
A Variational Framework for Retinex

Ron Kimmel‡, Michael Elad§, Doron Shaked, Renato Keshet, and Irwin Sobel
Hewlett-Packard Laboratories

Abstract

Retinex theory addresses the problem of separating the illumination from the reflectance in a given
image and thereby compensating for non-uniform lighting. This is in general an ill-posed problem.
In this paper we propose a variational model for the Retinex problem that unifies previous methods.
Similar to previous algorithms, it assumes spatial smoothness of the illumination field. In addition,
knowledge of the limited dynamic range of the reflectance is used as a constraint in the recovery process.
A penalty term is also included, exploiting a-priori knowledge of the nature of the reflectance image.
The proposed formulation adopts a Bayesian view point of the estimation problem, which leads to an
algebraic regularization term, that contributes to better conditioning of the reconstruction problem.

Based on the proposed variational model, we show that the illumination estimation problem can be
formulated as a Quadratic Programming optimization problem. An efficient multi-resolution algorithm
is proposed. It exploits the spatial correlation in the reflectance and illumination images. Applications
of the algorithm to various color images yield promising results.

1 Introduction

Retinex theory deals with compensation for illumination effects in images. The primary goal is to decompose
a given image S into two different images, the reflectance image R, and the illumination image L, such that,
at each point (x, y) in the image domain, S(x, y) = R(x, y) · L(x, y). The benefits of such a decomposition
include the possibility of removing illumination effects of back/front lighting, enhancing shots that include
spatially varying illumination such as images that contain indoor and outdoor zones, and correcting the
colors in images by removing illumination induced color shifts.

Recovering the illumination from a given image is known to be a mathematically ill-posed problem, and
algorithms proposed in the literature for its solution vary in their way of overcoming this limitation. The
Retinex methodology was motivated by Land’s landmark research of the human visual system [11]. Through
his experiments it was shown that our visual system is able to practically recognize and match colors under
a wide range of different illuminations, a property that is commonly referred to as the Color Constancy
Phenomenon. As a matter of fact, Land’s findings indicated that even when retinal sensory signals coming
from different color patches under different illuminations are identical, subjects were able to name the surface
reflectance color [11]. The ability to extract the illumination image is sufficient but not nessecary to achieve
this property.

In this paper we define the Retinex reconstruction problem for gray-level images through physically
motivated considerations. The proposed formulation is shown to be a mathematically well-posed problem.
A variational expression is obtained by defining the optimal illumination as the solution of a Quadratic
Programming (QP) optimization problem. It is shown that different previous algorithms are essentially
solutions to similar variational problems. We introduce an efficient algorithm that exploits knowledge on
QP solvers and the fact that the unknown illumination is spatially smooth. Our algorithm uses a multi-
resolution reconstruction of the illumination with few relaxation iterations at each resolution layer. We apply
and compare the proposed algorithm in two color spaces. The first operates in the RGB space, in which
each spectral channel is processed separately. The second is the HSV color space in which only the Value
(V) channel is processed.
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This paper is organized as follows: In the next section we review several different Retinex algorithms.
Some of those were motivated by assumptions based on the color constancy process in the human visual
system. Section 3 presents the proposed formulation along with an efficient numerical algorithm for the
illumination reconstruction. Section 4 extends the proposed formulation to color images. In Section 5 we
apply the method to different images and demonstrate the algorithm‘s performances and the effects of its
free parameters. Section 6 summarizes the paper and presents the results. It should be noted that a wider,
detailed, and longer version of this paper is given in [20].

2 Previous Work

The first Retinex algorithms proposed by Land et al., were of random walk type [12, 14]. Subsequent
algorithms [8, 9, 13] used Homomorphic Filters [5, 21]. Yet another group of Retinex algorithms is based on
solving a Poisson equation [2, 7, 19].

A first step taken by most algorithms is the conversion to the logarithmic domain by s = logS, l =
logL, r = logR, and thereby s = l + r. This step is motivated both mathematically, preferring additions
over multiplications, and physiologically, referring to the sensitivity of our visual system [11]. The different
Retinex algorithms usually have the same flow chart as shown in Figure 1, and the difference between them
concentrates on the actual estimation of the illumination image. Let us review these different algorithms.
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Figure 1: The general flow chart of Retinex algorithms

Random Walk Algorithms: A random walk is a discrete time random-process in which the ‘next pixel
position’ is chosen randomly from the neighbors of the current pixel position. Random walk type Retinex
algorithms are variants of the following basic formulation [4]: A large number of walkers are initiated at
random locations of an input image s, adopting the gray-value of their initial position. An accumulator
image A that has the same size as s is initialized to zero. As the walkers walk around, they update A by
adding their values to each position they visit. Finally, the illumination image is obtained by normalizing
the accumulator image, i.e., its value at each location divided by the number of walkers visited it.

