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Abstract

Gradient based approaches for motion estimation
(Optical-Flow) estimate the motion of an image se-
quence based on local changes in the image intensities.
In order to best evaluate local changes in the intensi-
ties, specific filters are applied to the image sequence.
These filters are typically composed of spatio-temporal
derivatives. The design of these filters plays an impor-
tant role in the estimation accuracy. This paper pro-
poses a method for the design of these filters in an op-
timal manner. Unlike previous approaches that design
optimal derivative filters in some sense, the proposed
technique defines the optimality directly with respect
to the motion estimation goal; The suggested approach
takes into account prior knowledge on the motion dis-
tribution, the image characteristics, and the allocated
filter length. Simulations demonstrate the advantage
of the new design approach.

1 Introduction

Estimating motion between two images plays a vi-
tal role in many applications and has drawn a lot of
attention during the last two decades. There are many
ways to approach this problem and indeed many algo-
rithms have been proposed for this task, e.g. [6, 9, 1].
In Barron et. al. [1] a comparative survey of many
motion estimation techniques is given. One family of
such algorithms which was found to perform well is the
family of gradient-based methods, originally proposed
by Horn and Schunck [6].

The gradient-based methods emerge from the as-
sumption that the intensity value of a physical point
in a scene does not change along the image sequence.
Denoting the intensity values of the image sequence
by the function I(z,y,t), where (x,y) is the spatial
position and ¢ is the temporal axis, the brightness con-
stancy assumption along the image stream yields [6]:
7d1($,y,t):gd_x+gd_y+g:0 (1)

dt Ox dt  Oydt Ot

Defining (u®,u?) = (4, ‘;—f), as the spatial velocity of
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each spatio-temporal point in the image sequence, we
obtain
Lo+ Lw’+ 1, =0 . (2)

Here I,,I, and I; denote the spatial and tempo-
ral derivatives. This Brightness Constancy Equation
(BCE), relates the spatial and temporal gradients of
an image sequence to the motion vector (u®,u?) at
each location (z,y,t). Since the above equation forms
a single constraint over the two component motion
vector, more constrains are required to uniquely re-
cover the motion field. For this purpose, an assump-
tion of smoothness (spatial [8, 1] and/or temporal
[4, 2]) is typically imposed.

One issue that is critical to the implementation of
the above BCE is that image derivatives are computed
based on sampled information. It is commonly agreed
[1, 11] that approximating the spatio-temporal deriva-
tives by finite differences produces error in the above
equation and subsequently in the estimated motion.
One of the major conclusions of Barron [1] is that “the
method of numerical differentiation is very important
- differences between first order pizel differencing and
higher order central differences are very noticeable” .

In most implementations spatio-temporal smooth-
ing is applied to the image sequence prior to motion
estimating [8, 1]. Since finite gradients are more accu-
rate at low frequencies [8], pre-smoothing attenuates
spatial and temporal aliasing effects, and improves the
overall accuracy of gradient estimation.

Pre-smoothing and gradient operations are both
Linear and Spatio-Temporal Invariant (LSTI). There-
fore, it is possible to combine them into a single filter-
ing operation. In the most general case, the BCE can
be implemented in the following way:

Lou* + Iyuy + I = (3)
={FA «I}u*+{FxI}u¥+{F3xI} =0
where F} F, and Fj are spatio-temporal digital filters

of some sort, and {Ax B} denotes discrete convolution
operation between two 3-D signals.
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Several attempts to define or design these filters,
together or separately, have been reported in the lit-
erature [1, 11]. All these methods treat the above
question as a problem of optimally designing gradient
operators, overlooking the fact that these gradients
are to be used for motion estimation. The question
addressed in this paper is that of designing these fil-
ters such that they are optimal with respect to the
motion estimation goal.

Since 3-D separable filters are easier to implement,
it is commonly demanded that F;, F> and F3 are sep-
arable [6, 1, 11]. We adopt this line of reasoning in
this paper as well.

2 Existing Motion Estimation Filters

The numerical analysis literature contains many
methods for approximating gradient filters [8]. Most of
the papers describing optical flow estimation using the
BCE apply simple gradient filters such as [—1,0,1]
(e.g. [6]). In many papers the choice of these filters is
not even mentioned.

