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Abstract

Pattern detection problems require a separation between two classes, Target and Clutter, where the probability of the

former is substantially smaller compared to that of the latter. In this paper we propose a new classifier that exploits this

property, yielding a low complexity yet effective target detection algorithm. This algorithm, called the maximal rejection

classifier (MRC), is based on linear successive rejection operations. An application of detecting faces in images is

demonstrated using the MRC with encouraging results. � 2002 Published by Elsevier Science B.V.
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1. Introduction

In target detection applications, the aim is to
detect occurrences of a specific Target in a given
signal. In this context, the non-Target samples are
referred to as Clutter. In practice, the target de-
tection problem can be characterized as designing
a classifier CðzÞ, which, given an input vector z, has
to decide whether z belongs to the Target class X
or the Clutter class Y. In example based classifi-
cation, this classifier is designed using two training
sets––bXX ¼ fxigi¼1;...;Lx (Target samples) and bYY ¼
fyigi¼1;...;Ly (Clutter samples), drawn from the
above two classes.

Since the classifier CðzÞ is usually the heart of
the detection algorithm, and is applied many
times, simplifying it implies an efficient detection
algorithm. Various types of example-based classi-
fiers are suggested in the literature (e.g., Duda and
Hart, 1973; Vapnik, 1995; Cortes and Vapnik,
1995; Baker and Nayar (1996)). One of the sim-
plest and fastest are the linear classifiers, where
CðzÞ is based on a projection operation followed
by a thresholding. The projection of z is performed
onto a projection vector u, thus, CðzÞ ¼ f ðutzÞ
where f ð�Þ is a thresholding operation (or some
other decision rule). The support vector machine
(SVM) proposed originally by Cortes and Vapnik
(1995) and the Fisher linear discriminant (FLD)
(see Duda and Hart, 1973) are two examples of
linear classifiers. In both cases the kernel u is
chosen in some optimal manner. In the FLD, u is
chosen such that the Mahalanobis distance of the
two classes after projection will be maximized. In
the SVM approach the motive is similar, but the
vector u is chosen such that it maximizes the
margin between the two sets.
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In both these classifiers, it is assumed that the
two classes have equal importance. In typical tar-
get detection applications the above assumption is
not valid since the probability of z belonging to X

is substantially smaller, compared to that of be-
longing to Y. Neither the FLD nor the SVM ex-
ploit this property. Moreover, in both of these
methods, it is assumed that the classes are linearly
separable. in order to be able to treat more com-
plex, and unfortunately, more common scenarios,
non-linear extensions of these algorithms are re-
quired (see Duda and Hart (1973) or Cortes and
Vapnik (1995)). Such extensions are typically at
the expense of much more computationally inten-
sive algorithms.
The maximal rejection classifier (MRC) is a

linear-based classifier that overcomes the above
two drawbacks. While maintaining the simplicity
of a linear classifier, it can also deal with linearly
non-separable cases. The only requirement is that
the Clutter class and the convex hull of the Target
class are disjoint. We define this property as con-
vex separability, which is a much weaker condition
than linear separability. In addition, this classifier
exploits the property of high Clutter probability.
Hence, it attempts to give very fast Clutter label-
ing, even if at the expense of slow Target labeling.
Thus, the entire input signal is classified very fast.
The MRC is an iterative rejection based classi-

fication algorithm. The main idea is to apply at
each iteration a linear projection followed by a
thresholding, similar to the SVM and the FLD.
However, as opposed to these two methods, the
projection vector and the corresponding thresh-
olds are chosen such that at each iteration the
MRC attempts to maximize the number of rejected
Clutter samples. This means that following the first
classification iteration, many of the Clutter sam-
ples are already classified as such, and discarded
from further consideration. The process is con-
tinued with the remaining Clutter samples, again
searching for a linear projection vector and
thresholds that maximizes the rejection of Clutter
points from the remaining set. This process is re-
peated iteratively until a small number or non of
the Clutter points remain. The remaining samples
at the final stage are considered as Targets. The
idea of rejection-based classifier was already in-

troduced by Baker and Nayar (1996). However, in
this work we extend the idea by using the notion of
maximal rejection.
In order to demonstrate the behavior of the

MRC, this algorithm is applied to the problem of
detecting frontal and vertical faces in images. It
is demonstrated that the MRC is a very efficient
algorithm, requiring an effective computation of
close to two convolutions of the input image per
each resolution layer in order to reliably detect
faces at all scales and all spatial positions.

