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On the Origin of the Bilateral Filter
and Ways to Improve It

Michael Elad

Abstract—Additive noise removal from a given signal is an im-
portant problem in signal processing. Among the most appealing
aspects of this field are the ability to refer it to a well-established
theory, and the fact that the proposed algorithms in this field are
efficient and practical. Adaptive methods based on anisotropic dif-
fusion (AD), weighted least squares (WLS), and robust estimation
(RE) were proposed as iterative locally adaptive machines for noise
removal. Recently, Tomasi and Manduchi proposed an alternative
noniterative bilateral filter for removing noise from images. This
filter was shown to give similar and possibly better results to the
ones obtained by iterative approaches. However, the bilateral filter
was proposed as an intuitive tool without theoretical connection to
the classical approaches. In this paper we propose such a bridge,
and show that the bilateral filter also emerges from the Bayesian
approach, as a single iteration of some well-known iterative algo-
rithm. Based on this observation, we also show how the bilateral
filter can be improved and extended to treat more general recon-
struction problems.

Index Terms—Anisotropic diffusion, Bayesian methods, bilat-
eral filtering, Jacobi algorithm, robust estimation, weighted least
squares.

I. INTRODUCTION

A DDITIVE noise removal from a given signal is an impor-
tant problem in signal and image processing [1]–[8]. This

problem is the most simplified reconstruction problem in the
wider field of signal restoration [9], [10]. Restoring a signal,
based on corrupted measurements of it, is typically solved
via the Bayesian approach, though there are other approaches
[19]–[21]. The Bayesian approach uses some sort of statistical
estimator applied on a Gibbs distribution resulting with a
penalty functional. This functional is minimized by a numerical
optimization algorithm that yields the restored signal [9], [10].

Noise removal is a practical problem raised in many systems.
Apart from the trivial application of removing noise prior to pre-
senting the signal to a human observer, pre-smoothing a signal
and noise removal may help to improve the performances for
many signal-processing algorithms, such as compression, de-
tection, enhancement, recognition, and more. From this aspect,
noise removal is appealing both because it relies on a well-es-
tablished theory, and also because the proposed algorithms in
this field are efficient and thus practical.
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The more advanced methods for noise removal aim at pre-
serving the signal details while removing the noise. This is
achieved by a locally adaptive recovery paradigm. Such methods
can be based on anisotropic diffusion (AD) [1]–[5], [22], [23],
weighted least squares (WLS) [6], or robust estimation (RE) [7],
[8]. The Mumford–Shah functional is a different yet resembling
approach toward the same denoising task [11]. All these methods
share the fact that local relations between the samples dictate the
final result, and therefore, all these methods resort to an iterative
algorithm. There is a solid theoretical bridge between these
methods as well as to the line-process approach [12], [13].

Recently, Tomasi and Manduchi proposed an alternative
noniterative bilateral filter for removing noise from images [14].
This filter ismerelyaweightedaverageof the localneighborhood
samples, where the weights are computed based on temporal (or
spatial in case on images) and radiometric distances between the
center sample and the neighboring samples. This filter is also
locally adaptive, and it was shown to give similar and possibly
better results to those obtained by the previously mentioned
iterative approaches. However, The bilateral filter was proposed
in [14] as an intuitive tool. Thus, one important aspect that
we intend to explore is its relation to the AD, WLS, and RE
techniques.

In this paper we propose such a theoretical bridge, and show
that the bilateral filter also emerges from the Bayesian approach,
usinganovelpenalty functional.For this functional,weshowthat
a single iteration of the Jacobi algorithm (also known as the di-
agonal normalized steepest descent—DNSD) yields the bilateral
filter. Based on this observation, we also show how the bilateral
filter can be improved to further speed-up its smoothing opera-
tion, and show how this filter can be extended to treat piece-wise
linear signals. Also, it is shown that the bilateral filter can be
extended to treat more general reconstruction problems such as
image restoration, image scaling, super-resolution, and more.

