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Abstract. In this paper we propose a new classifier - the Maximal Re-
jection Classifier (MRC) - for target detection. Unlike pattern recog-
nition, pattern detection problems require a separation between two
classes, Target and Clutter, where the probability of the former is sub-
stantially smaller, compared to that of the latter. The MRC is a linear
classifier, based on successive rejection operations. Each rejection is per-
formed using a projection followed by thresholding. The projection vector
is designed to maximize the number of rejected Clutter inputs. It is shown
that it also minimizes the expected number of operations until detection.
An application of detecting frontal faces in images is demonstrated using
the MRC with encouraging results.

1 Introduction

In target detection applications, the goal is to detect occurrences of a specific
Target in a given signal. In general, the target is subjected to some particular
type of transformation, hence we have a set of target signals to be detected. In
this context, the set of non- Target samples are referred to as Clutter. In practice,
the target detection problem can be characterized as designing a classifier C(z),
which, given an input vector z, has to decide whether z belongs to the Target
class X or the Clutter class Y. In example based classification, this classifier is
designed using two training sets - X = {z;}i=1..1, (Target samples) and Y =
{vi}i=1..z, (Clutter samples), drawn from the above two classes.

Since the classifier C'(z) is usually the heart of a detection algorithm, and is
applied many times, simplifying it translates immediately to an efficient detec-
tion algorithm. Various types of example-based classifiers are suggested in the
literature [TJ2J3]. The most simple and fast are the linear classifiers, where the
projection of z is performed onto a projection vector u, thus, C(z) = f(u'z)
where f(x) is a thresholding operation (or some other decision rule). The Sup-
port Vector Machine (SVM) [2] and the Fisher Linear Discriminant (FLD) [I]
are two examples of linear classifiers. In both cases the kernel u is chosen in some
optimal manner. In the FLD, u is chosen such that the Mahalanobis distance
of the two classes after projection will be maximized. In the SVM approach the
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motive is similar, but the vector u is chosen such that it maximizes the margin
between the two sets.

In both these classifiers, it is assumed that the two classes have equal impor-
tance. However, in typical target detection applications the above assumption
is not valid since the a-priori probability of z belonging to X is substantially
smaller, compared to that of belonging to Y. Both the FLD and the SVM do
not exploit this property. Moreover, in both of these methods, it is assumed that
the classes are linearly separable. However, in a typical detection scenario the
target class is surrounded by the clutter class, thus the classes are not linearly
seperable (see, e.g. Figure 2). In order to be able to treat more complex, and un-
fortunately, more common scenarios, non-linear extensions of these algorithms
are required [IJ2]. Such extensions are typically at the expense of much more
computationally intensive algorithms.

In this paper we propose the Mazimal Rejection Classifier (MRC) that over-
comes the above two drawbacks. While maintaining the simplicity of a linear
classifier, it can also deal with non linearly separable cases. The only require-
ment is that the Clutter class and the convex hull of the Target class are disjoint.
We define this property as two convexly-separable classes, which is a much weaker
condition compared to linear-separability. In addition, this classifier exploits the
property of high Clutter probability. Hence, it attempts to give very fast Clutter
labeling, even if at the expense of slow Target labeling. Thus, the entire input
signal is classified very fast.

The MRC is an iterative rejection based classification algorithm. The main
idea is to apply at each iteration a linear projection followed by a thresholding,
similar to the SVM and the FLD. However, as opposed to these two methods, the
projection vector and the corresponding thresholds are chosen such that at each
iteration the MRC attempts to maximize the number of rejected Clutter samples.
This means that following the first classification iteration, many of the Clutter
samples are already classified as such, and discarded from further consideration.
The process is continued with the remaining Clutter samples, again searching for
a linear projection vector and thresholds that maximizes the rejection of Clutter
samples from the remaining set. This process is repeated iteratively until a small
number or non of the Clutter samples remain. The remaining samples at the final
stage are considered as Targets. The idea of rejection-based classifier was already
introduced by [3]. However, in this work we extend the idea by using the concept
of maximal rejection.

2 The MRC in Theory

Assume two classes are given in 1", X (the Target class) and Y (the Clutter
class). It is required to discriminate between these two classes, i.e., given an
input z drawn from one of these classes, we would like to be able to label it
correctly as either Target or Clutter. One important point, however, is that we
know a-priori that for a typical input stream the vast majority of the inputs are



516 M. Elad, Y. Hel-Or, and R. Keshet

Clutters, i.e.:
P{X} < P{Y} (1)

where P{X} is the a-priori probability that an input signal will be a Target, and
P{Y} is defined similarly. Based on this knowledge, we would like the classifier
to give a decision as fast as possible (i.e., with as few operations as possible).
Thus, Clutter labeling should be performed fast, even if at the expense of slow
Target labeling.

