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Abstract. The most popular lossy image compression method used on the Inter-
net is the JPEG standard. JPEG’s good compression performance and low compu-
tational and memory complexity make it an attractive method for natural image
compression. Nevertheless, as we go to low bit rates that imply lower quality,
JPEG introduces disturbing artifacts. It appears that at low bit rates a down–
scaled image when JPEG compressed visually beats the high resolution image
compressed via JPEG to be represented with the same number of bits.
Motivated by this idea, we show how down–sampling an image to a low resolu-
tion, then using JPEG at the lower resolution, and subsequently interpolating the
result to the original resolution can improve the overall PSNR performance of the
compression process. We give an analytical model and a numerical analysis of the
sub-sampling, compression and re-scaling process, that makes explicit the possi-
ble quality/compression trade-offs. We show that the image auto-correlation can
provide good estimates for establishing the down-sampling factor that achieves
optimal performance. Given a specific budget of bits, we determine the down
sampling factor necessary to get the best possible recovered image in terms of
PSNR.

1 Introduction

The most popular lossy image compression method used on the Internet is the JPEG
standard. JPEG uses the Discrete Cosine Transform (DCT) on image blocks of size
8 × 8 pixels. The fact that the JPEG operates on small blocks is motivated by the non-
stationarity of the image, and the need to approximate the Karhunen Loeve Transform
(KLT) for 2D Markov processes. A quality measure determines the (uniform) quantiza-
tion steps for each of the64 DCT coefficients. The quantized coefficients of each block
are then zigzag-scanned into one vector that goes through a run-length coding of the
zero sequences, thereby clustering long insignificant low energy coefficients into short
and compact descriptors. Finally, the run-length sequence is fed to an entropy coder,
that can be a Huffman coding algorithm with either a known dictionary or a dictio-
nary extracted from the specific statistics of the given image. A different alternative
supported by the standard is arithmetic coding.

JPEG’s good compression performance and low computational and memory com-
plexity make it an attractive method for natural image compression. Nevertheless, as
we go to low bit rates that imply lower quality, the JPEG compression algorithm intro-
duces disturbing artifacts. It appears that at low bit rates a down–scaled image when
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JPEG compressed and later interpolated, visually beats the high resolution image com-
pressed directly via JPEG using the same number of bits. An experimental result dis-
played in Figure 1 shows that both visually and in terms of the Mean Square Error (or
PSNR), one obtains better results using down-scaling compression and up-scaling after
the decompression.

Fig. 1. Original image (on the left) JPEG compressed–decompressed image (middle),
and down-scaled–JPEG compressed-decompressed and up scaled image (right). The
down scaling factor -0.5. In both cases, the compression ratio is40. The MSE in the
upper row is219.5 (left) and193.12 (right). Similarly, in the lower row:256.04 (left)
and248.42 (right).

In this paper we propose an analytical explanation to the above phenomenon, along
with a practical algorithm to automatically choose the optimal scaling factor for best
PSNR. We derive an analytical model of the compression– decompression reconstruc-
tion error as a function of the memory (bits) budget, the (statistical) characteristics of
the image, and the scale factor. We show that a simplistic second order statistical model
provides a good estimate of the down-sampling factor that achieves optimal perfor-
mance.

This report is organized as follows. Sections 2–3–4 present the analytic model, and
explore its implications. Section 5 describes an experimental setup that validates the
proposed model and its applicability for choosing best scaling factor for a given im-
age with a given bits budget. Finally, Section 6 ends the paper with some concluding
remarks.
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2 Analysis of a Continuous “JPEG-Style” Image Representation
Model

In this section we start building a theoretical model for analyzing the expected recon-
struction error when doing compression–decompression as a function of the total bits
budget, the characteristics of the image, and the scale factor. Our model considers the
image over a continuous domain rather then a discrete one, in order to simplify the
derivation. The steps we follow are:

– Derivation of the expected compression-decompression error for a general image
representation process, based on slicing the image domain intoM by N blocks.

– Derivation of an expression for the error by exploiting the fact that the coding is
done in the transform domain using an orthonormal basis, and assuming that the
error is due only to truncating the transform coefficients.

– Extension of the expression for the error to include quantization error of the non-
truncated coefficients.

– Extension of the formal error to take into account the fact that the transform is the
DCT, i.e. the orthonormal basis is cosine functions.

