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Abstract 
 Effective methods for image denoising are typically 
based on iterative and locally adaptive algorithms. 
Recently, an alternative algorithm called ‘bilateral filter’ 
was proposed for the same task. This filter was shown to 
give similar and possibly better results compared to the 
ones obtained by the best iterative approaches. In this 
paper we present a relation between the bilateral filter and 
the Bayesian methodology. Based on this observation we 
show how the bilateral filter can be improved and 
extended to treat more general signal characteristics. 
 
1. Introduction 
 
 Removal of additive noise from a signal is an 
important problem in signal and image processing [1-7]. 
This problem is the most simplified reconstruction 
problem in the wider field of signal restoration [8-9]. 
Restoring a signal based on corrupted measurements of it 
is typically done by the Bayesian approach. This approach 
uses a statistical estimator applied on a Gibbs distribution, 
resulting with a penalty functional. This functional is 
minimized by a numerical optimization algorithm that 
yields the restored signal [8-9]. 
 Noise removal is a practical problem raised in many 
systems. Apart from the trivial application of removing 
noise prior to presenting the signal to a human observer, 
pre-smoothing a signal and noise removal may help to 
improve the performance for many signal-processing 
algorithms such as compression, detection, enhancement, 
recognition, and more. From this aspect, noise removal is 
appealing both because it relies on a well-established 
theory, and also because the proposed algorithms in this 
field are efficient and thus practical.  
 The more advanced methods for noise removal aim 
at preserving the signal details while removing the noise. 
This is achieved by a locally adaptive recovery paradigm. 
Such methods can be based on Anisotropic Diffusion 
(AD) [1-4], Weighted Least Squares (WLS) [5], or 
Robust Estimation (RE) [6-7]. The Mumford-Shah 
functional is a different yet resembling approach toward 
the same denoising task [10]. All these methods share the 
fact that local relations between the samples dictate the 
final result, and therefore, all these methods resort to an 
iterative algorithm. There is a solid theoretical bridge 
between these methods as well as to the Line-Process 
approach [11-12].  

 Recently, Tomasi and Manduchi proposed an 
alternative non-iterative bilateral filter for removing noise 
from images [13]. This filter is a weighted average of the 
local neighborhood samples, where the weights are 
computed based on temporal (or spatial in case of images) 
and radiometric distances between the center sample and 
its neighbors. This filter was shown to give similar and 
possibly better results compared to those obtained by the 
previously mentioned iterative approaches. However, The 
bilateral filter was proposed in [13] as an intuitive tool. In 
this paper we explore its theoretical relation to the AD, 
the WLS, and the RE techniques, and show that the 
bilateral filter also emerges from the Bayesian 
methodology, using a novel penalty functional. For this 
functional, we show that a single iteration of the Jacoby 
algorithm yields the bilateral filter. Based on this 
observation, we also show how the bilateral filter can be 
improved to further speed-up its smoothing operation, and 
show how this filter can be extended to treat piece-wise 
linear signals. Also, we should mention that the bilateral 
filter could be extended to treat more general 
reconstruction problems such as image restoration, image 
scaling, super-resolution and more. 
 In the next section we shortly describe the bilateral 
filter. Section 3 describes the AD, the WLS, and the RE 
methods. In Section 4 we propose a novel penalty term, 
strongly related to the one in Section 3. We show how this 
new penalty term yields the bilateral filter. Section 5 
discusses several improvements to the bilateral filter 
based on our new model. In Section 6 we compare the 
various methods discussed in this paper for simple 1D 
signals. We summarize this paper in Section 7. A wider 
and more detailed description of the results given here can 
be found in [16].  
 
2. Noise Suppression Via the Bilateral Filter 
 
 We start our discussion with a presentation of the 
bilateral filter as proposed originally by Tomasi and 
Manduchi [13]. In order to simplify the notations we stick 
to the 1D case throughout this paper, though all 
derivations apply to the 2D case just as well.  
 An unknown signal X represented as a vector goes 
through a degradation stage in which a zero-mean white 
Gaussian noise V is added to it. The result is the corrupted 
signal Y given by 

Y X V= + .                          (2.1) 



 

Our task is to remove this noise and restore X, given the 
degraded signal Y. The bilateral filter suggests a weighted 
average of pixels in the given image Y 
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This equation is simply a normalized weighted average of 
a neighborhood of [2N 1]+  samples around the kth 

sample. The weights W[k,n] are computed based on the 
content of the neighborhood. For the center sample X[k], 
the weight W[k,n] is computed by multiplying the 
following two factors: 
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The final weight is obtained by multiplying the two  

S RW[k,n] W [k,n] W [k,n]= ⋅ .             (2.4) 
The weight includes two ingredients – temporal (spatial in 
case of images) and radiometric weights. The first weight 
measures the geometric distance between the center 
sample [k] and the [k-n] sample, and Euclidean metric is 
applied here. This way, close-by samples influence the 
final result more than distant ones. The second weight 
measures the radiometric distance between the values of 
the center sample Y[k] and the [k-n] sample, and again, 
Euclidean metric is chosen. Therefore, samples with 
close-by values tend to influence the final result more 
than those having distant value. Of-course, for both 
weights we are free to adopt any other reasonable metric. 
Also, instead of using the Gaussian function, other 
symmetric and smoothly decaying functions can be used.
   