This paper is organized as follows: In the next section we
shortly describe the bilateral filter as was proposed in [14]. Sec-
tion III describes the AD, WLS, and RE methods. In Section
IV we propose a novel penalty term, strongly related to the one
in Section III, and yet different. We show how this new penalty
term yields the bilateral filter. Section V discusses several im-
provements to the bilateral filter based on our new model. In
Section VI we compare the various methods discussed in this
paper for simple one-dimensional (1-D) signals. We summarize
this paper in Section VII.

II. NOISESUPPRESSIONVIA THE BILATERAL FILTER

We start our discussion with a description of the bilateral filter
as proposed originally by Tomasi and Manduchi [14]. In order
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to simplify the notations we stick to the 1-D case throughout
this paper, though all derivations apply to the two-dimensional
(2-D) case just as well.

An unknown signal represented as a vector goes through
a degradation stage in which a zero-mean white Gaussian noise

is added to it. The result is the corrupted signalgiven by

(2.1)

Our task is to remove this noise and restore, given the de-
graded signal . The bilateral filter suggests a weighted average
of pixels in the given image in order to recover the image

(2.2)

This equation is simply a normalized weighted average of a
neighborhood of samples around theth sample.
The weights are computed based on the content of the
neighborhood. For the center sample , the weight
is computed by multiplying the following two factors:

(2.3)

The final weight is obtained by multiplying these two factors

(2.4)

The weight includes two ingredients—temporal (spatial in
case of images) and radiometric weights. The first weight mea-
sures the geometric distance between the center sampleand
the sample, and Euclidean metric is applied here. This
way, close-by samples influence the final result more than dis-
tant ones.

The second weight measures the radiometric distance
between the values of the center sample and the
sample, and again, Euclidean metric is chosen. Thus, samples
with close-by values tend to influence the final result more
than those having distant value. Of-course, for both weights
we are free to adopt any other reasonable metric. Also, instead
of using the Gaussian function, other symmetric and smoothly
decaying functions can be used.

Looking at the kernel applied on the input signal at theth
sample, this kernel has the following characteristics.

1) The sum of this kernel’s coefficients is 1 due to the nor-
malization.

2) The central value of the kernel (the coefficient multi-
plying the center sample) is the largest. Its size depends
on the others due to the normalization.

3) Subject to the above two constraints, the kernel can take
any form! We will return to this property as we describe
the alternatives, and see that this phenomenon may be the
basis for better performance.

The bilateral filter is controlled by three parameters:
dictates the support of the filter. Larger support gives stronger
smoothing. The parameters control the decay of the two
weight factors. For very large (infinity) values we get a simple
uniform nonadaptive filtering, which is known to degrade the
signal edges. Using too small values reduces the smoothing
effect.

It is interesting to note that just recently Chanet al. [18] pro-
posed a new filter named digital total-variation for noise re-
moval. As it turns out, their filter is very similar to the bilateral
filter. However, they chose to use the total-variation penalty to
compute the weights, as opposed to the exponential terms used
by Tomasi and Manduchi [14]. More importantly, they restricted
the application of the filter to a small support, thus losing the
filter’s prime origins of strength.

III. A NISOTROPICDIFFUSION, WLS, AND RE

For the same denoising problem described above, a known
approach is to define a penalty functional that best represents
our requirements from the unknown. We want the result to
be as close as possible to the measured signalwhile being
smooth. Smoothness should be forced in a temporally (spatially)
dependent manner in order not to suppress edges in the signal

. Thus, one either uses weighted least squares (WLS) [6]

(3.1)

or a robust estimation technique (RE), using an “-function”
denoted as [7], [8]

(3.2)

The matrix stands for a one-sample shift to the right (toward
the origin) operation. Thus, the term is simply a
discrete approximation of a backward first derivative. If

, then . As an example, is
shown for a signal with ten samples. The top line nonzero entry
implies circulant operation in order to avoid boundaries effects

(3.3)

The matrix is a diagonal matrix that weights the local
gradients. This matrix main diagonal depends on the unknown
image . Later we show how this matrix can be constructed.
In the RE, the function is symmetric nonnegative function
that penalizes gradient values. The choice gives
the trivial LS approach.
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Both these penalty functionals can be shown to emerge from
the Bayesian framework and represent the MAP estimation
[6]–[10]. In both cases, an iterative algorithm is typically
required in order to find the signal that minimizes the
functionals [6]–[8]. A natural choice is the steepest descent
(SD) algorithm due to its simplicity [15], [16]. This algorithm
requires the computation of the first derivative of the functionals