In their original paper [6], Horn and Schunck pro-
posed an approximation of the gradient filter with no
pre-smoothing. The gradients were obtained by av-
eraging the first differences over a cube of 2 x 2 x 2
pixels in the image sequence. These gradients refer to
a center point of the cube (which means that the esti-
mated flow corresponds to points between pixels). No
motivation or justification for this choice of gradient
estimation is given. According to Barron et. al. [1],
these gradient filters are said to be a “relatively crude
form of numerical differentiation and can be the source
of considerable error”. Barron et. al. propose [1] the
application of a 5 x5 x 5 spatio-temporal pre-smoother,
constructed using a sampled Gaussian filter with 1.5
variance at each axis. This variance was found em-
pirically to give the best results. The gradient filter
proposed by Barron is the 5-tap central-difference fil-
ter -5[—1,8,0,—8,1], which is the result of a design
procedure described in [8]. In this scheme the goal
is to obtain a near-accurate gradient transfer function
D (8) = jO where the filter coefficients {d (k)}£_, are
designed to meet this requirement as closely as possi-
ble.

The derived 1D gradient filter is used to produce
3 types of derivatives (x-derivative, y-derivative, and
t-derivative) in a separable manner: a 3-D [5 x 5 x
5] pre-smoothing kernel is first applied to the image
sequence. Then, each axis is differentiated separately
applying the obtained derivative filter.

Figure 1 (upper graph) depicts the power spectrum
of the gradient filter, |D(#)| = |D(6)S(6)]|, compared
to an analytic differentiation of the smoothing filter,
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Figure 1: The derivative filters in the frequency domain as
proposed by Barron (upper graph) and Simoncelli (lower
graph). The solid line depicts the proposed filter and the
dashed line depicts the analytic filter. Note that in the
lower graph the analytic filter is actually coincides with
the the proposed filter.

|765(8)|. The pre-smoother is taken to be a sampled
Gaussian filter with a variance of 1.5, and the gradient
filter is the 5-taps central-difference filter as suggested
by Barron et. al. It is demonstrated that the error
between these two responses is very small for low fre-
quencies but increases as the frequency tends to £.

In [11] Simoncelli proposed that the pre-smoother
and the derivative filters should be well-matched; that
is, the filter d(z) should be the first derivative of the
filter s(z). For digital filters, this requirement is stated
with respect to some choice of interpolant.

If we denote a smoothing and a derivating 1-D fil-
ter pair in the frequency domain by S() and D(6)
respectively, then the error [j# S (6) — D (6)] can be
minimized in a more accurate manner. For example,
high frequencies which are not treated correctly by
D(6) can be attenuated by the pre-smoother S(6) in
order to minimize the above approximation error. Fig-
ure 1 (lower graph) shows the frequency response of
the gradient filter, D(#), compared to an analytic gra-
dient of the smoother filter, j6 - S(#). This time the

error between these two is negligible.



2.1 Existing Approaches - Is It Really
The Best We Can Do?

The existing methods for designing filters to be
used in optical flow estimation, aim at obtaining filters
which are as similar as possible to derivatives. How-
ever, all existing methods over-look the final goal of
these filters, namely, the estimation of optical flow.
In this paper we first propose a technique to derive
a set of filters which are optimal specifically with re-
spect to this goal. These filters are designed to give
the best estimation results in term of accuracy, where
their derivative characteristics are not a demand but
a by-product. In our scheme we adopt useful design
requirements from existing methods and add a few
more:

1. First, and most important, minimization should
be performed with respect to an energy function
related to motion estimation error.

2. The motion characteristics should be considered.
For example, assume that a-priori knowledge as-
sures that the motion vector components are in
the range of [—2, 2]. This knowledge should some-
how influence the designed filters. No existing
method considers this criterion.

3. The design procedure should consider the number
of taps allocated, and exploit them in the best
possible manner.

4. The design should relate to an interpolated ver-
sion of the discrete image sequence in order to
refer to the continuous grid.

5. The design procedure should consider the char-
acteristics of typical images, or better yet, the
specific given image sequence.

6. If possible, the design should yield separable fil-
ters which are easier to implement.

While the first two requirements are novel to the pro-
posed technique, the rest of these requirement are also
considered by Simoncelli’s method [11]. In the next
section we present our approach which takes into con-
sideration all the above requirements.

