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Abstract

Super-resolution reconstruction algorithms perform a
fusion of several low quality images of the same scene
into a single improved quality image. As opposed to
this STATIC recovery problem, in this paper we define
a DYNAMIC super-resolution task: the restoration of
a blurred, decimated, and noisy image sequence. We
first model this problem through state-space equations,
showing that this problem can be viewed as a sequence
of STATIC super-resolution problems. Two efficient re-
construction algorithms are proposed, both being adap-
tive filtering approzimations of the Kalman filter; the
R-5D and the R-LMS. Computer simulations on syn-
thetic sequences indicate the computational feasibility
of these algorithms.

1. INTRODUCTION

In the Super-resolution reconstruction problem [1]-[4],
several geometrically warped, blurred, decimated, and
noisy images of an ideal image are given, and the objec-
tive is the recovery of this ideal image. Super-resolution
reconstruction algorithms ([1]-[4]) effectively apply a
fusion of the measurements into a single improved res-
olution image. As opposed to the this STATIC recovery
problem, we define a DYNAMIC super-resolution task:
the restoration of a blurred, decimated, and noisy im-
age sequence. This paper focuses on this dynamic prob-
lem and its solution. Our approach can be described
as the combination of ideas from two related problems:
Super-resolution reconstruction of a single image (see
[1]-[4]) and the restoration of an image sequence from
blurred and noisy data (see e.g. [5]-]6]).

We use state-space equations for the description of
both the relation between the measurements and the
required output, and for the inter-relations that exists
within the output sequence. The obtained state-space
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formalism reveals that the Kalman filter is needed for
the reconstruction. However, due to the dimensions
involved, approximations of it are required. From a
different point of view, we show that this problem can
be viewed as a sequence of STATIC super-resolution
problems.

Two efficient reconstruction algorithms are proposed,
both being adaptive filtering-based approximations of
the Kalman filter; the R-SD and the R-LMS. The R-SD
is a better approximation but requires both more com-
putations and memory. The R-LMS is a very simple
variation of the R-SD, based on the stochastic approx-
imation algorithm. Both algorithms are computation-
ally feasible, and computer simulations on synthetic
sequences show promising results in terms of output
quality.

Due to space limitations, this paper presents the
basic results of our DYNAMIC super-resolution idea.
More details can be found in [7]-[8].

2. MODELING THE PROBLEM

Consider a sequence of images {Y (¢)}, each image is of
M x M pixels, as our measured data. We wish to gen-
erate a sequence {X(t)} of images of higher resolution,
each image of L x L (L > M) pixels and of improved
quality. For convenience of notation all images will be
presented as vectors, ordered column-wise lexicograph-
ically. Namely, we have Y (t) € R and X(t) € RY.
At each time instant ¢ we assume that the two images
are related via the following equation:

Y(t) = DH($)X(t) + N(t) (1)

which means that X (¢) is blurred, decimated (i.e. down
sampled) and contaminated by additive noise to give
Y (t). H(t) is the blur matrix which may be space
and time variant, D the decimation matrix assumed
constant, and N (¢) is a zero mean Gaussian noise with
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W-(t) = B{N(t)N*(t)}. In addition, we assume that
the sequence {X(t)} satisfies the following equation:

X(t) =GH)X(t-1)+ V(). (2)
The matrix G(¢) stands for the geometric warp between
the images X (¢) and X (¢t — 1), and V (¢) is the system
noise. Assuming the typical optical flow model with
the nearest neighbor paradigm, most pixels in the im-
age X (t) originate from pixels in the image X (¢ — 1).
Therefore, for each such pixel the corresponding row in
the matrix G(t) contains only one non-zero element at
a position which reflects the address of the source pixel
in the previous image and this entry equals 1. Other
methods of interpolating can be used as well, result-
ing with other forms of row stochastic matrices G(t).
The vector V (t) contains the innovation sequence - all
the new information which does not originate from the
previous image. For the sake of our analysis here, we
assume this vector to be a zero mean Gaussian process
with Q~1(t) = E{V.()V*(¢)}. In the next section we
show that this assumption is actually bypassed.