2. The MRC in theory

Assume two classes are given in Rn, X and Y

(Target and Clutter classes). It is required to dis-
criminate between these two classes, i.e., given a
point z drawn from one of these classes, we would
like to label it correctly as either Target or Clutter.
One important point, however, is that we know a
priori that:

PfXg � PfYg: ð1Þ
where PfXg is the a priori probability that an in-
put signal will be a Target, and PfYg is defined
similarly. Based on this knowledge, we would like
the classifier to give a decision as fast as possible
(i.e., with as few operations as possible). Thus,
Clutter labeling should be performed fast, even if
at the expense of slow Target labeling.
Similar to other linear classifiers, we suggest to

first project the sample z onto a vector u, and label
it based on the projected value a ¼ uTz. Projecting
the Target class onto u results with a probability
density function (PDF) PfajXg, defined as:

PfajXg ¼
Z
z
PfzjXgdðuTz	 aÞdz ð2Þ

where dðxÞ is the Dirac’s function. The term
PfajXg defines the probability that a given input
drawn from the Target class will obtain the value a
after it has been projected onto u. Similarly, Pro-
jecting the Clutter class onto u results with a PDF
PfajYg:

PfajYg ¼
Z
z
PfzjYgdðuTz	 aÞdz: ð3Þ
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We define the following intervals based on PfajXg
and PfajYg:
Ct ¼ fajPfajXg > 0; PfajYg ¼ 0g
Cc ¼ fajPfajXg ¼ 0; PfajYg > 0g
Cu ¼ fajPfajXg > 0; PfajYg > 0g

ð4Þ

(t-Target, c-Clutter and u-Unknown). After pro-
jection, z is labeled either as a Target, Clutter, or
Unknown, based on the following decision rule:

Classifierfzg ¼
Target uTz 2 Ct
Clutter uTz 2 Cc
Unknown uTz 2 Cu

8<
: ð5Þ

Unknown classifications are obtained only in the
Cu interval, where a decision cannot be made. Fig.
1 presents an example for the construction of the
intervals Ct, Cc and Cu and their appropriate de-
cisions. The probability of the Unknown decision is
given by:

PfUnknowng ¼
Z

a2Cu
PfYgPfajYgda

þ
Z

a2Cu
PfXgPfajXgda ð6Þ

Note that since PfXg � PfYg, the contribution of
PfajXg to PfUnknowng is very small.
The above term is a function of the projection

vector u. We would like to find the vector u which
minimizes the ‘‘Unknown’’ probability. However,
since this is a complex minimization problem, an
alternative minimization is developed here, using
a proximity measure between the two PDF’s.

If PfajYg and PfajXg are far apart and sepa-
rated from each other PfUnknowng will be small.
Therefore, an alternative requirement is to mini-
mize the overlap between these two PDF’s. We will
define this requirement using the following ex-
pected distance between a point a0 and a distri-
bution Pfag:

D a0kPfagð Þ ¼
Z

a

ða0 	 aÞ2Pfag
r2

da ð7Þ

where r is the variance of Pfag and the division by
r is performed in order to make the distance scale-
invariant (or unit-invariant). Calculating the inte-
gral above, it is easy to verify that:

D a0kPfagð Þ ¼ ða0 	 lÞ2 þ r2

r2
ð8Þ

where l is the mean of Pfag. Using this distance
definition, the distance of PfajXg from PfajYg can
be defined as the expectation of the above distance:

D PfajYgkPfajXgð Þ ¼
Z

a
D akPfajXgð ÞPfajYgda

¼
Z

a

ða 	 lxÞ
2 þ r2x

r2x
PfajYgda

¼
ðly 	 lxÞ

2 þ r2x þ r2y
r2x

ð9Þ

where ½lx; rx� and ½ly ; ry � are the mean–variance
pairs of PfajXg and PfajYg, respectively. Since we
want the two distributions to have as small an
overlap as possible, we would like to maximize this
distance or minimize the proximity between
PfajYg and PfajXg, which can be defined as the
inverse of their mutual distance. Note, that this
measure is asymmetric with respect to the two
distributions, i.e the proximity defines the close-
ness of PfajYg to PfajXg, but not vice versa.
Therefore, we define the overall proximity between
the two distributions as follows:

Prox PfajYg; PfajXgð Þ ¼
PfXgr2y þ PfYgr2x

r2x þ r2y þ ðly 	 lxÞ
2
:

ð10Þ
Compared to the original expression in Eq. (6), the
minimization of this term with respect to u is
easier. If PfXg ¼ PfYg, i.e. if there is an even

Fig. 1. The intervals Ct, Cc and Cu, for specific PDFs PfajXg
and PfajYg.
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chance to obtain Target or Clutter inputs, the
proximity becomes:

Prox PfajYg; PfajXgð Þ ¼
r2x þ r2y

r2x þ r2y þ ðly 	 lxÞ
2

ð11Þ
which is the cost function minimized by the FLD
(see Duda and Hart, 1973). In our case PfXg �
PfYg (Eq. (1)), thus, the first term is negligible in
Eq. (10) and can be omitted. Therefore, the opti-
mal u should minimize the resulting term:

dðuÞ ¼ r2x
r2x þ r2y þ ðly 	 lxÞ

2
ð12Þ

where r2y , r2x , ly and lx are all a function of the
projection vector u. Minimization of this expres-
sion usually results in a small rx and large ry . This
means that the projection of Target inputs tend to
concentrate near a constant value, whereas the
Clutter inputs will spread with a large variance (see
e.g. Fig. 2).
For the optimal u, most of the Clutter inputs

will be projected onto Cc, while Ct might even be
an empty set. Subsequently, after projection, many
of the Clutter inputs are usually classified, whereas

Target labeling may not be immediately possible.
This serves our purpose because for a Clutter
input, there is a high probability that a decision
will be made. Since these inputs are more frequent,
this means a faster decision for the vast majority of
the inputs.
The method we suggest follows this scheme:

The classifier is applied iteratively, projecting and
thresholding with different parameters at each it-
eration sequentially. Since the classifier is asym-
metric, the classification is based on rejections (Fig.
3); Clutter inputs are classified and removed from
further consideration while the remaining inputs
are kept as suspected Targets. The iterations and
the rejection approaches are both key concepts of
the proposed scheme.

3. The MRC in practice

We return to Eq. (12) and find the optimal
projection vector u. Thus, we have to express r2y ,
r2x , ly and lx as functions of u. It is easy to see that:

lx ¼ uTMx; r2x ¼ uTRxxu and

ly ¼ uTMy ; r2y ¼ uTRyyu ð13Þ

Fig. 2. First (left) and second (right) rejection stages.
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where we define:

Mx ¼
Z
z
zPfzjXgdz

Rxx ¼
Z
z
ðz	MxÞðz	MxÞTPfzjXgdz

My ¼
Z
z
zPfzjYgdz

Ryy ¼
Z
z
ðz	MyÞðz	MyÞTPfzjYgdz:

ð14Þ

As can be seen, only the first and second moments
of the classes play a role in the choice of the pro-
jection vector u.
In practice we usually do not have the the

probabilities PfzjXg, PfzjYg, and inference on the
Target or Clutter class is achieved through exam-
ples. For the two example-sets bXX ¼ fxkgLxk¼1 andbYY ¼ fykgLyk¼1, the mean-covariance pairs (Mx, Rxx,
My , and Ryy) are replaced with empirical approx-
imations:

cMMx ¼
1

Lx

XLx
k¼1

xk

bRRxx ¼
1

Lx

XLx
k¼1

ðxk 	 cMMxÞðxk 	 cMMxÞT

cMMy ¼
1

Ly

XLy
k¼1

yk

bRRyy ¼
1

Ly

XLy
k¼1

ðyk 	 cMMyÞðyk 	 cMMyÞT

ð15Þ

The function we aim to minimize is therefore:

dðuÞ ¼ uT bRRxxu

uT½bRRxx þ bRRyy þ ðcMMy 	 cMMxÞðcMMy 	 cMMxÞT�u
ð16Þ

It is easy to show that u that minimizes the above
expression satisfies:

bRRxxu ¼ k½bRRxx þ bRRyy þ ðcMMy 	 cMMxÞðcMMy 	 cMMxÞT�u
ð17Þ

and should correspond to the smallest possible k.
A problem of the form Au ¼ kBu, as in Eq. (17), is
known as the generalized eigenvalue problem (e.g.,
Duda and Hart, 1973; Golub and Loan, 1996;
Demmel, 1997), and has a closed form solution.
Notice that given any solution u for this equa-
tion, bu is also a solution with the same k. There-
fore, without loss of generality, the normalized
solution kuk ¼ 1 is used.
After finding the projection vector u that mini-

mizes Eq. (16), the intervals Ct, Cc, and Cu can be
determined. An input z is labeled as a Target or
Clutter if its projected value uTz is in Ct or Cc,
respectively. Fig. 2 presents this stage for the case
where Ct is empty, i.e. there are no inputs which
can be classified as Target. Input vectors whose
projected values are in Cu are not labeled. For
these inputs we apply another step of classifica-
tion, where the design of the optimal projection