3 The Proposed Approach: 1-D Case

In this section we first develop the general case
of transformation between two 1D signals I;(z) and
I;(x). The extension to 2D images I(z,y) is straight-
forward. In the general case, the transformation be-
tween these two signals can be of any transformation
group T'(a), where a is a parameter vector defining

the amount of transformation, i.e. Ir(z) = I (T'(a)z).
In the simplest case, one signal is translated with re-
spect to the other: T'(a)z = x + a, where a is the
amount of translation between the signals. In a dif-
ferent case, T'(a)x = e“x, and I is a scaled version
of I;. Note, that where a = 0, T'(a) is the identity
operator and T'(0)x = . More complicated transfor-
mations can be multi-parameter groups, for example:
T(a)x = e"x + as, which is a composition of scaling
(by a1) and translation (by a2). In all these cases, our
goal is to estimate the transformation parameters a.

Assuming a is small, the first order Taylor expan-
sion of I around a = 0 yields:

L(e) = h(T (@) = ha) + 52 (5o -a) @

where the dot defines an inner product, and the deriva-
tive with respect to a is % = [8679”1, g—fz, x } which is
performed around a = 0. The term [ (z) in the right-
hand side is due to the fact that I (T(0)z) = I, (z).

For example, in a motion model of pure transla-
tion, T'(a)z = x + a, and Equation 4 becomes I»(z) =
L(z) + a%. In the case of scaling, T'(a)x = e%x, and
we get L(z) = I (z) + ax%. In a multi-parameter
transformation we get more terms in the expansion.

Note, that Equation 4 is defined over the continuous
domain. In practice, however, we obtain a sampled
version of the continuous signal, I; (zy) and Is(xg),
where £k = 1---L;. Using an interpolating func-
tion b(x) we can approximate the continuous signals
I () and I»(z) by:

Ly
L(z) = > h(w)b(z — ) = bx) * I (xx) (5)
k=1

Lz) = > L(k)bx - ;) = b(z) x I(zy)

The choice of b(z) can be, for example, the sinc func-
tion or a more ”gentle” function such as the Gaussian.

Substituting the continuous approximation into
Equation 4 we get:

b(z)

ox

*Il(xk)—x -a

b(z) * Io(zr) ~ b(z) * I (z) + da

The above equation involves three filters; one filter
is applied to I» (the filter b(x)), and two filters to I
(the pair b(z) and 0b(z)/0z). Two of these three fil-
ters are identical, and the third is a pure derivative of
the former. We relaxed this choice and permit three
(might be different) filters to estimate the optical flow.



In this manner, the optimal filters are designed with
maximal flexibility. In this general form, we are look-
ing for three filters m(x), h(z), and g(x), such that:

m(x)xIy(xy) ~ h(x)*]l(xk)+g(x)*11(xk)% ‘a (6)
According to the above assumption m(z)* Iy (x) =
m(z) * [;(T'(a)zg). This in turn, means that ap-
plying the filter m(z) to the signal I; can be per-
formed equivalently by first applying the (inverse)
transformation to the filter, and then convolving with
the original signal I, that is: m(z) * (T (a)xg) =
m(T1(a)x) x I (zx) = m(x) * Ir(xy), where T 1(a)
is the inverse transformation of T'(a). For a proof of
this step, the reader is referred to [5]. Now, we can
eliminate reference to I, and rewrite equation 6:

a

(m (T~ *(a)z) — h(z) — g(a:)g—w -a> x I (zy) =
=¢e(x,a) =0

The optimality of the filters is designed with respect
to this equation. The filters, m, g, and h, are optimal
if they minimize the expected value of €2(z,a), where
the expectation is performed over all actual z and a:

T(m,h,g) :/w/af(x,a)da:da (7

Note that if we have a prior knowledge about the dis-
tribution of the motion vectors (for example, knowing
that smaller values are more probable), we can add a
weighting function, w(a), into the internal integration,
requiring smaller errors for the more probable motion
vectors.

Unlike the minimization problem which computes
derivative filters, the signal I; is included in the min-
imization. This allows one to design optimal filters
over a collection of signals or more practically, over
signals bearing certain properties, for example, a de-
caying power spectrum with a certain exponential de-
cay constant (such as in natural images). Alterna-
tively, we can remove the dependence over the choice
of signals by computing the error only with respect to
the filter term: ||m(T!(a)z) — h(z) — g(m)% -al|.