Similar to other linear classifiers [1J2], we suggest to first project the sample
z onto a vector u, and label it based on the projected value o = u” z. Projecting
the Target class and the Clutter class onto u results with a Probability Density
Functions (PDF) P{a|X} and P{«a|Y} respectively. We define the following
intervals based on P{«|X} and P{a|Y}:

Cy = {a|P{a|X} > 0, P{a|Y} = 0}
Ce = {a|P{a|X} =0, P{a|Y} > 0} (2)
Cy = {a|P{a|X} > 0, P{a|Y} > 0}

(t-Target, c-Clutter and w-Unknown). After projection, z is labeled either as a
Target, Clutter, or Unknown, based on the interval at which « belongs to.

Unknown classifications are obtained only in the C, interval, where a deci-
sion cannot be made. Figure 1 presents an example for the construction of the
intervals Cy, C. and C, and their appropriate decisions. The probability of the
Unknown decision is given by:

P{Unlmown}:/ P{Y}P{a|Y}da+/ P{X}P{a|X}da (3)

acC, acCy,

The above term is a function of the projection vector u. We would like to find
the vector v which minimizes the “Unknown” probability. However, since this is
a complex minimization problem, an alternative minimization is developed here,
using a proximity measure between the two PDF’s.

If P{a|Y} and P{a|X} are far apart and separated from each other
P{Unknown} will be small. Therefore, an alternative requirement is to min-
imize the overlap between these two PDF’s. We will define this requirement
using the following expected distance between a point oy and a distribution
P{a}:

D(ag || P{a}) = / (a0 —a)*Pla} , _ (ap—p)?* + 0

2 2
o o o

where p is the mean of P{a} and o is the variance of P{a}. The division by
o is performed in order to make the distance scale-invariant (or unit-invariant).
Using this distance definition, the distance of P{a|X} from P{a|Y} can be
defined as the expected distance of P(a|Y) from P{«a|X}:
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Fig. 1. The intervals C, C. and C,, for specific PDFs P{«a|X} and P{a|Y}.
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where [y, 0] and [u,, 0y] are the mean-variance pairs of P{a|X} and P{a|Y},
respectively. Since we want the two distributions to have as small an overlap
as possible, we would like to maximize this distance or minimize the prorimity
between P{a|Y} and P{«|X}, which can be defined as the inverse of their
mutual distance. Note, that this measure is asymmetric with respect to the
two distributions, i.e the proximity defines the closeness of P{ca|Y} to P{«|X},
but not vice versa. Therefore, we define the overall proximity between the two
distributions as follows:

Prox (P{a|Y}, P{a|X}) = (5)

+ (ﬂy - :U'm)2

2
y
o7 + o5+ (hy = pa)

= P{X}

PlY
2 " { }U§+0§

Compared to the original expression in Equation Bl the minimization of this
term with respect to u is easier. If P{X} = P{Y}, i.e. if there is an even chance
to obtain Target or Clutter inputs, the proximity becomes:

2 2
0z + oy

of +0g + (ty — pa)?

Prox(P{a|Y}, P{a|X}) = (6)
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which is associated with the cost function minimized by the Fisher Linear Dis-
criminant (FLD)[I]. In our case P{X} <« P{Y} (Equation [I)), thus, the first
term is negligible in Equation [5] and can be omitted. Therefore, the optimal u
should minimize the resulting term:

o2

’ (7)

of +0p + (ty — pa)?

d(u) =

where 02,02, iy and pi, are all a function of the projection vector w.

There are two factors that control d(u). The first factor is the distance be-
tween the two means p, and p,. Maximizing this distance will minimize d(u).
However, this factor is negligible when the two means are close to each other.
This scenario is typical in detection cases when the target class in surrounded
by the clutter class (see Figure 2). The other factor is the ratio between o, and
oy. Our aim is to find a projection direction which results in a small o, and
large o,. This means that the projection of Target inputs tend to concentrate in
a narrow interval, whereas the Clutter inputs will spread with a large variance
(see e.g. Fig 2).

For the optimal u, most of the Clutter inputs will be projected onto C,
while C; might even be an empty set. Subsequently, after projection, many of
the Clutter inputs are usually classified, whereas Target labeling may not be
immediately possible. This serves our purpose because there is a high probability
that a decision will be made when a Clutter input is given. Since these inputs are
more frequent, this means a faster decision for the vast majority of the inputs.

The method which we suggest follows this scheme: The classifier works in
an iterative manner, projecting and thresholding with different parameters at
each iteration sequentially. Since the classifier is asymmetric, the classification
is based on rejections; Clutter inputs are classified and removed from further
consideration while the remaining inputs are kept as suspected Targets. The
iterations and the rejection approaches are both key concepts of the proposed
scheme.

