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A Fast Super-Resolution Reconstruction Algorithm
for Pure Translational Motion and Common
Space-Invariant Blur

Michael Elad Member, IEEEand Yacov Hel-Or

Abstract—This paper addresses the problem of recovering a measured images; the geometric warps between the measured
super-resolved image from a set of warped blurred and decimated jmages are pure translations; and the additive noise is white.
versions thereof. Several algorithms have already been proposed Thege gssumptions are indeed very limiting, but in some cases
for the solution of this general problem. In this paper, we con- it tical. Suchis th invid h th
centrate on a special case where the warps are pure translations, are quite practical. U(_: IS .e casein V! €o Sequencesw ere ; e
the blur is space invariant and the same for all the images, and Photographed scene is static and the images are obtained with
the noise is white. We exploit previous results to develop a new slight translations. Another relevant application is increasing a
highly efficient super-resolution reconstruction algorithm for this  scanner resolution by scanning the same original document sev-
case, which separates the treatment into de-blurring and measure- ¢ times with slight different initial points. Several papers al-

ments fusion. The fusion part is shown to be a very simple non- . . .
iterative algorithm, preserving the optimality of the entire recon- ready dealt with this special case [2], [4], [6], [7] and proposed

struction process, in the maximum-likelihood sense. Simulations different reconstruction algorithms.
demonstrate the capabilities of the proposed algorithm. In this paper, we propose a new algorithm for the above spe-

Index Terms—Maximum-likelihood, reconstruction, super-reso- cial s_uper-resolutio_n case. The a_lgorithm is basec_j on the general
lution, translation motion. solution proposed in [13]. Exploiting the properties of the op-
erations involved, the well-known fact that the de-blurring can
be separated from the fusion process is first established [2], [6].
The main contribution of this paper corresponds to the fusion

HE super-resolution reconstruction problem is well knowstage, where the measurements are merged into a higher reso-
and extensively treated in the literature [1]-[13]. The maitution image. It is shown that through a very simple nonitera-
ideais to recover a single high-resolution image from a set of Idive algorithm, this fusion is achieved, while preserving the op-
qualityimages of the same photographed object. In this procestintality in the Maximume-Likelihood sense. The new algorithm
is conceptually possible to remove some of the aliasing and to is-shown to be superior to the existing algorithms [2]-[13] in
creasetheeffective resolution ofthe sensoruptothe optical cut-&fms of computational cost, and with high output quality.
frequency. Recentwork [10]-[13] relates this problemto restora-
tion theory [14]. As such, the problem is shown to be an inverse Il. GENERAL SUPERRESOLUTION
problem, where an unknown image is to be reconstructed, basepn this section, we briefly describe the general super-reso-

on measurements related to it through linear operators and aqgio, model and solution. Detailed description of these topics
tive noise. This linear relation is composed of geometric WarPan pe found in [13]. We denote thg measured images by
blur and decimation operations. In[13] a solution (using the ma¥Yk}1§L . These images are to be fused into a single improved
imum-likelihood (ML), maximurra-posteriori(MAP), and pro- qaalitlgl_i%age, denoted ak. The images are represented lex-
jection onto convex sets (POCS) methods) tothe S“per'reSOIUIii@chraphically ordered column vectors. Each of these images

reconstruction problem s given in a simple yet general algebr%crelated to the required super-resolution image through geo-
form. The proposed solution can deal with a general geometﬁlﬂetric warp, blur, decimation, and additive noise
warp, space-varying blur, spatially uniform decimation with ra- Y ’

. INTRODUCTION

tional resolution ratio, and colored Gaussian additive noise. The Y, =DiH W X+V, k=1,...,N. 1)
solution is based on the knowledge of the operators involved and
the noise characteristics. The matrixF; stands for the geometric warp operation that ex-