In the next section we elaborate the derivation of
optimal filters for a translational motion model. Other
transformation groups can be handled in a similar
manner and will be not presented here.

3.1 Optimal Filters for 1D Translation

In the translational motion model we assume that
Iy(z) = I,(z + a) where a is the amount of transla-
tion. Note that this model assumes a translated mo-
tion only locally (in the range of the filter support).

The global motion does not have to be a pure trans-
lation. However, this approximation is valid only for
smooth motion fields. In this case, T~ !(a)z = = —a
and Equation 7 becomes:

e(w,a) = (m (x — a) — h(z) — ag(x)) * L (x1)

In the above equation, the function m(z), shifted by a,
is approximated by h(z) + ag(x). This resembles the
concept of “Shiftable Filters” as defined in [10, 5],
where a transformed version of a function is expressed
as a linear sum of a set of basis functions.

Assuming that a is bounded within the range |a| <
D, the optimal filters are those that minimize the error
term:

T(m,h,g) :/w/jD e(z,a)*drda (8)

Using Parseval’s theorem, the design goal can be
re-formulated in the frequency domain:

D(m, h, g) = /e / Sy [e(, @) dbda = )
= /0 / 11(0)] |(7904(8) — H(6) — G(6)a) | dbda

where Sg[f(k)] stands for the Discrete Fourier Trans-
form (DFT) of f(k). The terms M(0), H(0), G(9),
and I1(#) are the DFT of m, h, g, and Iy, respec-
tively. The integration of 6 is performed from —= to 7
and the integration of a from —D to D. In the above
energy functional, the filters are specified as contin-
uous functions; in practice, the optimal set of digital
filters satisfying this equation is sought instead, e.g.
m(k),h(k) and g(k) for kK = —L---L. As a result,
some suitable interpolant, b(x), is assumed, where:

L

m(z) = Y mk)b(x — k)

k=—L
and similarly for h(z) and g(z). If we take the sinc
function as our interpolant, we obtain:

L

M) = > mk)exp{—jko}

k=—L

and similarly for the other filters.
Arranging all the unknowns of the filters in a vec-
torial form:

x = [m(=L)...m(L), h(~L) ... h(L), g(~L) ... g(L)]T

it is possible to rewrite I'(m, h, g) in a bilinear form

I'(m,h,g) =x'Rx ,



where the matrix R is a (3L + 3) x (3L + 3) positive
definite matrix, which depends on the interpolating
function b(x), the maximal motion D, and the spec-
tral characteristics of the image I; (k). For more infor-
mation about the content of this matrix the interested
reader is referred to [3] . The optimal filters x are cal-
culated solving the following minimization problem:

X = arg thigl L'(m,h, g)

Minimization over ||x|| =1 is introduced to avoid the
trivial solution x = 0. The solution of the above prob-
lem is the eigenvector of the matrix R corresponding
to the smallest eigenvalue, and can be obtained using
the SVD decomposition [7].

4 Relationship to Derivative Filters

Two important features distinguish the proposed
method from other methods of designing optimal
derivative filters. First, by allowing the filter m to
differ from the filter i (that is, the pre-smoothing fil-
ters applied to the two images may be different), the
estimated motion when there is no motion could be
small but non-zero (since m — h # 0). However, this
relaxation results in a reduction in error for the large
non-zero translations, and the filters are optimal in a
least-squares sense. Second, and more important, the
characteristics of the expected motion can be explic-
itly specified. Thus, the motion estimation filters can
be designed to be optimal with respect to a particular
class of motion. The traditional derivative filters are
actually a special case of those designed by our ap-
proach; It can be shown that when D — 0, i.e. when
the expected motion tends to zero, our approach yields
the optimal derivative filters as suggested by Simon-
celli [11]. For more details the reader is referred to
[3].

