
regions, both in the photographed image and the super-resolution
result. Figs. 3 and 4 correspond to the second real test. This se-
quence contains 16 images of size 300303 pixels. The resolu-
tion is increased by a factor 2 in each axis. Fig. 4 presents magni-
fied small portions of them for better comparison. The PSF in this
and the next cases were assumed to be Gaussian blur operations
with manually found variance.

VI. CONCLUSION

In this paper, we have presented a new algorithm for super-
resolution reconstruction, for the special case were the geo-
metric warp between the given images consist of pure transla-
tion, the blur is the same for all the measurements, and is space
invariant, and the additive noise is white. The proposed algo-
rithm is shown to be very efficient in terms of computational
cost, compared to other algorithms. Simulation results demon-
strate its capabilities in terms of output quality.

APPENDIX

In order to show that is diagonal, we first note that the ma-
trix is diagonal. This is easily verified by noticing that
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the operation stands for decimation followed by interpo-
lation. Thus, if decimate by factor of, applying causes
all the positions 4 for integer to stay un-
changed, whereas the remaining pixels are replaced by zeros.

Let us look at the expression for some .
We use the notation to denote the th column of the ma-
trix . If the displacement vector represented by this matrix is

will have “1” value at the position5 ,
and zeros elsewhere. In the general case, the entry of the
matrix is given by . Since is diag-
onal, if , we get that , and
thus, . If , we get that .
Since , we get that is diagonal as well, and the
claim is proved.
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