This paper concentrates on a special super-resolution casttg between the image§ and an interpolated version of the

is assumed that the blur is space invariant and the same for allifR@geY’;, (interpolation is required in order to treat the image
Y, in the higher resolution grid). The matrié{;, is the blur
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to know Dy, Hy, F, andWy forallk = 1,...,N. I} is ob- above equation we get

tained through motion estimation [15] between imagés } i, N

and the image’; (chosenas a _reference mage). In or_der to userJrl — Xj T Z FEHTDIW Y, — DkaFka].
the geometric displacements in terms of the finer grid, the ob- i1

tained motion vectors are to be scaled by the resolution ratio. As (5)

forthe decimation operation, in most applications all the decima-

tion operations are equal¥, Dy, = D, andD is defined by

the number of pixels in the camera detector array, and the reso- Il SUPERRESOLUTION—THE SPECIAL CASE

lution ratio we want to obtain. Similarly, it is typically assumed et us first repeat the special case properties we intend to
that all the obtained images go through the same PSF, and thesgloit.

foreVk, Hy = H.In order to determind/, we can either guess 1y ajithe decimation operations are assumed to be the same,
itor estimate it [14]. In most applications the noise isassumedto ~ o . Dy, = D.

. . T .
be white, which means th&{V,V; } = o*I. Otherwise, the 2) All the blur operations are assumed to be the same, i.e.,

noise characteristics must be estimated as well. Vk, H,, = H. Moreover,H is assumed to be block circu-
. e . ) v T .
Based on the assumptions that the additive noise vec- lant, representing a linear space invariant blur [14].

~ . )
tors {V },_, are Gaussian and mutually independent, the 3y || the warp operations correspond to pure translations.

Maximum-Likelihood estimation ofX is done through the Thus, the matrices}, are all block-circulant as well [14].
following least-squares expression [13]: Moreover, we assume thdf, is represented through
R N the nearest neighbor displacement paradigm [15], which
X = ArgMin {Z[Xk — DyHp 3 X Wit means that the displacement in the finer grid is rounded
X k=1 and I}, applies only integer translations. This assump-

. tion simplifies the analysis and the obtained results. Its
Yy - DkaFki]} : @) implications on the output quality are negligible, since
the rounding is done in the finer resolution grid.
Taking the first derivative of (2) with respect 6 and equating  4) The additive noise is white and the same for all the mea-

to zero we get surements, i.e¥y, Wy = o21.
N S . Putting these assumptions into (5), we get that the iterative equa-
> DkHW ] Wi Yy — DyHyFX]=0= RX =P tion becomes:
k=1 N
N v v T T T v
X...=X, F,H DY, —-DHF,.X |
k=1
N Exploiting the fact that block circulant matrices commute [14],
P= ZFEHEDEWEIX;C- (3) wegetthat)! H" = H"Fl andHF}, = Fj.H. Thus
k=1 N
In order to computeX, the linear systelR.X = P must be X=X, +pH" Z F'D'Y, -DFRHX). (7)
solved. This system has a unique solution (i.e., nonsindRijar k=1

provided that there are sufficient measurements [13], and thak us define the blurred super-resolution imagtﬁl;y: HX]»-
the displacements between the images satisfy some indep@uttiplying both sides of Eq. (7) witt we get
dence constraint [1]-[5], [13]. If these requirements are not met,

N
some regularization scheme must be applied [8]-[13]. o v T T T o
Assuming that a unique solution exists, solviRgfg =P AXjp = HX; v pHH ];FKD Yy - DEHX,]
directly is practically impossible due to its dimensions. If, for N
example, the size of imagg is 1000x 1000 pixels, the matrix =2..,=2.+puHHT Z FIDTY, — DFxZ)]
R is a10® x 106 matrix. Inversion of such a huge matrixcanbe ~ ~ "+ 7 e -
obtained using iterative algorithms. Note that the actual inverse N
of R (namelyR 1) is not required but rather the solution of = Zj +puHHT ZFkTDTXk
the linear equatiolR X = P. Such iterative methods are very b1
common and very efficient [10]-[16]. Among such algorithms, N X
the steepest descent (SD) algorithm is one of the simplest. The — Z FEDTDFij
SD algorithm suggests the following iterative equation for the k=1
solution of RX = P: =Z;+pHH"[P —RZ,] (8)
Xy =X, +p[P -RX] (4)  where we have used the notations
N N

where X, the initialization vector, can be any vector. If R is . - . -
nonsingular, the above algorithm is guaranteed to converge to P= ZFk DY, and R= Z Fy D*DFy. (9)
the unique solution oRX = P, provided that: > 0 is small k=1 k=1

enough [15]. Putting the terms f&t andP. from (3) into the  The constant is absorbed by the paramejer
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Since the matrixd H” is positive semi-definite, the above it-is simply the addition of the measurements after proper zero-
erative equation stands as a general gradient descent algorititimg_interpolation and motion compensation. ThLE =

with a weight matrixd H7 [16]. It is known [16] that such an R~!P is none-other than the pixel-wise average of the mea-
iterative equation converges to the same final solution as therements.

