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ABSTRACT

An elementary proof of a basic uncertainty principle concerning
pairs of representations of ®” vectors in different orthonormal
bases is provided. The result, slightly stronger than stated before,
has a direct impact on the uniqueness property of the sparse rep-
resentation of such vectors using pairs of orthonormal bases as
overcomplete dictionaries. The main contribution in this paper is
the improvement of an important result due to Donoho and Huo
concerning the replacement of the lo optimization problem by a
linear programming minimization when searching for the unique
sparse representation.

1. INTRODUCTION

Given a real vector S in R” it has a unique representation in every
basis of this space. Indeed, if ¢ i QQ, )  are N orthogonal

vectors of unit length , i.e (?Z, f]) = d;j, we have that

N
S= Z aig,
i=1

with coefficients a; given by (¢ o S). Suppose now that we have
two different bases for RY: & = {¢,¢, .. ¢, and ¥ =
{¢, ¢, --- ¥} Thenevery vector S has representations both
in terms of {¢ .} and in terms of {3 }. Let us write then

o1 B1
Q2 ,82
S= [ngzf]\]] :[ﬁlﬁf”ﬁ]\’] :
QN ,BN

A question posed by Donoho and his co-workers is the following:
is there some benefit in representing S in a joint, overcomplete set
of vectors, say

{é192 QN %1%2 %N}

that can be called a ’dictionary” concatenating the ® and ¥ bases?
Sparse representations can have advantages in terms of compres-
sion of signals and/or in terms of understanding the underlying
processes that generated them. The problem that arises, however,
is that in terms of “dictionaries” of overcomplete set of vectors (as
obtained by concatenating the basis vectors of ® and the ¥) every
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signal has multiple representations. Of those multiple represen-
tations choosing one based on sparsity is a difficult optimization
problem. Indeed suppose we have

N N
S=@¥y=> 0.+ Wy,
1=1 1=1

Choosing = involves solving an underdetermined set of equations
with N equations and 2N unknowns, and hence must be done sub-
ject to additional requirements on the solution. The additional re-
quirement for sparsity would be to minimize the support of v, i.e.,
minimize the number of places where 7 is nonzero. Hence we
need to solve the problem B

(Po) Minimize [|y[lo subject to S=[® ¥y
where ||y|lo is the size of the support of . The main result of
Donoho and Huo is that in case S has a ”very” sparse representa-
tioni.e. when 3y sothat S = [® ¥lyand [|y[lo < Func.{[® ¥]},
then this sparse representation is the unique solution of not only

(Po) as defined above, but also of

(P1) Minimize |[|v|1 subject to S=[® ¥y

where ||y[l1 = ZJ. ;1 the I1 -norm of ~. This is an important
result stating that “very sparse” representations can be found by
solving not a combinatorial search problem as implied by (Pp) but
by solving a much simpler linear programming problem as implied
by minimizing to l1-norm of 7. The bound defining sparsity as
provided by Donoho and Huo is Func.{[® ¥]} = 2 (1+ M),
where M = Sup{[{¢,, % )|,V i, }.

Here we follow the path of work of Donoho and Huo, and
improve their bounds. First, we prove an “improved” uncertainty
principle leading to better bounds yielding uniqueness of the (Po)
solution. The result is that uniqueness of the (Pp)-solution is
achieved for [|v[lo < ﬁ Our main contribution in this paper is an
improvement of the result concerning the replacement of the (Po)
minimization problem with the (P;) convex minimization, while
achieving the same solution. We show that the two problems’ so-

lutions coincide for ||y]lo < WTO'Q.

2. THE BASIC UNCERTAINTY PRINCIPLE

We shall first prove a basic “uncertainty principle” concerning
pairs of representations of a given vector S (or signal) in two given
orthonormal bases ® and ¥. Suppose a signal S has the represen-
tations:

S=®a=94
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and, w.l.o.g. we assume that STS =1, i.e. we have normalized
the I> energy of the signal to 1. We have a; = (S, ¢ ) and §; =
(S, gj) Now let us write

1=5"S=a"3"®p. 6))

Writing M = Sup{ |Q?ﬁ] |, V(i, j)}, all the entries in the matrix

&7 W are smaller than M. We further have the (Parseval) energy
preservation property 1 = STS = > ol = > B2. Assuming
that allo = A and ||8|lo = B, we get that

A B A B
1= 0l .08, <MY laul Y 1851 @

i'=1j'=1 il=1 j'=1

where 4’ runs over the nonzero support of o and j' runs over the

nonzero support of 3. Next, in order to bound the above expression

from above we can maximize it over all a; and B, bearing in

mind that these unknowns must be positive and with l> unit norm.