Fig. 3. (a) Rejection of Clutter inputs for a convex Target set. (b) Rejection of Clutter inputs for a non-convex Target set.
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vector in this step is performed according to the
following new distributions:

P zjY and uT1 z 2 Cu
� 	

and P zjX and uT1 z 2 Cu
� 	

We define the next projection vector u2 as the
vector which minimizes the proximity measure
between P uT2 zjY and uT1 z 2 Cu

� 	
and P uT2 zjX

�
and uT1 z 2 Cug. This minimization is performed in
the same manner as before. Fig. 2 also presents the
second rejection stage.
Following the second step, the process contin-

ues similarly with projection vectors u3; u4; . . ., etc.
Due to the proposed proximity measure minimi-
zation, it is expected that a large portion of the
input vectors will be labeled as Clutter at each step,
while following steps will deal with the remaining
input vectors. Applying the cascade of classifiers in
such an iterative manner ensures a good perfor-
mance of the classification with respect to an ac-
curate labeling and a fast classification rate.
Since we exchanged the class probabilities with

sets of points, it is impractical to define the inter-
vals Ct, Cc, and Cu using Eq. (4). This is because
the intervals will be composed of many fragments
each of which results from a particular example.
Moreover, the domain of a cannot be covered by a
finite set of examples. Therefore, it is more natural
to define for each set, two thresholds bounding its
projection values. As explained above, due to the
functional that we are minimizing, in most cases
the Target thresholds define a small interval lo-
cated inside the Clutter interval (see Fig. 2).
Therefore for simplicity, we define only a single
interval C ¼ ½T1; T2�, which is the interval bounding
the Target set, where we classify points projected
outside C as Clutter and points projected inside C
as Unknown.
In the case where the Target class forms a

convex set, and the two classes are disjoint, it is
theoretically possible to completely discriminate
between them. More generally, if there are no
Clutter inputs inside the convex hull of the Target
set, exact discrimination is theoretically possible.
This property is easily shown by noticing that we
are actually extracting the Target set from the
Clutter set by a sequence of two parallel hyper-
planes, corresponding to the two thresholding op-
erations. This constructs a parallelogram (see Fig.

3) that bounds the Target set from outside. Since
any convex set can be constructed by a set of
parallel hyper-planes, exact classification is possi-
ble. However, if the Target set is non-convex, or
the two classes are non-convexly separable (as
defined in the Section 1), it is impossible to achieve
a classification with zero errors; Clutter inputs
which are inside the convex hull of the Target set
cannot be rejected. Fig. 3 presents such a case.
Overcoming this limitation can be accomplished
by a non-linear extension of the MRC, which is
outside the scope of this paper.
In practice, even if we deal with a convex Target

set, false-alarms may exist due to the the sub-
optimal approach we are using, which neglects
multi-dimensional moments higher than the sec-
ond. However, simulations demonstrate that the
number of false-alarms is typically small.

4. Comparison to other methods

The discriminant that is most related to the
MRC is the FLD introduced by R.A. Fisher in
1936 (see Duda and Hart, 1973). The main idea
is to find a projection vector that minimizes the
within-class variances per each set, while maxi-
mizing the between-classes variance. For the two
classes case, X and Y, this idea is expressed by
maximizing the criterion:

gðuÞ ¼ ly



	 lx

�2 ðr2x
.

þ r2yÞ

This criterion is exactly the one we get in Eq. (11),
if we assume that the two classes have the same
probability, i.e. P ðXÞ ¼ P ðYÞ. The main advantage
of MRC over the Fisher classifier is therefore the
flexibility to deal with non-equally probable clas-
ses. This is quite important, not only with respect
to the classification speed but also with respect to
the effectiveness of the obtained projection vector.
For example, if the means of the two classes co-
incide or nearly so, the Fisher classifier cannot give
reasonable projection vectors since the numerator
of gðuÞ vanishes. Subsequently, MRC can apply
successive rejections in an iterative manner, while
Fisher discriminant applied iteratively will give
poor performance.
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Another classifier that draws a lot of interest
recently is the support vector machine (SVM)
proposed by Cortes and Vapnik (1995). The pop-
ularity of this classifier is based on the fact that it
meets a theoretical limit bounding the classifica-
tion error. Therefore, with respect to this theoret-
ical bound, SVM is the optimal linear classifier.
SVM chooses the projection vector u such that the
margin between the Target and Clutter classes
after projection is maximized. In a sense, this is a
different way to define the proximity between the
two distributions PfajXg and PfajYg. However,
similar to the Fisher linear classifier, it deals with
equally probable classes, so all the disadvantages
listed above with respect to this point are valid
here as well. Another drawback with SVM ap-
proach is that finding the optimal u requires
to solve a quadratic programming problem. This
procedure is complexity prohibited when the
number of Target and Clutter points is more than
several thousands.
The regularized multi-template matching