– Including in the expression for the error an approximation of the quantization errors
due to various policies of allocation the total bits budget.

At the end of this process we obtain an expression for the error as a function of the bits
budget, scale factor, and the image characteristics. This function eventually allows us
to determine the optimal scale–down factor in JPEG-like image coding.

2.1 Compression-Decompression Expected Error

Assume we are given images on the unit square[0, 1]×[0, 1], fw(x, y) : [0, 1]×[0, 1] →
R, realizations of a 2D random process{fw(x, y)}, with second order statistics given
by

E(fw(x, y)) = 0, R(x, y; x + τx, y + τy) = r2
0e

−αx|τx|e−αy|τy|.

We assume that the image domain[0, 1]× [0, 1] is sliced intoM ·N regions of the form

∆ij ≡
[
i − 1
M

,
i

M

]
×
[
j − 1
N

,
j

N

]
for i = 1, 2, .., M ; j = 1, 2, .., N,

Assume that due to our coding of the original imagefw(x, y) we obtain the com-
pressed-decompressed resultf̂w(x, y), which is an approximation of the original image.
We can measure the error in approximatingfw(x, y) by f̂w(x, y) as follows

E2
w =

∫∫
[0,1]×[0,1]

(fw(x, y) − f̂w(x, y))2dxdy

=
M∑
i=1

N∑
j=1

∫∫
∆ij

(fw(x, y) − f̂w(x, y))2dxdy
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=
M∑
i=1

N∑
j=1

Area(∆ij)
1

Area(∆ij)

∫∫
∆ij

(fw(x, y) − f̂w(x, y))2dxdy

=
M∑
i=1

N∑
j=1

1
M · N {MSEfw(∆ij)} ,

where we defineMSEfw (∆ij) ≡ 1
Area(∆ij)

∫∫
∆ij

(fw(x, y) − f̂w(x, y))2dxdy. We

shall, of course, be interested in the expected mean square error of the digitization, i.e.,

E(E2
w) =

M∑
i=1

N∑
j=1

1
M · N E

(
1

Area(∆ij)

∫∫
∆ij

(fw(x, y) − f̂w(x, y))2dxdy

)

Note that the assumed wide–sense stationarity of the image process results in the
fact thatE(MSEf (∆ij)) is independent of(i, j), i.e., we have thesameexpected mean
square error over each slice of the image. Thus we can write

E(E2
w) = M · N 1

M · N E(MSEfw (∆11))

= E

(
1

Area(∆11)

∫∫
∆11

(fw(x, y) − f̂w(x, y))2dxdy

)
.

Up to now we considered the quality measure to evaluate the approximation of
fw(x, y) in the digitization process. We shall next consider the set of basis functions
needed for representingfw(x, y) over each slice.

2.2 Bases for Representingfw(x, y) over Slices

In order to represent the image over each slice∆ij , we have to choose an orthonormal
basis of functions. Denote this basis by{Φkl(x, y)}k,l=0,1,2,...}. We must have∫∫

∆ij

ΦklΦk′l′dxdy = δkk′δll′ =
{

1 if (k, l) ≡ (k′, l′)
0 otherwise.

If {Φkl} is indeed a basis, then we can writefw(x, y) =
∑∞

k=0

∑∞
l=0〈fw(x, y),

Φkl(x, y)〉Φkl(x, y), as a representation offw(x, y) over ∆ij in terms of an infinite
set of coefficients

Fkl ≡ 〈fw(x, y), Φkl(x, y)〉 =
∫∫

∆ij

fw(x, y)Φkl(x, y)dxdy.

Suppose now that we approximatefw(x, y) over∆ij by using only a finite setΩ of
the orthonormal functions{Φkl(x, y)}, i.e consider

f̂w(x, y) =
∑∑

(k,l)∈Ω
〈fw(x, y), Φkl(x, y)〉Φkl(x, y),
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(It is easy to see that the optimal coefficients in the approximation above turn out to be
the correspondingFkl ’s from the infinite representation!). The mean square error of
this approximation, over∆11 say, will be

MSEfw (∆11) = M · N
[∫∫

∆11

f2
w(x, y)dxdy

−2
∫∫

∆11

fw(x, y)f̂w(x, y)dxdy +
∫∫

∆11

f̂2
w(x, y)dxdy

]

Hence,

MSEfw (∆11)

= M · N
[∫∫

∆11

f2
w(x, y)dxdy −

∑∑
(k,l)∈Ω

〈fw(x, y), φkl(x, y)〉2
]

Now the expectedMSEfw(∆11) will be:

E(MSEfw(∆11))

= M · N
[∫∫

∆11

Efw
2(x, y)dxdy −

∑∑
(k,l)∈Ω

E〈fw(x, y), φk,l(x, y)〉2
]

HenceEE2
ω = M · N · r2

0 · 1
M·N − M · N ·∑∑

(k,l)∈ΩE(F 2
kl) = r2

0 − M · N ·∑∑
(k,l)∈ΩE[F 2

k,l].