With equations (1) and (2), the problem we posed
can be viewed as a state estimation problem and the
most natural tool to consider is the Kalman filter. For
the linear model we have assumed, the Kalman filter
will provide the optimal solution in the Mean Square
Error sense ([9]). However, because of the large dimen-
sions involved - L? x L? - the computation and storage
required to use the Kalman filter makes its use in our
case impractical. Hence, our goal is to develop algo-
rithms which approximate the Kalman filter as far as
performance but are significantly less demanding com-
putation wise.

Throughout this paper we assume that the matrices
D, H(t), W(t), G(t), and Q(t), which define the state-
space system, are known. More details which justify
such an assumption, and the way to actually obtain
these matrices is described in [7]-[8].

When needed, equation (1) may include a regular-
ization expression which represents prior knowledge on
the spatial behavior of X (¢). As typical in reconstruc-
tion problems, spatial smoothness may be used. Defin-
ing S as the Laplacian operator we propose:

0=5X(t)+U() 3)
which simply means that applying the Laplacian on
the image X (¢) should give zeros up to some additive
noise, U(t), which we assume again, to be zero mean
Gaussian with R=1(t) = E{U(t)U"(t)}. Combining
equation (1) and equation (3) we get:

N R R

with

The matrix R(t) may be chosen such that R(t) = SI.
This way, the parameter 8 controls the spatial smooth-
ness of the resulting images. More complex choices of
R(t), introducing locally adaptive smoothness are also
possible under this framework.

3. DYNAMIC ESTIMATION

3.1. The Pseudo-RLS Equations

Kalman filter may be presented either as the propa-
gation of the mean-covariance pair or the information
pair [9]. In our analysis we concentrate on the infor-
mation pair. The prediction and the update equations
are therefore:

Z(t) = LOGOL (- 1DZt~1) (5)

Lty = [6OLe-16"®+Q70)]
20 = ZO+HOWAOYA®)  (6)
L(t) = L(t)+HiOWaHa(t

and the output of the Kalman filter is the vector X (t),
obtained as the solution of the linear set of equations:
L(t)X(t) = Z(t). The bottleneck in the above propaga-
tion equations is the need to invert a huge matrix twice
for every time instance, as can be seen in the prediction
stage (similar bottleneck appears in the propagation of
the mean-covariance pair but on the update part of the
propagation).

In order to simplify the prediction equations, and
omit these inverses, we propose to replace the term
Q1(t) (which is assumed to be non-singular) with an
approximation term of the form a(¢)G(t) L= (t—1)G7T (t),
where a(t) is some positive scalar. One possibility is
to choose this scalar so that Q! (¢) < a(t)G(t)L_1(t —
1)G* (t). The above approach means that we assume a
stronger system’s noise V (¢). Such approach is known
as adding pseudo-noise to the system’s equation ([9]),
and is typically proposed for the treatment of model
inaccuracies. Different methods for the choice of «(t),
such as searching for a(t) which minimizes the estima-
tion error, can be suggested [7]-[8].

Using the above approximation, the entire Informa-
tion Kalman filter propagation equations simplify to:



Z(t) = NOFT () Z(t = 1) + Hi()Wa(®)Y 4 () (7)
L(t) = M&)FT (t)L(t = 1)F(t) + HY )W (t)Ha(t)

where we have denoted F(t) = G~(t) (or its pseudo-
inverse if G(t) is singular). This is the backward motion
matrix representing the motion operator from the cur-
rent image X(t) to the previous one X (¢ — 1). This
matrix therefore has the same properties as the ma-
trix G(t). We also denote A(t) = [1+ a(t)]!. Quite
clearly, these recursive equations are much simpler to
implement, compared to the previous ones.

Another more intuitive approach, which yields these
very same two recursive equations, is to totally omit
the system’s noise by assuming @ '(¢t) = 0. In this
case, by putting the system’s equation into the mea-
surement equation, the two state-space equations can
be combined into an infinitely long sequence of equa-
tions of the form:

Y (t—k)=Ha(t —k)X(t—k)+Ny(t—k) (8
k
=Hp(t—k) [[Ft—k+5)X(t) + Nyt — k)
j=1
for £k = 0,1,2,---t. We can now define a Weighted
Least Squares (WLS) problem, where we search for the
image X (¢) which minimizes the function:

00 k—1
) =Y ([Nt =] - IXalt — k) — Ha(t — k)-
k=0 | j=0
JIFt-k+ )Xt (9)
j=1

Wa (t—k)

It turns out that the minimum of the above penalty
function is the exact same solution that was shown in
equation (7). Moreover, Looking closely at equation
(9), this penalty term is exactly the one proposed for
the static super-resolution problem in [4]. The differ-
ence here is that we are to solve this minimization prob-
lem per each instance ¢, this way creating a sequence
of output images.