(3.4)

and

(3.5)

The SD stage performed once withas initialization gives

(3.6)

and

(3.7)

Looking at both iterative procedures, we see that they will pro-
duce the same solution after the first iteration provided that

(3.8)

where the above division is applied entry-by-entry. This equa-
tion says that for a specific sample in the signal, denoted as

, its weight is computed by the formula

(3.9)

Blacket al. linked between the anisotropic diffusion and the ro-
bust estimator and obtained a similar formula [12]. We see here
that this formula also links between these two approaches (RE
and anisotropic diffusion) and the WLS. Table I shows how the
weights are obtained for several choices of the function .

After the first iteration the WLS and RE depart—whereas the
WLS sticks to the same weights, the RE re-computes their values

based on the updated solution . Thus, the RE is expected to
outperform the WLS, provided that is convex. This is be-
causeconvexityof impliesconvexityof theentirefunctional,
and therefore convergence to the global minima point [15], [16].

So far we have been focusing on the WLS and the RE. The
anisotropic diffusion (AD) is different in the sense that it uses the
continuumtorepresent itsbehavior [1]–[5].However,sinceeven-
tually we work on a discrete signal, we discretize the propagation
equations and get a similar equation to the one shown for the RE
method. This is why we did not present this tool separately [12].

The AD, WLS, and RE algorithms are based on a solid theory
of statistical estimators and regularization theory [1]–[8]. The

TABLE I
CHOICES OF�(�) AND THEIR EQUIVALENT WEIGHT FUNCTIONS

bilateral filter, on the other hand, is an ad-hoc filter without theo-
retic background but nevertheless with impressive results. Both
approaches give similar (but not equal) qualitative results [14],
though the AD/WLS/RE require many iterations and the bilat-
eral is a “one-pass” algorithm. There are ways to numerically
speed the WLS/RE and reduce the number of iterations required
[17], but still, the main difference between these two approaches
is that the bilateral filter exploits all the relevant neighborhood
in parallel, whereas the AD/WLS/RE apply some sort of diffu-
sion of the neighborhood influence.

In the next section we show that the bilateral filter can also
be derived from statistical estimation and regularization theo-
ries. This result is important for several reasons: First, it gives
ways to better understand the bilateral filter. Second, it creates
the necessary link between the AD/WLS/RE and the bilateral
filter. Third, it enables us to suggest further improvements to
the bilateral filter.

IV. DERIVATION OF THE BILATERAL FILTER

Since we have seen equivalence between the AD, the RE and
the WLS approaches (in their first iteration), we consider here-
after the WLS due to its formulation simplicity. We propose the
following new penalty functional for the unknown signal

(4.1)

When the matrix is raised to the power it implies a shift
right of samples. Thus, as opposed to the previous smooth-
ness terms, the difference between this functional and the one
presented in (3.1) is the use of several scales of derivatives, all
applied directly on the unknown image. Note that we can sug-
gest a continuous domain form of this penalty function
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and apply variational-calculus for its minimization. Here, we
employ a convolution denoted by) with the Kronecker shifted
delta function in order to facilitate the shift. The integral over
gives the resulting filter its wide support from to .

Taking the first derivative of (4.1) with respect to the unknown
we get the following gradient vector

(4.2)

where we have used the relation
.

If we assume again a single iteration of the SD algorithm
applied with as the initialization, we get

(4.3)

Speeding-up the above iteration can be done using locally
adaptive step-sizes. We can use the inverse of the main
diagonal of the Hessian matrix—the second derivative of the
penalty functional [15], [16]. This algorithm is known as the
Jacobi algorithm, or the diagonal normalized steepest descent
(DNSD) [15], [16]. The second derivative is the following
matrix:

(4.4)

From this matrix, we need to extract the main diagonal, which
by definition is known to contain real and positive values, as-
suming that the weights are all positive. We define a step-size
matrix , which extends the notion of the previously usedby

(4.5)