2.3 The Effect of Quantization of the Expansion CoefficientFkl

Suppose that in the approximation̂fw(x, y) =
∑∑

(k,l)∈ΩFklΦk,l(x, y) we can only
use a finite number of bits in representing the coefficients{Fkl} that take values in R.
If Fkl is represented / encoded withbkl -bits we shall be able to describe it viaFQ

kl that
takes on2bkl values only, i.e.FQ

kl = Qbkl
(Fkl) : R → set of2bkl representation levels.

The error in representingFkl in this way isΓ 2
kl = (Fkl − FQ

kl )
2. Let us now see how

the quantization errors affect theMSEfw(∆11). We have

MSEQ
fw

(∆11) =
1

1
M · 1

N

∫∫
∆11

(
fw(x, y) − f̂Q

w (x, y)
)2

dxdy

wheref̂Q
w(x,y) =

∑∑
k,l∈ΩFQ

kl φkl(x, y). Now

M · N
∫∫

∆11

(
fw(x, y) − f̂w(x, y) + f̂w(x, y) − f̂Q

w (x, y)
)2

dxdy

= MSEfw(∆11) + M · N ·
∑∑

kl∈Ω
Γ 2

kl = MSEQ
fw

(∆11).

The expectedMSEQ
fw

(∆11) is therefore given by:

E(MSEQ
fw

)(∆11)



128 Alfred M. Bruckstein, Michael Elad, and Ron Kimmel

= r2
0 − M · N ·

∑∑
(k,l)∈Ω

· [F 2
k,l] + M · N

∑∑
(k,l)∈Ω

E[Fkl − FQ
kl ]

2

Hence, in order to evaluateE[EQ
w ]2 in a particular representation when the image is

sliced intoM · N pieces and over each piece we use a subsetΩ of the possible basis
functions (i.e.Ω ⊂ {(k, l)|k, l = 0, 1, 2..}) and we quantize the coefficients withBkl-
bits we have to evaluate

r2
0 − M · N ·

∑∑
(k,l)∈Ω

{ variance ofFkl}
+M · N ·

∑∑
(k,l)∈Ω

{error in quantizingFkl}

2.4 An Important Particular Case: Markov Process with Separable Cosine
Bases

We have the statistics of{fw(x, y)} given by

E(fw(x, y)) = 0, Efw(x, y)fw(x + τx, y + τy) = r2
0e

−αx|τx|e−αy|τy|

and we choose a separable cosine basis for the slices, i.e. over[0, 1
M ]× [0, 1

N ], Φkl(x, y)
= ϕk(x)ϕl(y) whereϕk(x) =

√
M(2 − δk) cos kMπx, k = 0, 1, 2, ..., andϕl(x) =√

N (2 − δl) cos l N πx, l = 0, 1, 2, .... To computeEE2
w for this case we need to

evaluate the variances ofFkl defined asFkl ≡
∫∫

∆11
fw(x, y)ϕk(x)ϕl(y)dxdy, we have

EF 2
kl = E

∫∫
∆11

∫∫
∆11

fw(x, y)fw(ξ, η)ϕk(x)ϕl(y)ϕk(ξ)ϕl(η)dxdydξdη

=
∫∫

∆11

∫∫
∆11

r2
0e

−αx|x−ξ|e−αy|y−η| · M(2 − δk) cos(kπMx) cos(kπMξ)

·N(2 − δl) cos(lπNy) cos(lπNy)dxdydξdη.