(RMTM), proposed by Gotsman and Keren
(1996) is a method close in spirit to the MRC. In
this approach we assume that the Target class
forms a subspace T embedded in some high di-
mensional linear space. It is also assumed that the
Clutter class, C fills the residual space, i.e. the null
space of T:C ¼ NullðTÞ. The projection vector u
in this approach is chosen to be the most ‘‘prob-
able’’ vector in C, where the probability is defined
with respect to some a priori information on the
Clutter class. Because RMTM was developed in
the context of pattern detection in images, the
probability of templates are assumed to be a
measure of their spatial ‘‘smoothness’’ (see Jahne,
1995). The choice of the most probable vector in C
as the projection vector relies on the fact that when
applied to Clutter examples, it results with high
values, while when applied to Target examples, it
results with zero.
The similarity of RMTM approach to ours lies

in the fact that Target and Clutter classes do not
have equal status, and that Target samples are
recognized by rejecting the Clutters. However,
there are several important advantages in MRC
compared to RMTM: First, while MRC uses ac-
tual training data from the Clutter set, RMTM

uses an assumed information on this class. In ad-
dition, RMTM does not suggest an iterative re-
jection based classification. Instead, several vectors
(orthogonal to the Targets, orthogonal between
themselves, and the most smooth), are found and
used in parallel. It is clear that these vectors are
not optimal with respect to the maximum rejection
rate. Another drawback in RMTM is the assump-
tion that Targets and Clutters are orthogonal to
each other. This assumption is not necessarily true
and can degrade the results in many cases.
As to the computational complexity, RMTM is

more efficient in the training part, as the variance
and mean of the Clutter examples are not calcu-
lated. In the detection part MRC is much faster
because of the optimal rejection approach, as op-
posed to the several parallel projections required
by RMTM.
The concept of rejection-based classifier is not

new and was already proposed by Baker and
Nayar (1995, 1996). In their work, a composite
rejector is suggested, which is constructed as an
successive application of a core rejector. Their
methodology refers both to the case where there
are many sets (i.e., pattern recognition problem
with many possible patterns), and to pattern de-
tection, as in our case. In their work, the suggested
core rejector is similar to that of Fisher’s. Al-
though this core rejector is not new, the impor-
tance of this work is in the establishment of a
theoretical framework for rejection based classifi-
ers. Our approach is based on a set of successive
rejectors as defined in their work. The innovation
of MRC, however, is by specifying the best rejec-
tor with respect to the maximal rejection rate.

5. Face detection using the MRC

The face detection problem can be specified as
the need to detect all instances of faces in a given
image, at all spatial positions, all scales, all facial
expressions, all poses, of all people, and under all
lighting conditions. All these requirements should
be met, while having few or no false alarms and
miss-detections, and with as fast an algorithm as
possible. This description reveals the complexity of
the detection problem at hand. As opposed to
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other pattern detection problems, faces are ex-
pected to appear with considerable variations,
even for detecting only frontal and vertical faces.
Variations are expected because of changes in skin
color, facial hair, glasses, face shape, and more.
Several papers already addressed the face de-

tection problem using various methods, such as
SVM (e.g., Vapnik, 1995; Osuna et al., 1997),
Neural Networks (e.g. Rowley et al., 1997, 1998;
Juell and March (1996)), and other methods (e.g.
Sung and Poggio, 1998;Mirhosseini andYan, 1995;
Rajagopalan et al., 1997; Tankus et al., 1998). In
all of these studies, the above list of requirements
is relaxed in order to obtain practical detection
algorithms. Following these works we deal with
the detection of frontal and vertical faces.
In all these algorithms, spatial position and