one without the weight matrix, as long as this matrix is positive

semi-definite. Therefore the steady-state solution of the differ- IV. RELATION TO OTHER METHODS

ence (8) is g|ve|zZ = R!P. In order to be precise, since the

matrix H is typically singular, the steady-state solution consists Several papers addressed the general super-resolution
of two parts: the first is the part of the initialization vectﬁg problem and suggested practical reconstruction algorithms for

which is in the null-space af H7', and the second is the solu_solvmg it [8]-[13]. Thes_e include the IBP method [10], [11],
tion R—1P, which is grthogonal to this null-space. the POCS-based solution [8], [9], [13], and the MAP based

X . . algorithms [12], [13]. These algorithms typically tend to be
Assuming that we somehow fourd,, the above analy5|s complex, as they attempt to treat the general problem. In [10],

|mg)l|es that an 'Tag?f rest?rﬁtlcgr; proce;; T}”St be prhzd 1], it was suggested to initialize the iterative super-resolution
order to remove the effect of the blur matfik This way, based o ciiction process by the image

onz _Hi werecoverthereqwredlmagg . The fac

that the treatment of the blur can be separated from the fu5|on of 1es 1 .
the measurements part was already proposed in other work [2], N Z Fo5Y, = N Z Fy SY,,
[3], [6]. For nonsingular matri¥d we can say that this process, k=1 k=1

of first finding a blurred version of the super-resolution imag@heres is a bilinear interpolator. As it turns out, for the special
and later restoring the image itself, is as optimal as the direg{se treated here, this is not far from the ML optimal solution.
approach. Sincéf is typically singular, some regularization el-There are, however, two important differences: 1) the proper
ement must be added into the recovery process, as we shall sig@@rpolation to use iD”, which is also simpler and 2) The
in the following. X averaging should be done in a pixel-wise manneRas does.

We return now to the recovery of the image, .. As it  The algorithm proposed in this paper performs interpolation
turns out, computingZ,, is very easy because of the fol-and fusion of the different images into a single canvas. This
lowing result—Based on the above assumptions, the matfifea was already proposed in [7] based on intuition only. The
R =Y ,_, Ff DT DF} tums outto be adiagonal matrix. In thenovelty of our work is in the theoretic justification of such an
Appendix we prove this property. Since the maliis diagonal, - interpolation-fusion scheme. When facing the special simplified

obtainingZ,, = R™*P is easy to achieve. The super-resolutioguper-resolution problem treated in this paper, one can use one
reconstruction process thus consists of the following stages.  of the following three options:

1) Compute the paiP andR based on (9). Both ofthemare 1) frequency domain methods [2], [3];
stored as images of the same size as the infaghlote ~ 2) generalized sampling theorems [4]—{6];
that their computation requires only additions as both the 3) interpolation based methods, as the one described in this
entries ofD and I, are zeros and ones. paper and in [7].

2) Comput@;C><> = R~!P. This operation requires only oneln these three approaches, the ability to separate the treatment
division per pixel. One possible problem with this stage isf the blur from the fusion of the images can be (and actually
the possibility that some of the entries on the diagon®.of is) exploited.
may be zero. Suchsituations occurifthere insufficientmea- The frequency approach [2], [3] suggests applying a 2-D DFT
surements, orifthese measurements are dependent[1]-{&]each of the input images, combining the images in the fre-
Inthese zeropositions, thed|V|s|Zr;1<> R~!Pbecomes quency domain, exploiting aliasing relationships, and then ap-
singular. As it turns out, however, it is easy to verify thaplying aninverse 2-D DFT. As in our case, blur treatmentis done
wheneveR(m, m) = 0, itis guaranteed th&(m) = 0, at the end of the recovery algorithm. One of the benefits of the
and thus, we get thm'ﬁoo(m) = 0/0. Some interpola- frequency domain algorithm is its ability to be recursive, i.e.,
tioncanbe usedtofill-inthese positions. Thisinterpolatiothe ability to add more measurements as they come. Actually,
plays arollofregularizationin our recovery process, whemmilar behavior can be identified in our algorithm, since both
we regard the equatldiiZ P as aconstraint, and seekP andR are computed as a direct summation of terms, which
formaximally smoothed solution. Better/differentregulareorrespond to different measurements.
ization paradigms may be applied in order to obtain edge-As for the computational complexity of the frequency domain
preserving behavior [14]. algorithm, in the nonrecursive approach, the frequency domain