The additional term relaxes the step-size matrix and ensures
stability. Thus, the DNSD iteration is

(4.6)

In both the SD and the DNSD we get that the solution
is obtained via a linear operation on the distorted image. Re-
ferring to this linear operation as a signal-dependent linear filer,
we may ask what is the kernel applied on a neighborhood of a

sample? As we show in the next analysis, the kernel is the bilat-
eral filter. In order to show this result, we first have to specify
how the weights are chosen. We can use the formula in (3.8)

(4.7)

However, the weights here should also reflect our decreased
confidence in the smoothness penalty term asgrows toward

. Thus, a reasonable choice is

(4.8)

for some nonnegative symmetric and monotonically decreasing
function (e.g., ).

Note that, as far as the first iteration is involved, the iterative
equation can be written alternatively as

(4.9)

Looking at (4.6) and choosing theth sample (assumed not to
be close to the signal’s boundaries) from the result, this value is
computed in the following way:

(4.10)

Let us introduce several temporal notations

(4.11)

Thus, per the samplewe can write the following relations:

In this expression, we exploited the fact that the function
is known to be symmetric and therefore its first derivative is
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unsymmetric. Thus

Gathering together all the terms for all values ofwe get

(4.12)

We can refer to the above expression as a time varying convo-
lution of the form

(4.13)

where this filter’s coefficients are given by (4.14), shown at
the bottom of the page. We now turn to analyze the expression

. Using (4.4) and (4.5), we get

(4.15)

Thus, the filter coefficients are shown in (4.16) at the bottom
of the page. From the above results, and the description of the
bilateral filter in Section II, we can draw several observations:

1) The sum of all coefficients is 1, as should be in the bilat-
eral filter.

2) If the -function is symmetric and monotonic non-
decreasing (from 0 to ), all the filter coefficients are
nonnegative.

3) If the -function is subquadratic (i.e.,
), and if , then

.
4) The coefficient represents the weight according to

which contributes to the evaluation of the re-
stored pixel . This coefficient includes two parts: the
spatial weight and the radiometric weight given by

. These two parts are

the same as described in Section II for the Tomasi–Man-
duchi bilateral filter. In this relation, we have the fol-
lowing correspondence:

(4.17)

Thus, if we choose

(4.18)

and

(4.19)

we get the same filter as in the bilateral filter, as described
in [14].

5) Increasing the value of or reducing the value of , we
get that the obtained filter tends toward the unit filter (the
identity operation, leaving the image intact).

We have obtained the bilateral filter by Tomasi and Manduchi
[14]. Thus, we have that the bilateral filter is merely a single
iteration of the DNSD (or Jacobi) algorithm, using the penalty
functional proposed in (4.1). This penalty functional is different
from the one used by the WLS/RE in the regularization term.
Whereas the WLS/RE penalizes smoothness with the first
neighboring pixels, the new term penalizes nonsmoothness
with distant neighbors as well.

V. IMPROVEMENTS OF THEBILATERAL FILTER

Now that we have an origin for the bilateral filter, we can
consider several improvements. In this section we will describe

1) how to speed-up the bilateral filter and increase its
smoothing effect;

2) How to implement a bilateral filter for piece-wise linear
signals.

In the following presentation we stick to the formulation of the
bilateral filter as presented in the previous section.

Before we turn to describe the aforementioned improve-
ments, we emphasize that the smoothness penalty term that
originates the bilateral filter as given in (4.1) can also be

(4.14)

(4.16)
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used for a variety of restoration and reconstruction problems.
Among these problems are image restoration, image scaling,
super-resolution reconstruction, optical flow estimation and
more [9], [10].

Also, as a consequence of our findings, we can simply suggest
the application of the bilateral filter several times, implying sev-
eral iterations of the DNSD. By doing so, the signal is smoothed
and gets to a steady state, which will be the global minimum
point of the functional in (4.1).