3 The MRC in Practice

Let us return to Equation [ and find the optimal projection vector w. In order
to do so, we have to express 02, o2, iy and i, as functions of w. It is easy to see
that:

py =uTM, and o2 =u"Ry.u (8)

x

where we define:

M, — / PX}ds ; Ry = /<z—Mx><z—MI>TP{z\X}dz (9)
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In a similar manner we express p, and 05. As can be seen, only the first and
second moments of the classes play a role in the choice of the projection vector
u.

In practice we usually do not have the probabilities P{z|X}, P{z|Y}, and
inference on the Target or Clutter class is achieved through examples. For the
two example-sets X = {z}}f7, and Y = {yk}iil, the mean-covariance pairs
(Mg, R;,, M, and R,,) are replaced with empirical approximations:

~
B
~

N 1 A 1 = A N
M,=—> 2 ; Ru= I 1(xk — M,)(z, — M) (10)

>
Il

and similarly for My and Ryy. The function we aim to minimize is therefore:

uT R0

d(u) = -
[ Rus b Ry + (80,50 (31, - 8) |

(1)

Similarly to [TI415], it is easy to show that u that minimizes the above expression
satisfies:

vt — A {R +R,, + (M, - NL) (M, - mﬂ y (12)

and should correspond to the smallest possible A. A problem of the form Au =
ABu, as in Equation [IZ, is known as the generalized eigenvalue problem [1I45],
and has a closed form solution. Notice that given any solution u for this equation,
(Bu is also a solution with the same A. Therefore, without loss of generality, the
normalized solution ||u|| = 1 is used.

After finding the optimal projection vector u, the intervals Cy, C., and Cy
can be determined according to Equation 2l An input z is labeled as a Target
or Clutter if its projected value u’z is in C; or C., respectively. Figure 2 (left)
presents this stage for the case where C} is empty, i.e. there are no inputs which
can be classified as Target.

Input vectors whose projected values are in C, are not labeled. For these
inputs we apply another step of classification, where the design of the optimal
projection vector in this step is performed according to the following new distri-
butions:

P{z|lY &ufzeC,} and P{zX&ulzeC,}

We define the next projection vector us as the vector which minimizes the prox-
imity measure between the above two distributions. This minimization is per-
formed in the same manner as described for the first step. Figure 2-right presents
the second rejection stage, which follows the first stage shown in Figure 2-left.
Following the second step, the process continues similarly with projection
vectors us, uy, - -+, etc. Due to the optimality of the projection vector at each



520 M. Elad, Y. Hel-Or, and R. Keshet

Target

Clutter

Rejected
Samples

Target PDF |

/st projection

."‘\’ 4 vector 2nd projection
' C i vector

Fig. 2. Left: The first rejection stage for a 2D example. Right: The second rejection
stage.

step, it is expected that a large portion of the input vectors will be labeled as
Clutter at each step, while following steps will deal with the remaining input
vectors. Applying the cascade of classifiers in such an iterative manner ensures a
good performance of the classification with respect to an accurate labeling and
a fast classification rate.

Since we exchanged the class probabilities with sets of points, it is imprac-
tical to define the intervals C;, C,, and C, using Equation 2. This is because
the intervals will be composed of many fragments each of which results from a
particular example. Moreover, the domain of « cannot be covered by a finite set
of examples. Therefore, it is more natural to define for each set, two thresholds
bounding its projection values. As explained above, due to the functional that
we are minimizing, in typical detection cases the Target thresholds define a small
interval located inside the Clutter interval (see Figure 2). Therefore for simplic-
ity, we define, for each projection vector, only a single interval I = [T7, T3],
which is the interval bounding the Target set. After projection we classify points
projected outside I" as Clutter and points projected inside I" as Unknown.

In the case where the Target class forms a convex set, and the two classes are
disjoint, it is theoretically possible to completely discriminate between them.
This property is easily shown by noticing that we are actually extracting the
Target set from the Clutter set by a sequence of two parallel hyper-planes, cor-
responding to the two thresholding operations. This constructs a parallelogram
that bounds the Target set from outside. Since any convex set can be constructed
by a set of parallel hyper-planes, exact classification is possible. However, if the
Target set is non-convex, or the two classes are non-convexly separable (as de-
fined in the Introduction), it is impossible to achieve a classification with zero
errors; Clutters inputs which are inside the convex hull of the Target set cannot
be rejected. Overcoming this limitation can be accomplished by a non-linear ex-
tension of the MRC, which is outside the scope of this paper. In practice, even if
we deal with a convex Target set, false-alarms may exist due to the sub-optimal
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approach we are using, which neglects multi-dimensional moments higher than
the second. However, simulations demonstrate that the number of false-alarms
is typically small.