So far, the Kalman filter approximation we got in-
volves solving a set of linear equations at each temporal
point. We name this algorithm, as presented in equa-
tion (7), the Pseudo-RLS algorithm.

3.2. The R-SD algorithm

Since we need to solve a very large set of linear equa-
tions per each instance ¢, one immediate approach is to

apply some iterative algorithm. Of-course, in order to
get the exact solution one would need to apply many
number of such iterations. However, since the propaga-
tion of L(t) and Z(t) is independent of the estimation
X(t), any error caused by limiting ourselves to a finite
number of iterations at (¢ — 1) would not propagate to
time ¢.

The algorithm we propose consists of applying R
iterations of the Steepest Descent (SD) algorithm at
each time ¢t. Hence we name this algorithm R-SD. A
natural choice for the initialization of such algorithm is
the vector X (t) = G(t)X p(t — 1), where X 5(t — 1) is
the result after the previous R iterations. This choice
comes from the prediction step in the Kalman filter-
equation. The R-SD algorithm is therefore:

Initialization:

X ;(0) = Arbitrary; L(0) =0; Z(0) =0

For t>1: (10)
Z(6) = NOFT (O Z(t — 1) + HE (OWa ()Y (1)
L(t) = O FT(t)L(t — 1)F(t) +

+HE ()W (t)Ha(t)
Xo(t) = G X p(t—1)

A

X)) = [I = pl®)] X, () + p2(t)y; 1<k<R

This algorithm requires the propagation of the approx-
imated information pair (Z(t); L(t)) in time, and then
use these terms in the recursive update equation of the
estimated output vector X p(t).

The parameter p in the above algorithm should be
chosen so as to guarantee the Steepest Decent conver-
gence ([7]-[8]).

An interesting question with respect to the R-SD
algorithm is the density of the matrix L(¢). In order
to get that the R-SD is feasible, this matrix must be
sparse and remain sparse for all ¢. In [8] an upper
bound on the density of this matrix is obtained. The
bound is shown experimentally to be tight, and very
low, thus ensuring small number of memory cells and
computations when dealing with this matrix.

3.3. The R-LMS algorithm
Taking the R-SD algorithm of the previous sub-section

and further approximating the information pair (Z(t);
L(t)) by the instantaneous values in equation (7),

(HAGWAMY(1); HA(OWa(t)Ha(t)) (1)

respectively, we get an algorithm which resembles the
LMS algorithm, and thus the name R-LMS algorithm.
After some algebra we get:



Initialization:
X ;(0) = Arbitrary
For t > 1: (12)
Xy(t) = GO Xp(t - 1)
Xp() = Xy () + pHEOWa(D) -
(X - BaX, 0] 1<k<R

Clearly, the R-LMS algorithm is simpler than the R-SD
algorithm, both in the computational and the memory
requirements. We note that the R-LMS algorithm can
also be obtained from the R-SD algorithm by assigning
A(t) = 0. Presumably, such value for A(t) means no
temporal memory, and thus no temporal smoothness.
Indeed, this is the case if infinitely many iterations are
performed per each time point (R — o0). However,
since R is finite and relatively small, temporal smooth-
ness is not discarded, although it comes from different
origin.

4. SIMULATIONS AND ANALYSIS

The two tests presented in this part are based on two
synthetic sequences, each containing 100 images of size
[50 x 50] pixels. These sequences serve as the ideal
images. The two measured image sequences were gen-
erated from these ideal sequences, by blurring each im-
age using [3 x 3] uniform kernel, decimation using 2:1
decimation ratio on each axis, and adding zero mean
Gaussian white noise with ¢ = 5 (the dynamic range of
the gray level in the images is 0-255). Thus the mea-
sured sequences contain 100 images of size [25 x 25]
pixels each. These dimensions were chosen in order to
shorten the simulations run-time and to overcome the
memory limitations posed by MATLAB.