5 Results

In this section we present several examples that
demonstrate the ability of the proposed optimal filters
to give better motion estimation performance. Figure
2 shows the three filters (9-taps) m, h and g obtained
for 3 different values of D (the maximum expected
motion vector): D = 0.1, 2 and 4 pixels. In all these
cases, the filters were obtained with |I; (6)| = 1 (which
means that no frequency weight is involved). For com-
parison, Simoncelli’s 9-taps derivative filters (m = h)
are given as well. All these graphs plot interpolated
versions of the discrete filters (using Sinc interpola-
tions). As expected, when D is very small we get
m = h. Another property that can be seen from these
graphs is the better exploitation of the filters support.

Simoncelli h filter

/\

optimal h filter for D=0.1

AN

optimal h filter for D=2

2N

optimal h filter for D=4

Simoncelli m filter Simoncelli g filter

N\~

optimal g filter for D=0.1

J\_/\

optimal g filter for D=2

>

optimal m filter for D=0.1

;

optimal m filter for D=2

—\/\/m

;

optimal m filter for D=4 optimal g filter for D=4

Figure 2: Simoncelli’s filters (top row) and the optimal
filters for D = 0.1 (second row), 2 (third row) and 4
pixels (last raw). The filters m, h, and g, are plotted
in the left, middle, and right column, respectively.

As D increases, the obtained filters become wider (for
the same number of taps). This seems intuitive since,
with high speeds, aliasing will occur at all but the low-
est spatial frequencies, so smoothing should be applied
in a more drastic manner.

Recall that the proposed filters are the ones which
minimize the error (m(z — a) — h(z) — g(z)a)’, aver-
aged over all  and all a in the range [-D, D]. Figure
3 shows a graph of this error as a function of a for
three sets of filters: Barron’s 9-taps filters, Simon-
celli’s 9-taps filters, and our optimal 9-taps filters for
D = 2. As can be seen, Simoncelli’s and Barron’s fil-
ters have zero error for a = 0, whereas the optimal
filters give non-zero error. This comes from the fact
that in the optimal case m # h. Beyond that, notice
that the overall error is much smaller with the optimal
filters (because of moderate errors for large values of
a). The average errors (the value of the integral) for
Barron, Simoncelli and the optimal filters are 0.172,
0.1782 and 0.0961 respectively. This also suggests that
Simoncelli’s filters are comparable to Barron filters.

We also tested the performance of the proposed fil-
ters on real images. We compared the results of ap-
plying the proposed filters with the results of applying
Barron’s filters. We have not simulated the perfor-
mance of the Simoncelli’s filters, since, based on the
1-D results, we expect the performance of these filters
to be similar to Barron’s.

In 2D signals (images) subject to 2D translation,
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Figure 3: The error €2(x,a) as a function of a for
Barron (solid line ), Simoncelli’s (dotted line) and the
optimal filters (dashed line).

Equation 6 becomes:
map * Iy(xk,y;) = (hep + @xg2p + ay fop) * L1 (zk, y;)

We derived these filters using 1D optimal filters, in a
separable manner:

hap = h(z) * h(y)
fap = h(zx) * g(y)

where m, g, and h, were derived as above.

Barron’s filters were taken to be 1l-taps pre-
smoothing and 5 taps gradient filter. In order to apply
an objective comparison, we used [11 x 11] taps opti-
mal filters. These filters were designed as 1-D 11-taps
filters with D = 2.

We tested the results on three images that were
taken, together with the true optical flow from Bar-
ron’s WEB-site, and are called Translating Tree, Di-
verging Tree and Yosemite, respectively.

In our simulations we estimated the motion using
Lucas and Kanade’s [9] algorithm with a neighbor-
hood of [7 x 7] pixels, weighted uniformly (adequate
for smooth motion flow).

Figures 4 and 5 sumimarize the obtained results for
the three sequences. Per each sequence we have com-
puted the average angular error [1] for varying density
values. We have also supplied the Mean Squared Error
between the true and the estimated flow for varying
density values.

From the above results it can be seen that the op-
timal filters yields, for almost all cases, better estima-
tion results than those given by Barron’s filters. This
is certainly true for the first and the second sequences.
The results are comparable for the Yosemite sequence.
This can be explained by looking at the motion field

map = m(x) xm(y) ;

g2p = g(z) * h(y) ;
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Figure 4: Average angular error of optical flow esti-
mation of three images. For each image, the dotted
line shows the deviation from the true optical flow
using Barron’s filters, while the solid lines using the
proposed optimal filters.

histogram per each axis. It turns out that the majority
of the pixels have very small motion vectors, for which
Barron’s filters are nearly optimal. In order to better
understand this behavior, we computed the estima-
tion errors for a 100 x 100 pixels block, taken from the
lower left part of the image. This region corresponds
to very high (in the norm sense) motion vectors. Fig-
ure 6 shows that for this part of the image, the optimal
filters are much better suited. In any case, note that
by using the correct prior for the motion probability
in the design procedure, the optimal filters results can
obtain better performance.