Therefore, by separating the integrations we obtain

EF 2
kl = r2

0 (2 − δk)
∫

0

1
M
∫ 1

M

0

e−αx|x−ξ| cos(kπMx) cos(kπMξ)Mdxdξ

·(2 − δl)
∫

0

1
N
∫

0

1
N

e−αy|y−η| cos(lπNy) cos(lπNη)Ndydη

Changing variables of integration tõx = Mx x̃ ∈ [0, 1], ξ̃ = Mξ ξ̃ ∈ [0, 1], ỹ =
Ny ỹ ∈ [0, 1], andη̃ = Nη η̃ ∈ [0, 1] yields

EF 2
kl = r2

0(2 − δk)(2 − δl) · 1
M

·
∫ 1

0

∫ 1

0

e−
αx
M |x̃−ξ̃| cos(kπx̃) cos(kπξ̃)dx̃dξ̃

· 1
N

∫ 1

0

∫ 1

0

e−
αy
N |ỹ−η̃| cos(lπỹ) cos(lπη̃)dỹdη̃

Let us define, for compactness, the following integral:
∫ 1

0

∫ 1

0 e−A|x−ξ| cos(kπx)
cos(lπξ)dxdξ ≡ M(A; k, l) Then we see that

EF 2
kl = r2

0(2 − δD
k ) · 1

M
· M(

αx

M
; k, k) · (2 − δD

l ) · 1
N

· M(
αy

N
; l, l)
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We have that

M(A; k, l) = (1 + δD
k or l)δ

D
|k−l|

A

A2 + k2π2

− (1 + (−1)l+k
) A2

(A2 + (lπ)2)(A2 + (kπ)2)
· (2 − e−A[(−1)k + (−1)l])

2

Therefore some algebra yields

EF 2
kl =

4r2
0

M · N
[

(αx

M )
(αx

M )2 + k2π2

](
1 − (2 − δD

k )(1 − (−1)ke−( αx
M ))

(αx

M )
(αx

M )2 + k2π2

)
·

·
[

(αy

N )
(αy

N )2 + l2π2

](
1 − (2 − δD

l )(1 − (−1)le−(
αy
N ))

(αy

N )
(αy

N )2 + l2π2

)
.

2.5 Incorporating the Effect of Coefficient Quantization

We have thatE[Fkl − FQ
kl ]

2 ∼ K · Var{Fkl}
22bkl

, whereK is a constant in the range[1, 3].
According to rate-distortion theory (for uniform and Gaussian variables) the above for-
mula for evaluating the error due to quantization describes well the behavior of the error
as a function of the number of bits allocated for representingFkl.

Putting the above results together, we get that the expected mean square error in
representing images from the process{fw(x, y)} with Markov statistics, by slicing the
image plane intoM · N slices and using, over each slice, a cosine basis is given by:

E[EQ
w ]2

= r2
0

{
1 −

∑∑
k,l∈Ω

(2 − δ2
k)(2 − δ2

l ) M(
αx

M
; k, k)M(

αy

N
; l, l) [1 − K

22bkl
]
}

This expression givesE[EQ
w ]2 in terms ofr0, {αx, αy} and{bkl} - the bits allocated to

the coefficientsFklwhere the subset of the coefficient is given viaΩ.

3 The Slicing and Bit–Allocation Optimization Problems

Suppose we consider

E[EQ
w ]2

= r2
0

{
1 −

∑∑
k,l∈Ω

(2 − δD
k ) M(

αx

M
; k, k)(2 − δD

l )M(
αy

N
; l, l) [1 − K

22bkl
]
}

as a function ofM, N, {bkl}. We have that the total bit usage in representing the image
is

BTOT =
(∑∑

k,l∈Ω
bkl

)
· M · N

Now we can solve a variety of bit–allocation and slicing optimization problems.
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3.1 Optimal Local Bit Allocation and Slicing Given Total Bit Usage

Given the constraint

∑∑
(k,l)∈Ω

bkl =
BTOT

M · N ,

find {b∗kl} that minimize theEE2
w. We need to minimize

∑∑
k,l∈Ω

σ̃2
kl︷ ︸︸ ︷

(2 − δD
k )M(

αx

M
; k, k)(2 − δD

l )M(
αy

N
; l, l)K 2−2bkl .