The R-SD and the R-LMS algorithms were applied
using 5 iterations per each time point. In all cases, the
initialization image at ¢ = 0 was chosen to be a bilinear
interpolated version of the first measured image. The
applied regularization in all the tests was the Laplacian
operator, using relative weight 8 = 0.02. In the recon-
struction process, the true motion, blur and decimation
operators were assumed to be known.

In Figure 1, the results of the first test are given. In
order to illustrate the temporal axis, the 1st, the 25th,
the 50th, the 75th and the 100th images of each se-
quence are given. The motion in this sequence consist
of global zoom in and out and global translation mo-
tion. The given sequences are A: The ideal sequence;
B: The measured sequence; C: Bilinear interpolation
of the measurement sequence; D: The R-LMS results

without regularization; E: The R-LMS results with reg-
ularization; and F: The R-SD results with regulariza-
tion. Similar to this figure, Figure 2 presents the results
for the second sequence. The motion in this sequence
consist of global constant rotation while zooming in
and out.
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Figure 1: The first sequence results

From these results we can conclude the following;:

1. In both examples, using any of the two proposed
reconstruction methods, there is a clear improve-
ment both in the resolution quality and in the
suppression of noise and blur degradation effects.

2. As expected, the R-SD algorithm gives slightly
better results. This is true both for the con-
vergence rate at the initialization part and the
steady state.

3. Regularization improves the performance in both
examples.

5. SUMMARY AND CONCLUSIONS

This paper presents the dynamic super-resolution re-
construction problem, and algorithms to solve it. In
this problem, an image sequence is to be recovered
from down-sampling, blurring, and noise degradations.
We show that this problem is both a generalization of
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Figure 2: The second sequence results

the image sequence restoration and the static super-
resolution recovery problems. Two novel reconstruc-
tion algorithms are proposed, the R-SD and the R-
LMS. These two algorithms are shown to be approx-
imations of the well-known Kalman filter. Their per-
formance on synthetic image sequences is found to be
promising.

Acknowledgments

This work was supported by the The Israel Science
Foundation founded by The Israel Academy of Sciences
and Humanities, and by the Technion V.P.R. fund, N.
Haar and R. Zinn Research Fund.

6. REFERENCES

[1] Irani and S. Peleg, “Motion Analysis for Image
Enhancement: Resolution, Occlusion, and Trans-
parency”, J. of VCIR, Vol. 4, pp. 324-335, Decem-
ber 1993.

[2] A.J. Patti, M.I. Sezan and A.M. Tekalp, “High-
Resolution Image Reconstruction from a Low-
Resolution Image Sequence in the Presence of
Time-Varying Motion Blur”, Proc. ICIP, Austin
- Texas, pp. 343-347, November 1994.

[3] R.S. Schultz and R.L. Stevenson, “Extraction of
High-Resolution Frames from Video Sequences”,
IEEE Trans. Image Processing, Vol. 5, pp. 996—
1011, June 1996.

[4] M. Elad and A. Feuer, “Restoration of Single
Super-Resolution Image From Several Blurred,
Noisy and Down-Sampled Measured Images 7,
IEEE Trans. Image Processing, Vol. 6, pp. 1646—

58, December 1997.

[5] T. Patti, AM. Tekalp and A.M Sezan, “Im-
age Sequence Restoration and De-interlacing by
Motion-Compensated Kalman Filter”, Proc. SPIE
- The International Society for Optical Engineer-
ing, Vol. 1903, pp. 59-70, 1991.

[6] A.K. Katsagellos, J.N. Driessen, S.N. Efstra-
tiadis and L.J. Lagendijk, “Spatio-temporal Mo-
tion Compensated Noise Filtering of Image Se-
quences”, Proc. SPIE - International Society for
Optical Engineering, Vol. 1199, pp 61-70, 1989.

[7] M. Elad and A. Feuer, “Super-Resolution Restora-
tion of Continuous Image Sequence - Adaptive Fil-
tering Approach”, IEEE Trans. Image Processing,
March 1999.

[8] M. Elad and A. Feuer, “Super-Resolution Restora-
tion of Image Sequences”, accepted to the IEEE
Trans. Pattern Analysis and Machine Intelligence
(PAMI), March 1999.

[9] P.S. Maybeck, Stochastic Models, Estimation and
Control, Vol. T & 11, Academic Press, New-York,
1979.