By using many walkers with long paths, it is easily verified that each accumulator value assimptotically
converges to a Gaussian average of its neighbors, which is a low-pass filter of the image s [18]. A low-pass
filter for the reconstruction of l from s was also proposed under the name of Homomorphic Filtering.
Homomorphic Filtering: Homomorphic Filtering type Retinex algorithms [5, 8, 9, 13, 21] share the
following basic motivation: Assume the reflectance image corresponds to the sharp details in the image
(i.e. edges), whereas the illumination image is expected to be spatially smooth, a reasonable guess for l is
l̂ = LP{s}, where LP is usually a convolution with a wide Gaussian kernel. This way, one actually applies
the same process as the random walk algorithms by a single direct convolution.
Poisson Equation Solution: Following the above reasoning, since the illumination is expected to be
spatially smooth, its derivative should be close to zero everywhere. On the other hand, by the assumption
that the reflectance is piece-wise constant, its derivative is expected to vanish almost everywhere, and get
high values along the edges. Thus, if we take the derivative of the sum s = l + r and clip out the high
derivative peaks, we can assume that the clipped derivative signal corresponds only to the illumination.

Poisson Equation type Retinex algorithms [2, 7, 19] rely on Land’s Mondrian world model. The Mondrian
model boils down to the above assumption on the reflectance as a piece-wise constant image. Applying the



Laplacian, and the following clipping operation

τ(∆s) =
{

∆s where |∆s| < T
0 otherwise,

we get the following Poisson equation ∆l̂ = τ(∆s).
As to the solution of the resulting Poisson equation, Horn [7] suggested an iterative procedure which

effectively inverts the Laplacian operator. Similar to the previous methods, a low-pass filter is applied in
order to solve the above equation. Blake [2] introduced an improvement to Horn’s method. He proposed to
extract the discontinuities from the image gradient magnitude instead of the Laplacian and thereby came
up with better boundary conditions that deal with less trivial scenarios along the image boundary.
Summary of Previous Work: The discussion in this section suggests that the previous seemingly
different algorithms are actually very similar. They are all based on the spatial smoothness assumption of
the illumination l. All the above algorithms apply some sort of Gaussian smoothing to s in order to extract
l̂. Some methods add more assumptions about the reflectance, such as its limited range, or its Mondrian
form. Eventually, ‘skinning’ the illumination from the given image yields the reflectance image, which is
expected to be free of non-uniform illumination, have a reduced dynamic range, and present a sharper view
of the scene.

3 The Variational Framework

We start by listing the known information about the illumination image.

1. The first important assumption about the illumination is its spatial smoothness.

2. We also know that, since R is restricted to the unit interval, we can add the constraint L ≥ S. Since
the log function is monotone, we also have l ≥ s.

3. By setting l = Const, where Const is any constant above the maximal value of s, we get a trivial solution
that satisfies the two previous assumptions. We therefore add the assumption that the illumination
image is close to the intensity image s, i.e., it minimizes a penalty term of the form dist(l, s), e.g., the
L2 norm (l − s)2.

4. The reflectance image r = s − l can be assumed to have a high prior probability [3, 6, 10, 16]. One
of the simplest prior functions used for natural images assigns high probability to spatially smooth
images [10].

5. We can assume that the illumination continues smoothly as a constant beyond the image boundaries.
This is an artificial assumption required for boundary conditions that would have minor effect on the
final results.

Collecting all the above assumptions into one expression we get the following penalty functional

Minimize: F [l] =
∫

Ω

(
|∇l|2 + α(l − s)2 + β |∇(l − s)|2

)
dxdy

Subject to: l ≥ s, and 〈∇l, �n〉 = 0 on ∂Ω, (1)

where Ω is the support of the image, ∂Ω its boundary, and �n is the normal to the boundary. α and β are free
non-negative real parameters. In the functional F [l], the first penalty term (|∇l|2) forces spatial smoothness
on the illumination image. This choice of smoothness penalty is natural, if we keep in mind that minimizing∫ (|∇l|2) dxdy translates into the Euler-Lagrange (EL) equation ∆l = 0. Its steepest descent solution is a
Gaussian smoothing operation with increasing variance of the initial condition. As mentioned in the previous
section, several authors proposed Gaussian smoothing of s for the illumination reconstruction.