A. Speeding-Up the Bilateral Filter

The bilateral filter can be speeded-up in one of two methods,
and any combination of them. Given a general quadratic penalty
function of the form

(5.1)

the SD iteration reads

(5.2)

Clearly, the resemblance between (5.1) and (4.1) is evident if
we choose the from (5.1) as

for

and

for

One way to speed the SD convergence is the Gauss-Siedel
approach [15], [16]. In this approach, the samples of are
computed sequentially from to (assuming scalar
samples in the vector ), and for the calculation of ,
updated values of are used (instead of only values). This
“bootstrap” method is known to be stable and converge to the
same global minimum point of the penalty function given in
(5.1) [15], [16]. A more systematic way to describe this process
is via the decomposition of the Hessian to the upper-triangle,
lower-triangle, and diagonal parts

(5.3)

In this equation applied for , the lower-triangle part mul-
tiplies elements of with indices smaller than. Instead, we
can use these entries taken from. Moreover, since the last
term in (5.3) is a diagonal matrix multiplying , we can exploit
it as well and replace the multiplication by with multipli-
cation by . Thus, we get

(5.4)

The inversion required above is trivial since the inverted matrix
is diagonal.

A different alternative for speeding the bilateral filter is to
exploit the fact that the gradient is naturally sliced into several
parts. Returning to (5.2) we can rewrite it asiterations of the
form

...

(5.5)

This way, the final solution is closer to the global minimum
point of the penalty function in (5.1). Similarly, the gradient in
(4.6) can be sliced into parts and can be applied as

iterations. The final result will be closer to the global
minimum point of (4.1), which means a smoother result.

Note that by applying iterations, the computational load
is similar to the one required with iterations of the WLS/RE
methods. However, the results are expected to be totally dif-
ferent, since by applying different kinds of derivatives (due to
the use of different neighbors) we get stronger smoothing ef-
fect. Also, in this algorithm, if we smooth theth sample, if the

sample does not contribute to the center sample due to its
distant value, this does not imply anything about further distant
neighbors behind it (e.g., , etc.). In contrast to this,
in the WLS and the RE, noncontributing samples imply that all
samples behind them are masked and cannot contribute as well.

B. Treating Piece-Wise Linear Signals

The penalty functional in (4.1) is designed for piece-wise
constant signals. This is because our smoothness penalty term
penalizes for the first derivative of the signal in various scales.
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Instead, we propose an alternative functional designed for
piece-wise linear signals

(5.6)

The first and the second derivatives of (5.6) with respect to the
unknown yield

(5.7)

and

(5.8)

From these expressions we can extract the DNSD iteration with
as initialization. After several tedious algebraic steps we get

that, again, the input signal is convolved with a locally adap-
tive filter of the form

(5.9)

The coefficients of this filter are given by (5.10), shown at the
bottom of the page. This means that the spatial weight does
not change, and the radiometric weights simply uses a second
derivative instead of the first one.

Remark: In going to 2-D signals, the various penalty func-
tions need to be updated accordingly. For example, (3.1) turns
to be

where is a horizontal shift operator by one sample, and
similarly, is a vertical shift operator by one sample. Note
that the weights also reflect the derivative direction, using an
extended form of (3.8). In a similar manner, (4.1) becomes

and again, the weights need to be computed using the same 2-D
shift.

VI. SIMULATIONS

In this section, we demonstrate how the various discussed ap-
proaches compare with each other. All our simulations are per-
formed on simple and synthetic 2-D signals. Fig. 1 presents a
piece-wise constant test image and its noisy version .
The additive noise is Gaussian with zero mean and variance

and the values of the image are in the range [1,
7]. All the following simulations aim at removing this noise and
reconstructing from .

Fig. 2 shows the results obtained by the WLS and the RE
methods. The WLS was applied with weights computed via the
assumption , choosing , and applying 50 SD
iterations. Similarly, the RE used and 50
iterations. The obtained mean-square-error (MSE) gain1 in the
WLS method is 3.90. The MSE gain for the RE is 10.99. It is
evident that the RE method is far better compared to the WLS
both visually and via the MSE assessment.

Fig. 3 shows the result obtained by the bilateral filter with
weights as given in (4.18) and (4.19). The parameters in this
simulation are the following:

(i.e., the filter support is 13 13 pixels). A single application
of this filter gave an MSE gain of 23.50. This result is roughly
equivalent and slightly better, compared to the RE result after
50 iterations. Fig. 3 also presents the result after ten iterations
of the bilateral filter. The MSE gain in this case is 318.90.