This problem can be maximized using simple Lagrange analysis.
1

The optimal result is a; = ﬁ , Bi = 75 Returning to our

derivation of the uncertainty relations in Equation 2 we now have:

A B
1< M- Jawl|By| < MVAB

i'=1j'=1

We have obtained the following result: If we have two represen-
tations of a signal S in the bases & = [¢ ¢, -+ ¢ ] and

W =[) Y, 0 N] and the coefficient vectors a and 3 have
supports of sizes [|allo = A and ||B|lo = B then VAB > .

Using the well-known inequality between the geometric and
arithmetic means, A+B > +/ AB, we also have that

A+ B 1 2
5 2(\/AB)ZM = A+B2> .

Donoho and Huo obtained, by emulating arguments for the sinu-
soidal and spike bases a weaker result stating that

1
A+B> (1 —)
+B > + i
(see [2]), and clearly, the new bound is higher since M < 1. Note
that the value of M is crucial in the above arguments. For any pair
of orthonormal bases @ and ¥ of R we have that M > \/LN

3. UNIQUENESS OF SPARSE REPRESENTATIONS

A direct consequence of the uncertainty relation derived above is
the following fact: if we have a “’sparse” representation in terms
of the [® W] dictionary, it is unique. How sparse the representa-
tion should be to achieve such uniqueness depends crucially on the
bound provided by the uncertainty principle. The connection fol-
lows easily from the following line of argumentation (taken from
[2D.

Suppose 7, and 7, are the coefficient vectors of two differ-
ent representations of the same signal S, ie. S = [® W]y =
[® ¥]y,. Then clearly

Hence in this case we have two vectors 1‘2 and fi (defined as the
upper N values in v, — Yy and the lower N values in v — 7, )
that are different from 0 and represent the same vector i in two
orthogonal bases. Now the basic uncertainty principle states that
if
¢ — LN
7% 1lo = A and [lv%flo = B

then we must have A + B > (2\/ AB 2) % Suppose that the

original representations were both sparse, i.e. ||y [lo < F and
ll7,llo < F'. Then we must necessarily have

7, = 2,llo < 17, llo + 11,10 < 2F

On the other hand we have ||y, — 7, [lo = ||1‘2||0 + ||1ﬁ||0 =
A 4+ B. Hence sparsity of both 7, and Yy with bound F' implies
that A + B < 2F'. But by the uncertainty principle we have

2
A+B> 2
R Vi

In conclusion, if F would be M~™! or smaller, we would con-
tradict the uncertainty principle if we would assume two different
sparse representations. Hence we have the following uniqueness
theorem: If a signal S has a sparse representation in the dictionary
[@ ¥] so that

S=[® ¥y and|yllo < 5

then this sparse representation is necessarily unique. This bound
is a better bound than the one implied by the uncertainty principle
stated in [2], which is % (1 + M’l). This means that the unique-
ness result will be true for much less sparse representations than

those required by the bound provided in Ref. [2].

4. SPARSE REPRESENTATIONS VIA L; OPTIMIZATION

The next question that naturally arises is: if a signal S has a sparse
representation in a dictionary [® ¥], how should we find it? Solv-
ing the lp optimization problem defined as

2N
(Po) Minimize ||v]lo = Z'yg subjectto S = [® P]y
k=0

involves an unfeasible search problem. However, it was discovered
experimentally that solving the /; optimization problem

2N
(P1) Minimize |[|v][: = Z |7k| subjectto S =[® ¥]y
k=0

often provides the sparse representation. Donoho and Huo proved
in [2] that the strong sparsity condition [|v|[o < 3 (1 + Mﬁl) is
a condition ensuring that the solution of the problem (P;) yields
the sparse solution of (Py) too. This is a wonderful result, since
(Pr) is essentially a linear programming problem!