scale are treated through the same method: the
given image is decomposed into a Gaussian pyra-
mid with near-unity (e.g. 1.2) resolution ratio. The
search for faces is performed in each resolution
layer independently, thus enabling the treatment
of different scales. In order to be able to detect
faces at all spatial positions, fixed sized blocks of
pixels are extracted from the image at all positions
for testing. In addition to the pyramid part, which
treats varying scales and spatial positions, the core
part of the detection algorithm is essentially a
classifier which provides a Face/Non-Face decision
for each input block.
In this paper we propose the using the MRC for

this task. In the face-detection application, Faces
take the role of targets, and Non-Faces are the
clutter. In a typical image having millions of pix-
els, it is expected to detect a few dozens of faces
at the most, which means that picking a Non-Face
block from the image is much more probable. This
property is exploited by the MRC in order to
obtain an efficient face-detection classifier. The
MRC produces very fast Non-Face labeling (i.e.
with a low computational cost), at the expense of
slow Face labeling. Thus, on the average, it has a
short decision time per input block.
The first stage in the MRC is to gather two

example-sets, Faces and Non-Faces. As mentioned
earlier, large enough sets are needed in order to
guarantee good generalization for the faces and
the non-faces that may be encountered in images.

As to the Face set, the ORL data-base 3 was used.
This database contains 400 frontal and vertical
face images of 40 different individuals. By ex-
tracting the face portion from each of these images
and scaling to 15� 15 pixels, we obtained the setbXX ¼ fxkgLxk¼1 (with Lx ¼ 400).
As discussed in Section 3, the target class should

be assumed to be convex in order for the MRC to
perform well. The target class, containing frontal
and vertical faces, is convex if and only if for every
pair of faces drawn from it, their convex averages
form also legitimate faces. One can easily imagine
two faces that are not perfectly aligned, and
therefore, when averaged, create a new block with
possibly four eyes, or a nose and its echo, etc. To
our help comes the fact that we are using low-
resolution representation of the faces (15� 15
pixels). This implies that even for such misaligned
faces, the convex average appear as a face, and
thus our assumption regarding convexity of the
faces class is valid.
The Non-Face set is required to be much larger,

in order to represent the variability of Non-Face
patterns in images. We took 54 arbitrary images
containing various textures, natural scenes, gra-
phic images, etc. Common to all these images is
that they contain no faces. Each of the 54 images
was decomposed into a Gaussian pyramid with a
1.2 resolution ratio, thus creating 1290 images.
Using the pyramids is beneficial both for enriching
the Non-Face set, and for including multi-resolu-
tion versions of the same patterns in the data-base.
Each possible block of 15� 15 pixels in these 1290
images is considered as a candidate example of
Non-Face. Thus, we have effectively collected more
than 40 million Non-Face examples.

6. Improvements to the detection algorithm

6.1. Pre-processing

Given a block of pixels, the classifier is required
to correctly classify it while being insensitive to

3 http://www.cam-orl.co.uk/facedatabase.html: ORL data-

base web-site.
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variations, such as different lighting conditions,
slightly different scale, spatial position, angle, ad-
ditive noise, etc. For face blocks, the classifier
should neglect the face background, which has no
relevance to the classification result. All these and
more requirements should be taken into account
for a good generalization behavior, and making
the applied classifier robust. One trivial, but prac-
tically close to impossible, method to meet the
above requirements is to include in the example-
sets all possible variations that are to be treated.
This method is impractical since it requires a huge
number of examples. Assuming that we could
gather such example-sets and train on them, there
is still no guarantee that the classifier will learn to
‘‘look’’ at the appropriate features, and to neglect
the others.
An alternative to the above direct method is to

apply pre-processing on the input block, and only
then feed it to the classifier. For example, by re-
moving the mean of the input block (or the best
fitted 2D plane, as was used by Osuna et al. (1997)
and Rowley et al. (1997, 1998)), we are actually
removing some of the influence of the varying
lighting conditions. This way, we are effectively
using a classifier which is invariant to lighting
conditions. This method is practical and typically
used, and known to yield an overall improvement
of the classification accuracy. However, applying a
pre-processing on each input block has an addi-
tional computational cost.
When applying a linear classifier and settling

with a linear pre-processing, these two operations
can be combined into one, and in such cases, the
additional pre-processing comes without compu-
tational cost. In order to see this property, let us
denote the linear classifier of the input vector z as
Classfzg ¼ T fuTzg, where u is the projection vec-
tor, and Tf�g is the thresholding operation. The
pre-processing operation replaces z with Pz, where
P is a square matrix which stands for the pre-
processing operation. Thus, combing the pre-
processing and the classification, the decision is
obtained by Classfzg ¼ TfuTPzg ¼ TfðPTuÞTzg.
Thus, instead of applying pre-processing on each
input block z, the pre-processing is done only once
on the projection vector u, and pre-processing is
achieved with no computational cost.