The basic bilateral filter (single iteration) gave an MSE gain
of 23.50. Applying the Gauss-Siedel with the same parameters
(and thus, having the exact same complexity) we got an MSE

1This gain is defined as the ratio between the MSE before and after the fil-
tering. Thus, this value is always positive, and larger values indicate better fil-
tering result.

(5.10)
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(a) (b)

Fig. 1. (a) Piece-wise constant test image and (b) its noisy version.

(a) (b)

Fig. 2. WLS (a):MSE gain = 3:90 and the RE (b):MSE gain = 10:99 solutions after 50 SD iterations.

(a) (b)

Fig. 3. Bilateral filter result after one iteration (a):MSE gain = 23:50 and after ten iterations (b):MSE gain = 318:90.

gain of 39.44. Applying the second speed-up approach with the
sliced gradient terms [as proposed in (5.5)] we got an MSE gain
of 197.26! In both cases, the gain is mostly evident via the MSE
since the images are very close to the original. Therefore
there is no point is presenting the image results in a figure.

Fig. 4 shows a piece-wise linear imageand its noisy ver-
sion . The noise variance is and the values of are
in the range [0, 16]. An attempt to recover this signal using the
regular bilateral gave an MSE gain of 1.53. We see that there
is almost no effective filtering. A piece-wise-linear compatible
bilateral filter as proposed in (5.9) gave an MSE gain of 12.91.

Fig. 5 shows these results. Fig. 6 shows the reconstruction error
for the two cases (using a gain of 80 in order to extend the dy-
namic range to a visible image), and it is quite evident that the
new approach is much better.

As a final point in this section, we return to the claim about
the continuity of the filter coefficients in the RE, and the fact that
it is not so for the bilateral filter. We discussed this behavior at
the end of Section V-A. Fig. 7 shows a noisy piece-wise image
(checkerboard), where the size of every constant piece is 44
pixels. The original image values are in the range [0, 4] and the
noise variance is , as before.
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(a) (b)

Fig. 4. (a) Piece-wise linear test signal and (b) its noisy version.

(a) (b)

Fig. 5. Bilateral filtering results for the piece-wise linear case: (a) regular bilateral filter and (b) the piece-wise-linear compatible bilateral filter.

(a) (b)

Fig. 6. Bilateral filtering error images for the piece-wise linear case: (a) the regular bilateral filter and (b) the piece-wise-linear compatible bilateral filter.

This signal was filtered by the RE (same parameters as
before and using 1500 iterations) resulting with an MSE gain
of 2.32. A single iteration of the bilateral filter

gave an MSE gain of 19.97. Fig. 8 shows
these results. The main reason for the much better performance
with the bilateral is its ability to create a local filter that
has a nonconnected structure. Fig. 9 shows the weights for a
specific pixel in the image. We see that the weights contain a
spatially decaying behavior due to the , and a checkerboard
structure induced by the radiometric weights . As can

be seen, the effective support of the filter extends to exploit
most of the relevant neighborhood, without constraining itself
to have a convex shape.

VII. SUMMARY

Tomasi and Manduchi proposed the bilateral filter in 1998
[14] as an appealing algorithm for noise removal from images.
As such, this algorithm was posed as an alternative to locally



1150 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 10, OCTOBER 2002

(a) (b)

Fig. 7. (a) Piece-wise constant test image and (b) its noisy version.

(a) (b)

Fig. 8. (a) RE and (b) the bilateral filtering reconstruction results.

Fig. 9. Bilinear filter weights at the point [48, 48].

adaptive well-known algorithms such as the anisotropic diffu-
sion (AD), the weighted least-squares (WLS), and the robust es-
timation (RE) techniques. However, no theoretical background
supporting the bilateral filter was suggested. In this paper we
filled this theoretical gap and proposed such a theory for ex-
plaining the origin of the bilateral filter. We have shown that the
Bayesian approach is also in the core of the bilateral filter, just
as it has been for the AD, WLS, and RE. We have also shown
how this new insight can serve for improving the bilateral filter
and extend its use for other applications.
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