6 Conclusions

In this paper we proposed a new design procedure
for the filters which are required in gradient based mo-
tion estimation algorithms. The proposed design pro-
cedure generates a set of optimal filters - minimizing
a penalty which was shown to be related to the mo-
tion estimation error. The design procedure can take
into account the image spectrum, the transformation
prior, and the available number of taps.

In the context of the proposed optimal filters, there
are several issues that can be further considered:

e We could use the Taylor expansion with higher
derivative terms. The alternative BCE in this
case would be, for example:

m(x +a) = h(z) + g(x) - a+ f(z) - a*

0.8



M.S. Pixel Error
o
@
T

14
=)
T

o
~
T

0.2
Diverging Tree T

0 I I I I I I

0.4 0.5
Optical Flow Density

Figure 5: Average pixel error of optical flow estimation
of three images. For each image, the dashed line shows
the deviation from the true optical flow using Barron’s
filters, while the solid lines using the proposed optimal
filters.
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Figure 6: Average angular error (left) and average
pixel error (right), for the lower-left part (100 x 100)
of the Yosemite image. In both graphs, solid lines
plot the optimal filter results, and the dashed lines
the Barron’s filters results.

This off course complicates the underlying es-
timation algorithms, but with potentially much
smaller estimation errors. The methodology pre-
sented here can be the basis for the design of
higher number of filters, in the same manner.

e Instead of the Taylor expansion, we can use dif-
ferent expansions such as the Fourier series. With
this expansion we obtain the phase based motion
estimation algorithms. The alternative BCE in
this case would be, for example:

m(z + a) = h(z) + g(z) - sin(a) + f(z) - cos(a)

The different expansion can be advantageous in
cases where it spans the motion field more pre-

0.8

cisely. In the case of Fourier expansion, it is also
possible to exploit the shift invariant property in
cases where recognition is required rather than
estimation of the motion parameters.

References
[1] J. L. Barron, D. J. Fleet, and S.S. Beauchemin.
Performance of optical flow techniques. Inter-

national Journal of Comuter Vision, 12:43-77,
1994.

M. Elad and A. Feuer. Recursive optical flow es-
timation - adaptive filtering approach. Submitted
to the Journal of Visual Comm. and Image Rep-
resetation, 1996.

[2]

[3] M. Elad, P. Teo, and Y. Hel-Or. Optimal filters
for gradient-based motion estimation. Technical
Report TR-97-111, HP Lab, 1997.

[4] D. J. Fleet and K. Langley. recursive filters for
optical flow. IEEE Trans. Pattern Analysis and
Machine Inteligence (PAMI), 17:61-67, 1995.

Y. Hel-Or and P. Teo. A common framework for
steerability, motion estimation and invariant fea-
ture detection. Technical Report STAN-CS-TN-
96-28, Stanford University, 1996.

[5]

[6] B. K. P. Horn and B. G. Schunck. Determining
optical flow. Artificial Inteligence, 17:185-203,

1981.

[7] R. A. Horn and C. J. Johnson. Matriz Analysis.
Cambridge University Press, 1985. 1-st Edition.

[8] B. Jahne. Digital Image Processing - Con-
cepts, Algorithms, and Scientific Applications.

Springer-Verlag, 1995. 3-st Edition.
[9]

B. Lucas and T. Kanade. An iterative image reg-
istration technique with an application to stereo
vision. In Proc. DARPA, Image Understanding

Workshop, pages 121-130, 1981.

[10] E. Simoncelli, W. Freeman, E. Adelson, and
D. Heeger. Shiftable multiscale transforms. IEEE

Trans. Information Theory, 38:587-607, 1992.

[11] E. P. Simoncelli. Design of multi-dimensional
derivatives filters. In The IEEE International

Conf. on Image Processing, Austin Tx, 1994.





