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Abstract. Gradient based approaches in motion estimation (Optical-Flow) refer to those techniques that estimate
the motion of an image sequence based on local derivatives in the image intensity. In order to best evaluate local
changes, specific filters are applied to the image sequence. These filters are typically composed of a spatiotemporal
pre-smoothing filter followed by discrete derivative ones. The design of these filters plays an important role in
the estimation accuracy. This paper proposes a method for such a design. Unlike previous methods that consider
these filters as optimized approximations for continuum derivatives, the proposed design procedure defines the
optimality directly with respect to the motion estimation goal. One possible result of the suggested scheme is a set
of image dependent filters that can be computed prior to the estimation process. An alternative interpretation is the
creation of generic filters, capable of treating natural images. Simulations demonstrate the validity of the new design
approach.

Keywords: motion estimation, optical flow, pre-smoothing, gradients computation, optimal filters, constrained
minimization

1. Introduction

Estimating motion between two images plays a vi-
tal role in many applications, and has drawn a lot of
research attention during the last two decades or so
[9, 16]. There are many ways to approach this problem
and indeed many algorithms have been proposed for
this task. In the work by Barron et al. [2] a comparative
survey on many motion estimation algorithms is given,
considering different disciplines. One family of such
algorithms which is found to perform very well is the
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laboratories, Israel.
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gradient-based methods, originally proposed by Horn
and Schunck [8].

The gradient-based methods emerge all from the as-
sumption that the intensity value of a physical point
in a scene does not change along the image sequence.
This assumption yields directly the so called bright-
ness change constraint equation (BCCE) [2, 8, 9, 16].
Denoting the image sequence gray values at the spa-
tial location (x , y) and time t by a function I (x, y, t),
the constant brightness assumption on two consecutive
images implies

I (x, y, t) = I (x + δx, y + δy, t + δt). (1)

Taking the first order Taylor expansion of the right term
around the spatiotemporal point (x, y, t) and neglecting



346 Elad, Teo and Hel-Or

higher order terms gives

I (x, y, t) ≈ I (x, y, t) + ∂ I (x, y, t)

∂x
δx

+ ∂ I (x, y, t)

∂y
δy + ∂ I (x, y, t)

∂t
δt. (2)

Defining (ux , uy) = (δx/δt, δy/δt), this vector speci-
fies the spatial velocity of each point in the image se-
quence. Assuming a time difference δt = 1, the above
equation can be rewritten as

Ix (x, y, t)ux (x, y, t) + Iy(x, y, t)uy(x, y, t)

+ It (x, y, t) ≈ 0, (3)

where Ix , Iy and It denote the spatial and temporal
derivatives, correspondingly. This equation, known as
the BCCE, relates the spatial and temporal derivatives
of an image sequence to the motion vector (ux , uy) at
each location (x, y, t). Since the above equation forms
a single constraint over the two component motion vec-
tor, more information is required in order to uniquely
recover the motion field. For this purpose, a spatial
smoothness [2, 9, 16] and/or temporal one [3, 4, 6,
16] on the motion field can be imposed. Indeed, the
main difference between various gradient based meth-
ods lays in the way these smoothness assumptions are
applied.

One issue which is critical to the application of the
above BCCE is the fact that image gradients are com-
puted based on sampled information. It is commonly
agreed that approximating the spatiotemporal gradients
by finite differences produces error in the above equa-
tion and subsequently in the estimated motion [2, 15].
One of the major conclusions in the survey work in [2]
is that “the method of numerical differentiation is very
important—differences between first order pixel differ-
encing and higher order central differences are very
noticeable”.

Beyond the need for gradient estimation, it is com-
monly recommended to apply spatiotemporal pre-
smoothing to the image sequence [2, 9, 16]. There are
several reasons for this pre-processing stage:

1. Additive noise is amplified when combined with
gradient operations. Pre-smoothing attenuates this
noise and thus reduces its damaging effects;

2. Pre-smoothing approximates the data to locally be-
have like tilted planes. Such behavior justifies the
first order Taylor approximation of the BCCE as
described above;

3. Pre-smoothing attenuates the spatial and temporal
aliasing effects in the image sequence. This way the
estimated motion is more accurate; and

4. Typical finite differentiators are more accurate at
low frequencies. Since pre-smoothing reduces the
high frequencies we get that the overall gradient
estimation becomes more accurate.

Since the pre-smoothing and the gradient approx-
imations are both linear and spatiotemporal invariant
(LSTI) operations, it is possible to combine them into a
single filtering stage. In the most general case, it is sug-
gested to implement the BCCE in the following way:

Ix (x, y, t)ux (x, y, t) + Iy(x, y, t)uy(x, y, t)

+ It (x, y, t) = {I ∗ F1}(x, y, t)ux (x, y, t)

+ {I ∗ F2}(x, y, t)uy(x, y, t) + {I ∗ F3}(x, y, t)

= 0, (4)

where F1, F2 and F3 are 3-D digital filters of some
sort, and {A ∗ B}(x, y, t) denotes discrete convolution
operation between two 3-D signals.