Since the detection algorithm changes, a similar
modification must be also applied in the training
process. The same pre-processing must be applied
on the two example sets before training. However,
as we show here, this operation is done implicitly,
rather than explicitly. In the MRC the example
sets serve to compute the two mean-variance pairs.
Thus, new mean-variance pairs should be com-
puted using the pre-processed blocks fPxkgLxk¼1 and
fPykgLyk¼1. We denote these new mean-variance
pairs asfMMx, eRRxx,fMMy and eRRyy . Based on 15, we get:

fMMx ¼
1

Lx

XLx
k¼1

Pxk ¼ P
XLx
k¼1

xk ¼ PcMMx

eRRxx ¼
1

Lx

XLx
k¼1

ðPxk 	 fMMxÞðPxk 	 fMMxÞT ¼ P eRRxxPT

fMMy ¼
1

Ly

XLy
k¼1

Pyk ¼ P
XLy
k¼1

yk ¼ PcMMy

eRRyy ¼
1

Ly

XLy
k¼1

ðPyk 	 fMMyÞðPyk 	 fMMyÞT ¼ P eRRyyPT

Plugging these expressions into Eq. (16), the
function that MRC minimizes is:

bdd ðuÞ ¼ uT½P bRRxxPT�u
uTfP ½bRRxx þ bRRyy þ ðcMMy 	 cMMxÞðcMMy 	 cMMxÞT�PTgu

ð18Þ

which is equivalent to the minimization of the
original function (16), subject to the constraint
u ¼ PTu.
One last question that remains is what kind of

linear pre-processing operations could be benefi-
cial. We can suggest several possibilities:
(1) Removal of the mean: Insensitivity to the

mean corresponds to the ability to treat various
kinds of lighting conditions, and different skin
colors. Denoting a column of ones by 1, the vector
mean is given by 1Tz=n, where n is the vector di-
mension. The vector z without its mean is thus
z	 1 � 1Tz=n ¼ ½I 	 1 � 1T=n�z.
(2) Shaping the frequency representation: Using

2D Discrete Cosine Transform (DCT), removal of
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the ð0; 0Þ entry is equivalent to removal of the
block mean as suggested above. Removal of the
ð0; 1Þ and the ð1; 0Þ entries stands for a removal of
the best fitted smooth surface, which could be in-
terpreted as lighting variations across the block.
Removal of highest entries can be interpreted as
low-pass filtering which removes too small details
and noise. In all these cases, the block z is multi-
plied by the matrix D which applies the DCT, then
multiplied by the diagonal matrix W which masks
some of the entries out, or simply reduces their
effect, and finally multiplied by DT which does the
inverse transform. The overall linear operation is
therefore DTWD.
(3) Masking out pixels: By multiplying the vec-

tor z with a diagonal matrix M, which contains
ones for non-masked pixels and zeros elsewhere,
we can direct the classifier to neglect specific zones
in the input blocks. This operation is important in
order to remove the effects of the background in
faces blocks (typically in the bottom left and right
parts of the block).
In cases where several linear pre-processing

steps are to be applied together, these pre-pro-
cessing steps must be combined into one. More
details about this projection combination process
are given in Elad et al. (1999).

6.2. Algorithm speed-up

The MRC is a relatively very fast pattern de-
tection algorithm. This is true because of the re-
jection obtained after each stage, which leaves
smaller and smaller portions of the treated image
for further consideration in later stages. However,
this algorithm can be made faster yet by simpli-
fying somehow the involved convolutions. This
can be done in several ways:
(1) Forcing the kernels to be separable: By such

a constraint on the minimizing vector of Eq. (16),
instead of 225 multiplications/additions, only 30
such operations are required. Combining such a
constraint results with more complicated optimi-
zation problem. As an alternative, the kernel can
be computed as before, and rank-one filter can be
extracted from it through singular-value-decom-
position (SVD).