3) RestoreX _ from Z__, which can be done in variousalgorithm requires the accumulation of a complex matrix of size
ways [14]. This part of the process is the computationallyy x r per pixet and the inversion of it. The recursive approach
demanding part. requires an inversion ofax » matrix, and more multiplications

in order to apply the RLS algorithm. We have to remember that
: ~ ~ . %hove all these computations, the DFT operations must be taken
the diagonal ofR and the vectoP. It is easy to show that

into account. Thus, the frequency domain approach is far more

each diagonal entry iR corresponds to one pixel in the super-
complicated, compared to our way of fusing the measurements.
resolution image. Its value is a nonnegative integer, counting

the number of measurements contributing to it. The veBtor 2 is the resolution ratio and’ is the number of given images

There is a simple and intuitive interpretation for the values
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Fig. 1. Results of the synthetic test. (a) Reference image, (b) original image, and (c) reconstruction results.
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Fig. 2. Results of the second sequence. (a) Original measured images and (b) result.

The generalized sampling theorems by Yen [4] and later lgyven samples are considered as the ground truth, and the recon-
Papoulis [5] were used as the basis for the method proposedshyiction result is merely an interpolation between them.
Ur and Gross [6]. Their method also separates the treatment ofs for the computational complexity of this algorithm, the
the blur from the fusion process. Being based on a samplirecovered signal is computed by summing sufficiently many
theorem, the proposed algorithm is numerically unstable if theerpolation functions, which are based on a generalization of
measurements have close spatial positions. Similar instabilibe Sincfunction. In [5] itis claimed tha©{+?} multiplications
is obtained when there are too many measurenteiitsis al- per output pixel are required for the fusion process. Our
gorithm totally disregards the possibility of additive noise. Thmethod, on the other hand, requires only one division per

output pixel.
It should be noted that the above complexities refer to the fu-
3Too many implies more than the critical number of required samples. ~ Sion stage only. Assuming that the deblurring part is applied by
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Pl

Fig. 3. Result on the third sequence. (Top) One of the measured images and (bottom) super-resolution result.

Wiener filter, both [5], [7] and our algorithm require a convoluon the frequency signal, then requiring an additional one multi-
tion with a relatively large kernel (from % 7 to 15x 15). In plication per one pixel, however, the PSF must be transformed
the frequency approach, the deconvolution can be done direclywell.
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(a) (b)

Fig. 4. Results of the third sequence; sections taken from the full images given in Fig. 3. (a) Measured image and (b) result.

V. RESULTS to compare to, as done before. Fig. 2 presents the results for a se-

Hence of12imagesofsize 3%811. Theresolutionisincreased

y a factor 2. Again, two blocks are shown for comparison, and
e improvement is evident—the result is sharper and with more

We start with a simple synthetic example. We have taken %
image of size 720« 884 pixels, and created from it nine dif-

ferent 240x 294 images by 3:1 decimation at each axis ank ils. The original is a ditheri hich explains th d
starting at the nine possible different locations. Each of the gtails. The originalis aditherimage, which explains the texture

images is shifted by an integer multiplication of 1/3 at eacrlgglons,bothinthe photographedimage and the super-resolution

axis, and these displacements are exactly known. Furthermcg?é,u“' Figs. 3_and 4_corresponc_i to the secqnd real test. This se-
ence contains 16 images of size 30803 pixels. The resolu-

by simply interlacing these images together, we get the origingslllI . : o .
image, which stands for 3 : 1 resolution improvement result. ign 1S increased by afactor 2in each axis. Fig. 4 presents magni-

have applied the reconstruction process on these nine ima i&g small portions of them for better comparison. The PSFin this