This is a classical bit allocation process and we have that the optimal bit allocation
yields (theoretically) the same error for all terms in

∑∑
k,l∈Ω

σ̃2
kl

22bkl
=
∑∑

k,l∈Ω

σ̃2
kl

Λ2
kl

where we definedΛkl as the number of quantization levels, see [6]. Hence we need

σ̃2
kl

Λ2
kl

= Const⇒ Λ2
kl =

σ̃2
kl

Const

and we should have22
∑ ∑

bkl =
∏

kl∈Ω Λ2
kl = 22BTOT /(MN). The result is

bkl =
1
2

log2 σ̃2
kl +

BTOT

M · N · 1
|Ω| −

1
2

log2(
∏

(kl)∈Ω

σ̃2
kl)

1
|Ω|

With this optimal bit allocation the expression
∑∑

(k,l)∈Ω
σ̃2

kl

22bkl
is minimized to

|Ω| · Const= |Ω| · 2−2BTOT
M·N


 ∏

(kl)∈Ω

σ̃2
kl




1
|Ω|

.

Hence,

E([EQ
w ]2)OPT = r2

0

{
1 −

∑∑
k,l∈Ω

(2 − δD
k )(2 − δD

l )M(
αx

M
; k, k)M(

αy

N
; l, l)

+|Ω|2
−2BTOT

M·N · 1
|Ω|


 ∏

(k,l)∈Ω

K · (2 − δD
k )(2 − δD

l )M(
αx

M
; k, k)M(

αy

N
; l, l)




1
|Ω| }

an error expression in terms of(BTOT , M, N, Ω) and the second–order–statistics pa-
rametersr0, αx, αy of the{fw(x, y)}–process.
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3.2 Effect of Slicing with Rigid Relative Bit Allocation

An alternative bit allocation strategy perhaps more in the spirit of the classical JPEG
standard can also be thought of. Consider thatΩ is chosen and thebkl’s are also chosen
a-priori for all (k, l) ∈ Ω. Then we have

E[EQ
w ]2

= r2
0

{
1 −

∑∑
k,l∈Ω

(2 − δD
k )(2 − δD

l )M(
αx

M
; k, k)M(

αy

N
; l, l)[1 − K

22bkl
]
}

as a function ofM and N . This function clearly decreases with increasingM and
N since more and more bits are allocated to the image, and hereBTOT = M · N ·∑∑

k,l∈Ωbkl. Suppose now that forM = N = 1, we choose a certain bit allocation
for a givenΩ (sayΩ = {(k, l)|k + l ≤ Limit , k, l = 0, 1, 2...}) i. e. we chosēbkl

but now as we increase the number of slices (i.e. increaseM andN ) we shall modify
the bkl’s to keepBTOT a constant by choosingbkl(M, N) = b̄kl · 1

M·N . HereBTOT

remains a constant and we can again analyze the behavior ofE[EQ
w ]2 asM andN vary.

3.3 Soft Bit Allocation with Cost Functions for Error and Bit Usage

We could also consider cost functions of the formCMSE(E[EQ
W ]2) + CB(M · N ·

Bits/slice) , whereCMSE andCB are cost functions chosen according to the task in
hand, and ask for the bit allocation that minimize the joint functionals, in the spirit of
[5].

4 The Theoretical Predictions of the Model

In the previous sections we proposed a model for the compression error as a function of
the image statistics (r0, αx, αy), the given total bits budgetBTOT , and the number of
slicingsM andN . Here, we fix these parameters according to the behaviour of natural
images and typical compression setups and study the behaviour of the theoretical model.

Assume we have a gray scale image of size512 × 512 with 8 bits/pixel, as our
original image. JPEG considers8 × 8 slices of this image and produces, by digitizing
the DCT transform coefficients with a predetermined quantization table, approximate
representation of these8×8 slices. We would like to explain the observation that down-
scaling the original image, prior to applying JPEG compression to a smaller image,
produces with the same bit usage, a better representation of original image.

Suppose the original image is regarded as the ’continuous’ image defined over the
unit square[0, 1] × [0, 1], as we have done in the theoretical analysis. Then, the pixel
width of a512 × 512 image will be1/512. We shall assume that the original image is
a realization of a zero mean 2D stationary random process with autocorrelation of the
form

R(|i − i′|, |j − j′|) = r2
0 |ρ1||i−i′||ρ2||j−j′|,
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with ρ1, andρ2 in the range of[0.8, 0.9], as is usually done (see [6]). From a single
image,r2

0 can be estimated via the expression

r2
0 ≈ 1

512 × 512
(
∑
i,j

(I(i, j) − Ī)2) = 2
1

256
(
127∑
0

i2) = 32, 385.00,

assuming an equalized histogram. If we consider thatρ|i−i′| ∼= e−α| i
512− i′

512 | =
e−

α
512 |i−i′|, we can obtain an estimate forα usinge−

α
512 = ρ ∈ [0.8, 0.9]. This provides

− α

512
= loge ρ −→ α = −512 × loge ρ ∈ [50, 150].