 
3. Anisotropic Diffusion, WLS and RE 
 
 For the same denoising problem described above, a 
known approach is to define a penalty functional that best 
represents our requirements from the unknown X. We 
want the result to be as close as possible to the measured 
signal Y while being smooth. Smoothness should be 
forced in a temporally (spatially) dependent manner in 
order not to suppress edges in the signal X. Thus, one 
either uses weighted least squares (WLS) [5] 
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or a robust estimation technique (RE), using an ‘M-
function’ denoted as ( )ρ α  [6-7] 
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The matrix D stands for a one-sample shift to the right 
(towards the origin) operation. Thus, the term (X-DX) is a 
discrete approximation of a backward first derivative. The 
matrix W is a diagonal matrix that weights the local 
gradients. In the RE, ( )ρ α  is symmetric non-negative 

function that penalizes gradient values. The choice 

( ) 20.5ρ α α=  gives the trivial LS approach. Both these 

penalty functionals can be shown to emerge from the 
Bayesian framework and represent the MAP estimation 
[5-9]. In both cases, an iterative algorithm is typically 
required in order to find the signal X that minimizes the 
functionals [5-7]. A natural choice is the Steepest Descent 
(SD) algorithm due to its simplicity [14]. This algorithm 
requires the computation of the first derivative of the 
functionals 
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Using Y as initialization gives 
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or  
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Looking at both iterative procedures, we see that they will 
produce the same solution after the first iteration if  
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where the above division is applied entry-by-entry. Black, 
Sapiro, Marimont and Heeger linked between the 
anisotropic diffusion and the robust estimator and 
obtained a similar formula [11].  
 The Anisotropic Diffusion (AD) is different in the 
sense that it uses the continuum to represent its behavior 
[1-4]. However, since eventually we work on a discrete 



 

signal, we discretize the propagation equations and get a 
similar equation to the one shown for the RE method [11]. 

The AD, the WLS and the RE algorithms are based 
on a solid theory of statistical estimators and 
regularization theory [1-7]. The bilateral filter, on the 
other hand, is an ad-hoc filter without theoretic 
background, and nevertheless with impressive results.  
 
4. Derivation of the Bilateral Filter 

 
We propose the following new penalty functional for 

the unknown signal X 
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When the matrix D is raised to the power n it implies a 
shift right of n samples. Thus, as opposed to the previous 
smoothness terms, the difference between this functional 
and the one presented in Equation (3.1) is the use of 
several scales of derivatives, all applied directly on the 
unknown image. Taking the first derivative of Equation 
(4.1) with respect to the unknown X we get the following 
gradient vector 
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If we assume again a single iteration of the SD algorithm 
applied with Y as the initialization, we get 
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Speeding-up the above iteration can be done using locally 
adaptive step-size, obtained by the Jacoby algorithm [14]. 
The Hessian of our functional is the following matrix  
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From this matrix we need to extract the main diagonal, 
which contains real and positive values. We define a step-
size matrix M, which extends the notion of the previously 

used µ by { } 1
(Y) diag (Y)ξ −= +  M I H . The additional 

term ξI  relaxes the step-size matrix and ensures 
stability. Thus, the Jacoby iteration is 
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Choosing the weights can be done using the Equation 
(3.7), but they should also reflect our decreased 
confidence in the smoothness penalty term as n grows 
towards N. Thus, a reasonable choice is  
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for some non-negative symmetric and monotonically 

decreasing function V(n) (e.g. nV(n) , 0 1α α= < < ). We 
can refer to the above expression as a time varying 
convolution of the form 
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After several (tedious) algebraic steps we obtain 
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We see that the sum of all coefficients is 1, as should be 
in the bilateral filter. If the M-function ( )ρ α  is 

symmetric and monotonic non-decreasing (from 0 to ∞ ), 
all the filter coefficients are non-negative. The coefficient 

[ ]f ,kl  represents the weight according to which 

Y[k ]− l  contributes to the evaluation of the restored 
pixel X[k]. This coefficient includes two parts: the spatial 
weight V( )l  and the radiometric weight given by 

{ } ( )' Y[k] Y[k ] Y[k] Y[k ]ρ − − − −l l . These two parts 

are the same as described in section 2 for the Tomasi 
Manduchi bilateral filter. Thus, we get the same filter as 
in the bilateral filter in [14] if we choose  
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5. Improvements of the Bilateral Filter 
 