To show that (Py) provides also the (Po) solution one has to
prove that if ||y|lo < F' and [® ®]y = S, then, if there exists
some other representation [® ¥]5 = S, we must have ||¥|1 >
[I7]|1. Here we show how Donoho and Huo’s bound can be im-
proved. Following [2] we have that if:

[@Py=S5S=[2T]y = [®¥]7—9]=0.



Therefore the difference vector x = 4 — -y satisfies

&z¢ = \Il(—gw) 3

where we define z¢ as the first N entries in z, and z¥ are the last
N entries in . We need to show that for every nonzero vector z
that obeys Equation (3) we shall have that

2N 2N
D b +arl =Yl > 0.
k=1 k=1

Hence we need to show that

Do lml o+ )

off support ofy on support ofy

(Ive + k| = lvl) >0

Due to [v +m| > |v| — |m| we have |v +m| — |v| > |v]| — |m]| —
|v| = —|m|. Using this inequality we can write that

1 Zonsup.|$k| 1
5 O = D w205 =<5 @)

all sup. on sup. 2_all sup. EN

Equations (3) and (4) can re-interpreted as an optimization
problem of the following form: Minimize § Y .y |zk|—Y_ o |k ]
subject to ®z¢ = ¥(—z"¥). This problem should be solved for
various values of F' (F' = ||v||o) and all profiles of non-zero en-
tries in -y. The maximal F that yields a minimum that is still above
zero will be the bound on the sparsity of +, ensuring equivalence
between (Po) and (P ).

Working with the above minimization problem is complicated
because od several reasons (i) we need an explicit condition to
avoid the trivial solution x = 0; (ii) the problem should involve
only the absolute values of the entries in the vector z; (iii) the
orthonormal matrices ¥ and @ should appear implicitly through
the parameter M they define; and (iv) the sensitivity to the location
of non-zero elements in the support of v should be removed.

The first problem is solved by introducing an additional con-
straint of the form ) . |zx| = 1. It is easily verified that this
constraint does not change the sign of the result. As to the other
problems, they are solved via the definition of an alternative min-
imization problem. In this new problem we minimize the same
function, but pose a weaker set of constraints, as follows

S 1 .
Minimize 5 Z|xk| — Z |z subject to:
all on
2] < M- Aysnle?], 29 < M- Ayswle®], Yl =1
all

where 1y is an NV by [N matrix containing ones in all its en-
tries.

The first and second constraints simply use the fact that any
given entry in one of the vectors (z¥ or z%) cannot be grater than
M multiplying the sum of the absolute entries in the other vector.
Clearly, every feasible solution of the original constraint set is also
a feasible solution of the new constraint set, but not vice-versa.
Thus, if the minimum of the function is still positive using the new
constraint set, it implies that it is surely positive using the original
constraint set.

Looking closely at the the newly defined optimization prob-
lem, we can rewrite it as

1
Minimize 3~ 1?1 X, - 13212 subject to: %)
X, <M-1nxn X,

1%(&1 +12) =1,

XQSM']-NXN£1
X, 20, X, >0

where we define X ; and X, as the absolute values of the original
vectors z¥ and . This is the reason we added the fourth con-
straint regarding positivity of the unknowns. The notations 1.,
and 1., stand for vectors of length N, [1,, 1.,] being the 2NV
vector with ones where v is non-zero. 1 is simply an N vector
containing all ones. If we assume that there are K7 non-zeros in
1., and K5 non-zeros in 1,, then K1 + K2 = ||7y||o. In the new
formulation, we can assume w.l.0.g. that the K'; and K> non-zeros
are located at the beginning of the two vectors X, and X ,, due to
the symmetrical form of the constraints.

The problem we have obtained is a classical Linear Program-
ming (LP) problem, and as such, has a unique local minimum point
which is also the unique global minimum point. Let us bring it to
its canonical form

(P) Minimize CT Z subjectto AZ > B , Z > 0.