The second penalty term (l−s)2 forces a proximity between l and s. The difference between these images
is exactly r, which means that the norm of r should be small (i.e., R tends to Black). This term is weighted



by the free parameter α. The main objective of this term is a regularization of the problem that makes it
better conditioned. Notice that, in addition, we restrict the solution l to be l ≥ s.

The third term represents a Bayesian penalty expression. It forces the reflectance image r to be a ‘visually
pleasing’ image. This term forces r to be spatially smooth, and it is weighted by the free parameter β. Note
that more complicated Bayesian expressions may be used allowing sharp edges, textures, 1/f behavior, etc.
[3, 6, 10, 16]. As long as this expression is purely quadratic, the above minimization problem remains fairly
simple.

The problem we have just defined has a Quadratic Programming (QP) form [1, 15]. The necessary and
sufficient conditions for its minimization are obtained via the Euler-Lagrange equations

∀(x, y) ∈ Ω
{

∂F [l]
∂l = 0 = −∆l + α(l − s)− β∆(l − s) and l > s

}
(2)

Note that the differential equation does not have to hold when l = s.
Numerical Solution: The minimization problem is QP with respect to the unknown image l. Many
algorithms for solving such problems are known in the literature [1, 15]. In this paper we chose to focus on
the Projected Normalized Steepest Descent (PNSD) algorithm, accelerated by a multi-resolution technique.
Projected Normalized Steepest Descent The PNSD algorithm requires the application of a Normalized
Steepest Descent (NSD) iteration that minimizes the functional F [l], followed by a projection onto the
constraints. A NSD iteration has the format:

lj = lj−1 − µNSD ·G,
where lj and lj−1 are the illumination images at step j and j− 1, respectively, G is the gradient of F [l], and
µNSD is the optimal line-search step size. In our case, Equation (2), the gradient of F [l] is given by:

G = −∆lj−1 + (α− β∆) (lj−1 − s) ,

and µNSD is given by: µNSD =
∫

|G|2∫
(α|G|2+(1+β)|∇G|2) . Observe that, by integration by parts,

∫ |∇G|2 =

− ∫
G∆G up to boundary conditions.
An alternative approach is the Steepest Descent (SD) algorithm, where µNSD is replaced by a constant

value µSD, such that: µNSD ∈
(
0, 2

λmax{−(1+β)∆+αI}
)
, where λmax{A} refers to the greatest eigenvalue

of the linear operator A. This alternative method saves computations at the expense of a slightly slower
convergence.

Finally, projecting onto the constraint l ≥ s is done by lj = max(lj , s).

Notice that G can be calculated by: G = GA +α (lj−1 − s)−β (GA −GB) , where GA
�
= ∆lj−1, GB

�
=

∆sk . Similarly, µNSD is given by µNSD = µA

αµA+(1+β)µB
, where µA

�
=

∫ |G|2, µB
�
=

∫ |∇G|2.

We approximate the Laplacian by a linear convolution with the kernel κLAP =




0 1 0

1 −4 1

0 1 0


 ,

and the integrations are approximated by summations
∫ |G|2 ≈ ∑

n

∑
mG[n,m]

2 and
∫ |∇G|2 = − ∫

G∆G ≈
−∑

n

∑
mG[n,m] (G ∗ κLAP) [n,m], where G[m,n] = G(m∆x, n∆y). In order to accommodate the bound-

ary conditions, as given in Equation (1), the above convolution is applied on an expanded version of the
image G. Ths extension is done by replicating the first and last columns and rows. After the convolution,
the additional rows and columns are removed.
Multi-Resolution: Although simple, the PNSD algorithm usually converges slowly [1, 15]. Instead of
general acceleration schemes, we use the fact that the unknown image l is assumed to be smooth. Specifically,
we apply a multi-resolution algorithm that starts by estimating a coarse resolution image l, expands it by
interpolation and uses the result as an initialization for the next resolution layer. This way, few iterations
at each resolution are enough for convergence.