The total number of bits for the image representation will range from0.05bpp to
about2.0bpp, hence,BTOT will be between512 × 512 × 0.05 = 13, 107 to 512 ×
512 × 2 = 524, 288 bits for 512 × 512 original images. Therefore, in the theoretical
evaluations we shall takeαx, αy ∈ [50, 150], ro = 32500 for 256 gray level images,
with total bit usage between10, 000 and1, 000, 000.

The symmetricx andy axis slicings considered will beM, N = 1, 2, ...64, and we
shall evaluate

E[EQ
w ]2

≡ r2
0

{
1 −

∑∑
k,l∈Ω

(2 − δD
k )(2 − δD

l )M(
α

M
, k, k)M(

α

N
, l, l)[1 − K

Λ2
kl

]
}

with Λkls provided by the optimal level allocation

Λ2
kl

= (2 − δD
k )(2 − δD

l )M(
α

M
, k, k)M(

α

M
, l, l)K(22BTOT /M2

)
1

|Ω|
1

[
∏

(k,l)∈Ω(σ̃2
kl)]

1
|Ω|

Practically, the optimal level allocationΛ∗
kl should be given byΛ∗

kl = max(1, bΛklc),
a measure that automatically prevents the allocation of negative numbers of bits. Ob-
viously this step must be followed by re-normalization of the bit allocation in order to
comply with the bits budget constraint.K can be taken from 1 to 3, whereasΩ will
be{(k, l)|k + l ≤ 7, k, l = 0, 1, ..7}, simulating the standard JPEG approach which
is coding of8 × 8 transform coefficients, emphasizing the low frequency range via the
precise encoding of only about|Ω| = 36 coefficients.

Using the above described parameter ranges, we plot the predictions of the analyt-
ical model for the expected mean square error as a function of the slicingsM with bit
usage as a parameter. Figures 2 and 3 demonstrate the approximated error as a function
of the number of slicings for various total number of bits. Figure 2 displays the predic-
tions of the theoretical model in conjunction with optimal level allocation while Figure
3 uses the JPEG style rigid relative bit allocation. In both figures the left side shows the
results of restricting the number of bits or quantization levels to integers, while the right
side shows the results allowing fractional bit and level allocation.

These figures show that for every given total number of bits there is an optimal
slicing parameterM indicating the optimal scaling factor. Note that the integer allo-
cation cause in both cases non-smooth behaviour. Also, in Figure 2 it appears that the
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minimum points are local ones and the error tends to decrease asM increases. This
phenomenon can be explained by the fact that we used an approximation of the quan-
tization error which fails to predict the true error for a small number of bits at large
scales.
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Fig. 2. Theoretical prediction based on optimal level allocationMSE versus number of
slicingsM with total bits usage as a parameter. Here, we used the typical valuesα =
150, andk = 3.
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Fig. 3. Rigid relative bit allocationbased prediction of MSE versus number of slicings
M with total bits usage as a parameter. Here, we used the typical valuesα = 150, and
k = 1.

Figure 4 shows the theoretical prediction of PSNR versus bits per pixel curves for
typical 512 × 512 images with different scales (different values ofM , where scale=
8M/512). One may observe that the curve intersections occur at similar locations as
those of the experiments with real images shown in the next section.

5 Compression Results for Natural and Synthetic Images

In order to verify the validity of the analytic model and design a system for image
transcoding we generate synthetic images for which the autocorrelation is similar to
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Fig. 4. Theoretical (two left frames) and rigid relative (two right frames) bit alloca-
tion based prediction of PSNR versus bits per pixel with image scaling as a parameter.
Again, we used the typical valuesα = 150, andκ = 3 for the theoretical prediction
case, andκ = 1 for the JPEG-style case.

that of a given image. Next, we plot the PSNR/bpp JPEG graphs for all JPEG qualities,
one graph for each given scaling ratio. The statistical model is considered valid if the
behaviour is similar for the natural image and the synthesized one.