The matrices (A4, Z, B, C) involved are defined as follows

z" = [x{ XxT], ¢"=[-1], —1]]
B" = [0-1% 0-1% 1 —1]
—In M- -1nxn
M - 1N><N _IN
A =
1£T 1£T
-1y -1y

In the problem defined in Equation (5) we wanted conditions so
that the minimum will not be negative. After removing the 1/2
from the function, the new requirement becomes cTz > —0.5.
Since it is still difficult to give an analytic form to the solution of
the LP problem we obtained, we shall exploit the dual LP problem
of the form

(D) Maximize B"U subjectto ATU<C , U>0

with the same matrices as in the primal problem (see e.g. [4]).
The approach we are going to take is as follows: We know that
the primal and the dual problems obtain the same optimal value
([4)), i.e., Minimize {CTZ} = Maximize {BTU}. We require
this optimal value to be higher than or equal to —0.5. In the dual
problem, if we find a feasible solution U such that B TU > —0.5,
we guarantee that the maximal value is also above —0.5, and thus
we fulfill the original requirement on the primal problem.

Let us consider the following parameterized form for a feasi-
ble solution for U

U =1, ol 5 ).

Using previous notations, there are K1 non-zeros in 1., and K>
non-zeros in 1,,. We assume w.l.o.g. that K1 < K> (the problem
is perfectly symmetric with respect to these two sections). We also
assume that 0 < a < 1. This way, three parameters (a, 3, )
govern the entire solution U, and we need to find requirements



on them in order to guarantee that the proposed solution is in-
deed feasible. Substituting the proposed solution form into the
constraint inequalities of the dual problem and using the fact that
Inxn1ly, = K21y we get

aMK,+(B8-7)<0, (I1-a)+MKi+(B-7)<0

Solving the two inequalities as equalities, we get

1+ MK,

aMKQZ(l—a)+MK1 :a—m

We see that, indeed, our assumption 0 < a < 1 is correct since
we assumed K3 < Kb, (note that M > 0). So far we have found
an expression for the first parameter a. As to the other two, sub-
stituting « in the above equations we get

1+ MK
(8—7) = —MKy - 1o

Nt A}
T 14+ MK, <

Thus, we can choose 8 = 0 and « will be the above expression
multiplied by —1. This way we have satisfied all the inequality
constraints, and obtained a solution U which is also non-negative
in all its entries.

Now that we have established that the proposed solution is
feasible, let us look at the value of the function. The function is
simply BTU = (8 — ). So we should require

14+ MK 1
B'U=B~-7)=-MEKy - ———L >,
BU=($-7) 21 ¥ MK, = 2

Thus

14+ MK, _ 1 )

MKs - <> = IM’K1Ky+ MK, —1<0 (6

1+ MK — 2 1K+ MK —1<0 (6

We have therefore obtained a requirement on K; and K2 which is
posed in terms of the parameter M .

A simpler sparsity condition on the representation y can be
derived by bounding K1 + Ko. It turns out that (see Ref. [5])

€

Iflo = Ki + Kz < (V2= 05) - -

Figure 1 shows graphically how the various discussed bounds com-
pare. In this graph we have assumed M = 1/4/128. Note that
since 0 < K; < Kb, only the upper-left part of the graphs is
relevant, and thus we have masked the non-relevant zone. We can
see that the 1/M bound (which is also the uniqueness bound) is
valid at the extremes, whereas the (v/2 —0.5) /M is relevant in the
middle of the K; zone.

The result obtained is better than the 0.5 (1 + 1/M)-bound
asserted by Donoho and Huo. As an example, for M = 1/+/N,
we get that for N = 64 the old requirement (DH) is to have less
than 4.5 non-zeros, while we (EB) require 7.3 and below. As N
goes to infinity the ratio between the two bounds becomes 1.8284.

5. CONCLUSIONS

In this paper we presented a new uncertainty theorem on the mini-
mal joint-sparseness of a vector represented by two orthonormal
bases. Based on this theorem, we proved that, using a dictio-
nary of the two orthonormal bases, a representation with less than
1/M non-zeros is guaranteed to be the unique sparse representa-
tion. The main contribution of this paper concentrated to the way
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Fig. 1. Figure 1 - A graphic description of the bounds obtained.

to find the sparse representation over an overcomplete dictionary
as described above. We have found that if there exists a sparse
representation with less than 0.9142/M non-zeros, than this rep-
resentation can be found using the minimization of the /;-norm,
which leads to solving a linear programming problem.
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