Summarizing the above, a proposed algorithm for the solution of Equation (1) involves the following
steps:



1. Input: The input to the algorithm is an image s of size [N,M ], and two parameters α and β.

2. Initialization: Compute a Gaussian pyramid of the image s. This pyramid is constructed by smooth-

ing the image with the kernel κPYR =




1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16




and decimating by 2:1 ratio. The process is repeated p times and produces a sequence of images
{sk}p

k=1. The image s1 is the original image s, and sp is the one with the coarsest resolution in
this pyramid. Define the numerical inner product 〈G,F 〉 = ∑N

n=1

∑M
m=1G[n,m]F [n,m], and the

numerical Laplacian at the kth resolution as ∆kG = G ∗ kLAP 2−2(k−1).

Set k = p, i.e., start at the coarsest resolution layer, and set the initial condition l0 = max {sp}.
3. Main Loop: For the kth resolution layer,

• Calculate GB
�
= ∆ksk.

• For j = 1, .., Tk Do:

(a) Calculate gradient

GA
�
= ∆klj−1,

G ← GA + α (lj−1 − sk)− β (GA −GB) .

(b) Calculate µNSD

µA
�
= 〈G,G〉,

µB
�
= −〈G,∆kG〉,

µNSD ← µA/ (αµA + (1 + β)µB) .

(c) Complete NSD iteration lj ← lj−1 − µNSD ·G,
(d) Project onto the constraints lj = max {lj , sk}.

• End j Loop;

The above loop solves the intermediate problem

Minimize: Fk[l] =
∫

Ωk

(
|∇l|2 + α(l − sk)2 + β |∇(l − sk)|2

)
dxdy

Subject to: l ≥ sk and 〈∇l, �n〉 = 0 on ∂Ω,

4. Update the next resolution layer:
If k > 1, the result lTk

is up scaled (2:1 ratio) by pixel replication into the new l0, the initialization for
the next resolution k− 1 layer. The resolution layer is updated k = k− 1, and the algorithm proceeds
by going again to Step 3. If k = 1, the result lT1 is the final output of the algorithm.

Relation to previous methods: Let us revisit the algorithms described in Section 2 and analyze them
in light of the proposed formulation. First, by setting α = β = 0, and removing the constraint l ≥ s we get
the Homomorphic filtering, that was shown to be equivalent to the basic formulation of the random walk
algorithms. Next, setting α = β = 0, with the constraint l ≥ s, one possible numerical relaxation scheme for
the solution of the resulting problem is the McCann-Sobel algorithm.

The Poisson Equation approach seems to be unrelated directly to our formulation. However, if we set
α(x, y) = τ(∆s) and set the second distance term to

∫
α(x, y)(l − s), keeping the constraint l ≥ s, we get



that the optimal illumination should satisfy the equation ∆l = τ(∆s), subject to l ≥ s, which is identical
(up to the constraint) to Horn’s formulation.
Uniqueness and Convergence: The following theorem shows that the convexity of the problem guarantees
existence and uniqueness of the solution.
Theorem: The variational optimization problem P, given by

Minimize: F [l] =
∫

Ω

(
|∇l|2 + α(l − s)2 + β |∇(l − s)|2

)
dxdy

Subject to: l ≥ s, and 〈∇l, �n〉 = 0 on ∂Ω,

with α > 0 and β ≥ 0, has a unique solution.
The proof is given in [20]. Regarding the convergence of the numerical scheme, the core of the proposed

algorithm is the Projected Normalized Steepest Descent (PNSD) algorithm, which is known to converge
for convex optimization problems, such as our case [1, 15]. The pyramidal shell of the algorithm can be
considered as an efficient method for creating a good initialization for the highest resolution layer stage. We
found that few iterations at the finer resolution layer are sufficient for effective convergence.

4 Color Images

Thus far we dealt with a single channel. In this section, we apply our method to color images. When we
process color images one option is to deal each color channel separately. We refer to channel-by-channel
processing as ‘RGB Retinex’. Treating the R, G, and B channels separately usually yields a color correction
effect. For example, RGB Retinex on a reddish image is expected to modify the illumination in such a way
that the red hue is removed so that the resulting image is brightened and corrected. Therefore, for some
kinds of images, RGB Retinex actually improves the colors. In few other cases, such color correction can
cause color artifacts that exaggerate color shifts, or reduce color saturation.

Another approach is to map the colors into a different color space, such as HSV, apply the Retinex
correction only to the intensity layer, and then map back to the RGB domain. We refer to this method as
the ‘HSV Retinex’. Color shifts in such cases are less-likely. The advantage is that we have to process a
single channel. The main drawback is that colors are no longer corrected with respect to the illumination
hue.