5.1 Image Synthesis

Assume that an imageg(m, n) autocorrelation function is that of a homogeneous ran-
dom field of the form

Rgg(m, n) =
1

MN

M−1∑
m′=0

N−1∑
n′=0

g(m′, n′)g(m′ + m, n′ + n) = e−αx|m|−αy|n|.

Define the Fourier transform̂g(k) = F{g(x)}. Then, the power spectrum of the real
signal is given byF{Rgg(x)} = Pgg(k) = 〈ĝ(k)ĝ∗(k)〉. Now, considering the1D
signal with the above given statistics, we have〈ĝ(k)ĝ∗(k)〉 = F{e−α|x|} = 2α

α2+k2 .

Thus, we have that̂g(k) =
√

2α α−ik
α2+k2 , and

g(x) ≡ F−1{ĝ(k)} = F−1

{√
α

2
2α

α2 + k2

}
+ F−1

{
− 1√

2α
ik

2α

α2 + k2

}
=
√

α

2
e−α|x| − 1√

2α

d

dx
e−α|x| =

√
α

2
e−α|x|(1 + sgn(x))

=
{√

2αe−α|x| x > 0
0 x ≤ 0

In order to generate synthetic images, we ‘color’ a uniform random (white) noise
as follows. Letgn be anM × N matrix in which each entry is a uniformly distributed
random number. Next, letp andq beM × N matrices with elements

p(m, n) =
{√

2αxe−αxm n = N
2 , m = 1, ..., M

0 otherwise,
,

q(m, n) =
{√

2αye−αyn m = M
2 , n = 1, ..., N

0 otherwise.



Down-Scaling for Better Transform Compression 135

Our synthetic image is generated by the processg(m, n) = F−1
2D{F2D{gn} · F2D{p}

·F2D{q}}.

5.2 Estimating the Image Statisticsαx and αy

In order to generate a synthetic image with the same statistics as that of the natural
one, we have to first estimate the properties of the given image. Let us present a simple
method for estimating the image statistics. We already used the relationF2D{Rgg(x, y)}
= Pgg(k, l) = 〈ĝ(k, l), ĝ∗(k, l)〉. Explicitly, for our statistical image model we have
that the power spectrum and the autocorrelation are given by

2αx

α2
x + k2

2αy

α2
y + l2

= 〈ĝ(k, l), ĝ∗(k, l)〉, e−αx|x|−αy|y| = F−1
2D{〈ĝ(k, l), ĝ∗(k, l)〉}.

Thus, all we need to do is to estimate the slopes of the plane given by

αx|x| + αy|y| = − ln(F−1
2D{〈ĝ(k, l), ĝ∗(k, l)〉})

= − ln(F−1
2D{〈F2D{g(x, y)}, (F2D{g(x, y)})∗〉}).

This was the estimation implemented in our experiments.

5.3 Experimental Results

A JPEG compression performance comparison for a natural image and its random syn-
thesized version is shown in Figure 5 for a256 × 256 image (first row) and512 × 512
image (second row). The figures show the compression results of synthetic versus natu-
ral images with similar statistics. Synthetic and original images and their corresponding
autocorrelations are presented with their corresponding JPEG PSNR/bpp compression
curves for4 scales. The above experiments indicate that the crossing locations between
scales in the synthetic images appear to be a good approximation of the crossings in the
natural images. Thus, based on the second order statistics of the image we can predict
the optimal scale factor. Moreover, the non-stationarity nature of images have a minor
impact on the optimal scale factor. This is evident from the alignment of the results
of the natural and the synthetic images. There appears to be a vertical gap (in PSNR)
between the synthetic and the natural images. However, similar PSNR gaps appear also
between different synthetic images.

6 Conclusions

We have presented an analytical model and a set of empirical results verifying our model
and support the idea of scaling before transform coding for optimal compression. The
numerical results prove the validity of the model, and the simple algorithms we intro-
duced can be used in an on-line system, to (i) extract the image statistical coefficients
(αx andαy). Next, (ii) use the image statistics, size, and bits budget to decide on the
optimal scaling, e.g. for the JPEG compression in a transcoding system. In another re-
port we will explore extensions and implementation issues, like extracting the image
statistical characteristics from the JPEG DCT coefficients in an efficient way, obtaining
second order statistics locally and using an hierarchical slicing of the image to various
block sizes, and more.
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Fig. 5. Comparison between a natural and a synthesized image with similar autocorre-
lation.
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