 The bilateral filter can be speeded-up in one of two 
methods, and combination of them. Given a general 
quadratic penalty function of the form 
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the SD iteration reads 
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One way to speed the SD convergence is the Gauss-Siedel 
approach [15-16], where the samples of 1X̂  are computed 
sequentially from 1X̂ [1]  to 1X̂ [L] , and for the calculation 
of 1X̂ [k] , instead of using only 0X̂  values, updated 
values of 1X̂  are used. This ‘bootstrap’ method is known 
to be stable and converge to the same global minimum 
point of the penalty function given in Equation (5.1) [15-
16]. A more systematic way to describe this process is via 
the decomposition of the Hessian to the upper-triangle, 
lower-triangle, and diagonal parts.  
 A different alternative for speeding the bilateral filter 
is to exploit the fact that the gradient is naturally sliced 
into several parts. Returning to Equation (5.2) we can 
update the output after every item from the summation, 
using it to compute the next gradient terms. Thus, the 
final solution is closer to the global minimum point of the 
penalty function in Equation (5.1). Note that by applying 
J sub-iterations, the computational load is similar to the 
one required with J iterations of the WLS/RE methods. 
However, the results are expected to be different, since by 
applying different kinds of derivatives (due to the use of 
different neighbors) we get stronger smoothing effect.  
 When treating non-piece-wise constant signals, the 
bilateral filter is not expected to perform well, and this 
could be seen since the penalty functional in Equation 
(4.1) is designed for piece-wise constant signals. Instead, 
we may propose a different penalty 
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Following the same analysis as before, one may show that 
there is an effective spatially varying filter (see [18]). 
 
6. Simulations 
  
 Figure 1 presents a piece-wise constant test image 
(X) and its noisy version (Y). Figure 2 (a and b) shows 
the results obtained by the WLS and the RE methods. The 
WLS was applied with weights computed via the 
assumption ( )ρ α α= , choosing 1λ = , and applying 50 
SD iterations. Similarly, the RE used ( )ρ α α= , 1λ =  
and 50 iterations. We measure performance by computing 
the MSE gain, defined as the ratio between the Mean-
Square-Error (MSE) before and after the filtering. The 
obtained MSE gain in the WLS method is 3.90. The MSE 
gain for the RE is 10.99. Figure 2 (c and d) shows the 
result of the bilateral filter with weights as in Equations 
(4.10) and (4.11) with s R1, 2.5, 0.5, N 6λ σ σ= = = = . 
A single application of this filter gave an MSE gain of 
23.50. The result after 10 iterations of the bilateral filter 
with an MSE gain of 318.90 is shown in Figure 2 (d). 
Applying the Gauss-Siedel with the same parameters (and 

thus, having the exact same complexity) we got an MSE 
gain of 39.44. Applying the second speed-up approach 
with the sliced gradient terms we got an MSE gain of 
197.26. 
 Figure 3 (a) shows a piece-wise linear image X and 
its noisy version Y (b). An attempt to recover this signal 
using the regular bilateral gave an MSE gain of 1.53 (c). 
A piece-wise-linear bilateral filter as proposed above gave 
an MSE gain of 12.91 (d).  
 As a final point in this section, we consider the 
continuity of the filter coefficients in the RE, and the fact 
that it is not so for the bilateral filter. Figure 4 shows a 
noisy piece-wise image (checkerboard). This signal was 
filtered by the RE (same parameters as before and using 
1500 iterations) resulting with an MSE gain of 2.32 (c). A 
single iteration of the bilateral filter with the parameters 
( s R1, 5, 0.5, N 6λ σ σ= = = = ) gave an MSE gain of 
19.97 (d). The main reason for the much better 
performance with the bilateral is its ability to create a 
local filter that has a non-connected structure.  
 
7.  Summary  
 
 In this paper we proposed a theory for explaining the 
origin of the bilateral filter, and shown that the Bayesian 
approach is also in the core of the bilateral filter, just as it 
has been for the AD, WLS and the RE. We have also 
shown how this new insight can serve for improving the 
bilateral filter and extend its use for other applications. 
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Figure 1 – A piece-wise constant test image (left) and its noisy version (right). 
 

 
 
 
 

 
 
 
 
 
 
 

Figure 2 – (a) The WLS with 50 iterations (MSE gain=3.90); (b) the RE with 50 iterations  (MSE gain=10.99); (c) The bilateral filter result after one 
iteration (MSE gain=23.50);  and (d) after 10 iterations (MSE gain=318.90). 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 3 – (a) A piece-wise linear test signal; (b) Its noisy version; (c) The regular bilateral; and (d) The piece-wise-linear bilateral. 
 

 

 
 
 
 
 
 
 
 
 
 

Figure 4 – (a) A piece-wise constant test image; (b) Its noisy version; (c) RE with 1500 iterations; and (d) Bilateral filter. 
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