5 Alternative Illumination Correction

The reflectance image obtained by the Retinex process is sometimes an over-enhanced image. This can be
explained by the facts that i) the human visual system usually prefers some illumination in the image, and
that ii) removal of all the illumination exposes noise that might exist in darker regions of the original image.

We propose adding a corrected version of the reconstructed illumination back to the reconstructed re-
flectance image. Figure 2 describes this operation. The proposed scheme computes the illumination image
L = exp(l) from the intensity image S = exp(s), and the reflectance image R = S/L, as discussed in previous
sections. Then, we ‘tune up’ the illumination image L by a Gamma Correction operation with a free param-
eter γ, obtain a new illumination image L′, and multiply it by R, that gives the output image S′ = L′ · R.
The Gamma correction is performed by

L′ =W ·
[
L

W

] 1
γ

, (3)

where W is the White value (equal to 255 in 8-bit images).
The final result S′ is given, therefore, by:

S′ = L′ ·R =
L′

L
S

= W
(L/W )1/γ

L
S =

S

(L/W )1−1/γ
. (4)
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Figure 2: Returning part of the illumination to the reflectance image

For γ = 1, the whole illumination is added back, and therefore S′ = S. For γ = ∞, no illumination
is returned, and we get S′ = R ·W , which is the same reflectance image, R, as obtained by the original
retinex, stretched to the interval [0,W ]. The later case can also be considered as adding a maximum constant
illumination W to the reflectance image R.

Adding part of the illumination to the final image can also be found in the homomorphic filtering ap-
proach. In [17, Chapter 10], the proposed linear filter for the illumination calculation in the log domain,
removes high-pass spatial components of s, yet also attenuates the low-pass components by a factor of γi
(where i stands for illumination). This is analog to a gamma correction of the illumination with γ = γi,
since Equation (4) can be written in the form:

S′

W
=

(
L

W

)1/γ

·R, (5)

and therefore:

s′ − w =
1
γ
(l − w) + r

=
1
γ
(low-pass components) + (high-pass components). (6)

6 Results

In our experiments we applied the numerical algorithm of Section 3 to several test images. The results
correspond to α = 0.0001 and β = 0.1, unless indicated differently. Four resolution layers were used with
Tk = 2, 4, 8, and 16 iterations at each layer, 2 iterations at the finest (k = 1) and 16 at the coarsest resolution
(k = 4).

In the first test, we apply the RGB Retinex algorithm to three input images. The results are shown in
Figures 3–5.
The second test (Figure 6) presents the influence of the β values on the reconstructed reflectance image.

7 Concluding Remarks

In this paper we surveyed several algorithms for image illumination correction and dynamic range compen-
sation, based on a common motivation known as the Retinex theory. We have shown that in spite of their
different formulations, these algorithms can be derived from the same variational principle.

We introduced a comprehensive Retinex analysis, motivated by the different Retinex algorithms. Our
variational approach provides solid mathematical foundation, that yields efficient and robust numerical
solutions.
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Figure 3: Example 1. Images (b)-(e) refer to processing of all RGB components separately. (a) Original
image, (b) standard Gamma correction with γ = 2.2, (c) estimated illumination image, (d) proposed alg.
with γ = 2, (e) reflectance image (γ = ∞)

(a) (b) (c) (d) (e)

Figure 4: Example 2. Images (b)-(e) refer to processing of all RGB components separately. (a) Original
image, (b) standard Gamma correction with γ = 2.2, (c) estimated illumination image, (d) proposed alg.
with γ = 2, (e) reflectance image (γ = ∞).

(a) (b) (c) (d) (e)

Figure 5: Example 3. Images (b)-(e) refer to processing of all RGB components separately. (a) Original
image, (b) standard Gamma correction with γ = 2.2, (c) estimated illumination image, (d) proposed alg.
with γ = 2, (e) reflectance image (γ = ∞).

(a) (b) (c) (d)

Figure 6: The influence of β. (a) Original image, (b) β = 1e-5,(c)β = 1e-1, (d) β = 10.



We introduced a fast multi-resolution solution to the corresponding variational problem, resulting in an
algorithm whose computational complexity amounts to less than 11 convolutions of the full size image with
a 3x3 kernel plus a few addition algebraic operations per pixel. The advantages of the proposed algorithm
are:

1. Computational efficiency.

2. Image quality comparable to state of the art methods, and in some cases better results.

3. Parameter robustness. It was shown that for a wide range of the involved parameters, the output
quality is practically the same.
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