4 Face Detection Using the MRC

The face detection problem can be specified as the need to detect all instances
of faces in a given image, at all spatial positions, all scales, all facial expressions,
all poses, of all people, and under all lighting conditions. All these requirements
should be met, while having few or no false alarms and mis-detections, and with
as fast an algorithm as possible. This description reveals the complexity of the
detection problem at hand. As opposed to other pattern detection problems,
faces are expected to appear with considerable variations, even for the detection
of frontal and vertical faces only. Variations are expected because of changes in
skin color, facial hair, glasses, face shape, and more.

Several papers already addressed the face detection problem using various
methods, such as SVM [2[6], Neural Networks [7IRI9], and other methods [TOTT,
T2IT3]. In all of these studies, the above complete list of requirements is relaxed
in order to obtain practical detection algorithms. Following [GI7/9ITOIT3], we deal
with the detection of frontal and vertical faces only.

In all these algorithms, spatial position and scale are treated through the
same method, in which the given image is decomposed into a Gaussian pyramid
with near-unity (e.g., 1.2) resolution ratio. The search for faces is performed
in each resolution layer independently, thus enabling the treatment of different
scales. In order to be able to detect faces at all spatial positions, fixed sized
blocks of pixels are extracted from the image at all positions (with full or partial
overlap) for testing. In addition to the pyramid part, which treats varying scales
and spatial positions, the core part of the detection algorithm is essentially a
classifier which provides a Face/Non-Face decision for each input block.

We demonstrate the application of the MRC for this task. In the face-
detection application, Faces take the role of targets, and Non-Faces are the
clutter. The MRC produces very fast Non-Face labeling at the expense of slow
Face labeling. Thus, on the average, it has a short decision time per input block.

The first stage in the MRC is to gather two example-sets, Faces and Non-
Faces. As mentioned earlier, large enough sets are needed in order to guarantee
good generalization for the faces and the non-faces that may be encountered in
images. As to the Face set, the ORL data-base[ll was used. This database contains
400 frontal and vertical face images of 40 different individuals. By extracting the
face portion from each of these images and scaling to 15 x 15 pixels, we obtained
the set X = {ay}£= | (with L, = 400). The Non-Face set is required to be much
larger, in order to represent the variability of Non-Face patterns in images. For
this purpose we have collected from images with no faces more than 20 million
Non-Face examples.

! http://www.cam-orl.co.uk/facedatabase.html: ORL database web-site



522 M. Elad, Y. Hel-Or, and R. Keshet

5 Results

We trained the MRC for detecting faces by computing 50 sets of kernels {u }3°
and associated thresholds {[TF, T¥]}?% , using the above described databases of
Faces and Non-Faces. Figures 3 and 4 show three examples of the obtained re-
sults. In these examples, the first stage rejected close to 90% of the candidates.

Fig. 3. An example for face detection with the MRC.

Fig. 4. Two examples for face detection with the MRC

This stage is merely a convolution of the input image (at every scale) with the
first kernel, followed by thresholding. Successive kernels yield further rejection
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at about 50% for each projection. Thus, the complete MRC classification re-
quired an effective number of close to two convolutions per each pixel in each
resolution layer. As can be seen from the examples, the MRC approach per-
formed very well and was able to detect most of the existing faces. There are
few false alarms, which typically correspond to blocks of pixels having a pattern
which may resemble a face. In addition mis-detection occurs when a face is par-
tially occluded or rotated too much. Generally speaking, the algorithm performs
very well in terms of detection rate, false alarm rate, and most important of
all, computational complexity. Due to space limitation we do not include more
technical details in this paper. Comprehensive description of the results as well
as comparative study with other face detection algorithms can be found in [T4].

6 Conclusion

In this paper we presented a new classifier for target detection, which discrim-
inates between Target and Clutter classes. The proposed classifier exploits the
fact that the probability of a given input to belong to the Target class is much
lower, as compared to its probability to belong to the Clutter class. This as-
sumption, which is valid in many pattern detection applications, is exploited
in designing an optimal classifier that detects Target signals as fast as possi-
ble. Moreover, exact classification is possible when the Target and the Clutter
classes are convexly separable. The Fisher Linear Discriminant (FLD) is a spe-
cial case of the proposed framework when the Target and Clutter probabilities
are equal. In addition, the proposed scheme overcomes the instabilities arising in
the FLD in cases where the mean of the two classes are close to each other. An
improvement of the proposed technique is possible by rejecting Target patterns
instead of Clutter patterns in advanced stages, when the probability of Clutter
is not larger anymore. The performance of the MRC is demonstrated in the face
detection problem. The obtained face detection algorithm is shown to be both
computationally very efficient and accurate. Further details on the theory of the
MRC and its application to face detection can be found in [I5|T4].
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