Having a separable kernel means that the con-
volution is done in two stages. The classifier effi-
ciency gain can be made even higher by
thresholding after the horizontal (1D) convolu-
tion. The required thresholds can be found by
applying the horizontal kernel on the training fa-
ces, and finding the interval bounding all the faces.
Using these thresholds, some of the input pixels
are rejected already after the horizontal part, and
thus, the vertical convolution is applied to fewer
pixels in the image.
(2) Masking entries in the kernel: We have al-

ready mentioned masking as a measure to increase
accuracy in detection results. The zero entries in
the kernel also reduce the required number of
multiplications/additions. Here we suggest to mask
many of the entries, and this way further cut down
the computational cost. Possible effective masks
are (i) spreading the zero entries in a chess-board
pattern; or (ii) leave only the eyes zone.
(3) Reducing the block size: We have chosen to

use 15� 15 pixels block size, which is an arbitrary
choice. By choosing smaller block size, such as
7� 7, we can cut down the required computations.
Given an image of size N � N , applying the

original 15� 15 kernels requires 225 multiplica-
tions and additions per pixel. Applying 7� 7
kernels should be done on a different layer of
the pyramid, in order to detect faces of the
same scale. Thus, the image size we operate on
should be roughly N=2� N=2. Therefore, 49=4
computations and additions are used per pixel.
This means that the reduction in the overall
number of computations is achieved by two
means––the actual size of the kernel, and the fact
that it corresponds to a different resolution layer in
the pyramid.
All these ideas indeed reduce the computational

cost, but may also degrade rejection rate and ac-
curacy. Therefore, all the above methods are good
algorithms as a fast candidate selection (FCS)
stage, which is applied first, leaving a small num-
ber of candidate pixels as potential Faces. This
part should work fast, and accuracy can be com-
promised, as long as no miss-detections are al-
lowed. At the second stage, regular kernels should
be applied for fine-tuning the results, even at the
expense of a more complex algorithm.
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7. Results

We trained the MRC for detecting faces by
computing 50 sets of kernels fukg50k¼1 and associ-
ated thresholds f½T k

1 ; T
k
2 �g

50
k¼1, using the above de-

scribed databases of Faces and Non-Faces. In our
simulations, we have chosen to use the mean re-
moval and the masking pre-processing stages. The
following figures show the results obtained for
several images. In all these examples, the first stage
rejected close to 90% of the candidates. This stage

is merely a convolution of the input image (at
every scale) with the first kernel, u1, followed by
thresholding. For these examples, the complete
MRC classification required an effective number of
close to two convolutions per each pixel in each
resolution layer. As can be seen in Figs. 4–6, there
are few false alarms, which typically correspond to
blocks of pixels having a pattern which may re-
semble a face. Generally speaking, the algo-
rithm performs very well in terms of detection
rate, false alarm rate, and most important of all,

Fig. 4. Face detection with the MRC––example 1.

Fig. 5. Face detection with the MRC––examples 2 and 3.
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computational complexity. Compared to Rowley
et al. (1998) this MRC based face detection algo-
rithm is found to be an order of magnitude faster
and with roughly the same accuracy.

8. Conclusion

In this paper we presented a new classifier for
target detection, which discriminates between
Target and Clutter classes. The proposed classifier
exploits the fact that the probability of a given
input to belong to the Target class is much lower,
than its probability to belong to the Clutter class.
This assumption, which is valid in many pattern
detection applications, is exploited in designing an
optimal classifier that detects Target signals as fast
as possible. Moreover, exact classification is pos-
sible when the Target and the Clutter classes are
convexly separable. The FLD is a special case of
the proposed framework when the Target and
Clutter probabilities are equal. In addition, the
proposed scheme overcomes the instabilities aris-
ing in the FLD in cases where the mean of the two
classes are close to each other. An improvement of
the proposed technique is possible by rejecting
Target patterns instead of Clutter patterns in ad-
vanced stages, when the probability of Clutter is
not larger anymore. The performance of the MRC
is demonstrated in the face detection problem. The

obtained face detection algorithm is shown to be
both computationally very efficient and accurate.
Further details on the theory of the MRC and its
application to face detection can be found in (Elad
et al., 1998, 1999).

9. Note added in proof

Recently, Viola and Jones (2001) suggested a
successful rejection-based algorithm for face de-
tection, similar in spirit to the MRC method pro-
posed here. Their algorithm uses sub-linear weak
classifiers combined via boosting, but as opposed
to the MRC, maximal rejection is not exploited. In
terms of performance these two methods are
roughly equivalent both in terms of speed and
accuracy. Further work is underway to study the
interrelationship between these two methods and
ways to further improve them.
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