The displacements were estimated using an algorithm descri ¢ the nexltl c?ses(;/vere_ assumed to be Gaussian blur operations
in [14], and were found to be (after the rounding for the neared{tn Mmanually found variance.

neighbor) the exact ones. Thus, the ve@®aronsists of exactly

the required image, and the main diagonakois actually con- VI. CONCLUSION

stantand equals to 1. Thus , = R™'P is the exact super-res- _ _

olution image. We have assumed a 2-D separable PSF kerndl this paper, we have presented a new algorithm for super-
built from the 1D blurk = [0.25,0.5,0.25]. A Wiener filter of resolution reconstruction, for the special case were the geo-

size 15x 15 was applied for restoration, manually searching fépetric warp between the given images consist of pure transla-
the best parameter in this filter. tion, the blur is the same for all the measurements, and is space
Fig. 1 presents the results for the synthetic example. We hdQgariant, and the additive noise is white. The proposed algo-
chosen to show two informative blocks from the input, the outpéihm is shown to be very efficient in terms of computational
andthe originalimages. Theinputblocks are taken from the refé@st, compared to other algorithms. Simulation results demon-
ence image (we could take it from any of the images—the qual@jrate its capabilities in terms of output quality.
is the same), and scaled up by a factor 3 usifdgé interpola-
tion. The output and the original blocks correspond to the same
portions of the image, and the improvement is self-evident.
Figs. 2—4 correspondto simulations on real sequences acquirelth order to show thaR is diagonal, we first note that the ma-
by adigital camera. Inthese two cases, thereis noreference imaige D7 D is diagonal. This is easily verified by noticing that

APPENDIX
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the operationD™ D stands for decimation followed by interpo- [9] A. J. Patti, M. I. Sezan, and A. M. Tekalp, “Superresolution video re-

lation. Thus, ifD decimate by factor of applyingDTD causes construction with arbitrary sampling lattices and nonzero aperture time,”
’ ' IEEE Trans. Image Processingol. 6, pp. 10641076, Aug. 1997.

all the positiongl +mr, 1 + ”.7’]_4 for !nteger[m, n] to stay un- [10] M. Irani and S. Peleg, “Improving resolution by image registration,”
changed, whereas the remaining pixels are replaced by zeros. ~ CVGIP: Graph., Models, Image Processol. 53, pp. 231-239, May

Let us look at the expressidRy, = Ff DT DF, for somek. 1991. o . .
. . . [11] —, “Motion analysis for image enhancement: Resolution, occlusion,
We use the notatiorf,(7) to denote thgth column of the ma- and transparency,. Vis. Commun. Image Representol. 4, pp.
trix Fy. If the displacement vector represented by this matrix is ~ 324-335, Dec. 1993.
Y Wi “qn iti g [12] R. R. Schultz and R. L Stevenson, “Extraction of high-resolution
[, dy], fi(7) will have *1” value at the positionp{y, da, dy frames from video sequence$EEE Trans. Image Processingol. 5,
and zeros elsewhere. In the general casejythe] entry of the pp. 996-1011, June 1996.
matrix Ry is given by f£ (m)D? D fr(n). SinceDT D is diag- ~ [13] M. Elad and A. Feuer, “Restoration of a single superresolution image
i from several blurred, noisy and undersampled measured imd| ’
onal, [f m 7£ n, we get thatv{m, de, dy} 7£ p{n, dz, dy}’ and Trans. Image Processinggll. 6, pp. 1646—1%58, Dec. 1997. BEF
thus,Ry[m,n] = 0. If m = n, we get thatRe[m,m] = . [14] R L. Lagendijkand J. Biemonéterative Identification and Restoration
SinceR = )", Ry, we get thalR is diagonal as well, and the of Images New York: Kluwer, 1991.
claim is proved. [15] J. L. Barron, D. J. Fleet, and S. Beauchemin, “Performance of optical

flow techniques,’int. J. Comput. Vis.vol. 12, pp. 4377, 1994.
[16] D. BertsekasNonlinear Programming Belmont, MA: Athena, 1995.
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