Several attempts to define or design these filters, to-
gether or separately, have been reported in the litera-
ture [2, 15]. These methods treat the above question
as a problem of approximating the continuum deriva-
tive operators, overlooking the fact that these filters are
only the means for the purpose of motion estimation.
The question that is addressed in this paper refers to the
design of these filters directly with respect to the goal
in mind. The undertaken approach suggests finding the
filters which are (near-) optimal directly with respect
to the motion estimation error.

A somewhat similar attempt using a different
methodology is described in [14], where several gra-
dient operators are compared by studying their perfor-
mance on the shape from motion (SFM) task. While we
attach the design of the derivative filters to a specific
task, we take a different path of optimizing these filters
rather than comparing known methods.

Since 3-D separable filters are easier to implement,
it is commonly assumed that F1, F2 and F3 are sepa-
rable [2, 8, 15]. We have chosen to apply this line of
reasoning in this paper too, namely, the designed fil-
ters are 1-D kernels which are used to construct the
3-D required kernels (similar to [15]). However, the
methodology described here can be extended directly
to higher dimensions in a straightforward manner.

This paper is organized as follows: Section 2 briefly
surveys the existing approaches for the design of the
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required filters. Section 3 presents our proposed ap-
proach. In Section 4 several examples illustrating the
new design procedure are given. Summary and conclu-
sions are given in Section 5. The interested reader is
directed to [5] for a shorter version of this work with a
different perspective.

2. Existing Motion Estimation Filters

2.1. General

The numerical analysis literature contains many meth-
ods for approximating differentiation [1, 9]. Most of the
papers describing optical flow estimation through the
BCCE either apply trivial differentiations like 1

2 [−1, 0,
1] [2], or more sophisticated alternatives [3]. In some
papers the choice of these filters is even not mentioned,
hinting to the hidden belief that these filters have small
effect on the performance obtained.

In their original paper, Horn and Schunck proposed
an approximation of the gradient filters with no dis-
tinct pre-smoothing [8]. The proposed gradient is ob-
tained by averaging the four first differences taken over
a 2 × 2 × 2 cube in the image sequence (see Fig. 1).
The obtained derivatives refer to the center point of the
processed cube. No motivation or justification for this
choice of gradient estimation is given. In [2], these fil-
ters were said to be “relatively crude form of numerical
differentiation and can be the source of considerable
error”.

Barron et al. proposed as an alternative the appli-
cation of a 5 × 5 × 5 spatiotemporal pre-smoother,
constructed as a sampled Gaussian filter with 1.5 vari-
ance at each axis [2]. This value of variance was found
empirically to give the best results. The differentiator
proposed is the 5-tap 1-D filter 1

12 [−1, 8, 0, −8, 1],
which is a result of a design procedure described in

Figure 1. Horn and Schunck’s proposed filters.

[9]. For completeness, the next sub-section shortly de-
scribes this and related design procedures.

2.2. Optimal Differentiators

Assume that the required differentiator is a linear
phase finite impulse response (FIR) filter with odd
number of taps. These assumptions are reasonable
because (i) linear phase filters assures a constant
phase delay, which means a preservation of the sig-
nal structure [11]; (ii) linear phase can only be im-
plemented by FIR filters [11]. This is of-course a
benefit since FIR filters are easily implemented to im-
ages; and (iii) a filter with even number of taps ap-
proximates the gradient at the midpoint between two
adjacent pixels, whereas a filter with odd number of
taps corresponds the calculated gradients to the pixels’
center.

This choice of differentiator implies that its impulse
response is antisymmetric [11]. The general form of
the filter’s impulse response is given by

{d(k)}k
k=−L = [dL dL−1 · · · d2 d1 0 − d1 − d2 · · ·

− dL−1 − dL ]. (5)

A Fourier transform on d(k) yields the following trans-
fer function:

D(θ )=
L∑

k=−L

d(k) exp{− jkθ} = 2 j
L∑

k=1

dk sin(θk).

(6)

It is easily shown from the above equation that using
odd number of taps constrains this transfer function to
be zero at the frequencies 0 = ±π [11]. This in turn
means that the approximated differentiation is severely
compromised at high frequencies. However, this error
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is negligible if we assume that high frequencies are
attenuated by the pre-smoothing operation.

Our goal is to obtain a near-accurate differentiator
transfer function D(θ ) = jθ . The filter coefficients
{d(k)}L

k=1 are to be designed to meet this requirement
as closely as possible. There are several ways to de-
fine an optimality criteria in a way that relates these
coefficients to the desired transfer function. Among
the most popular methods are the Impulse-Response-
Truncation (IRT) approach, the windows design ap-
proach, the Weighted Least-Squares (WLS) criteria,
and the minimax Remez exchange algorithm [11].

The design procedure presented in [9] is different,
yet resembles the WLS approach. Using the first order
Taylor expansion of the function sin (x) in Eq. (6), we
get for the choice L = 2,

D(θ ) = 2 j[d1 sin(θ ) + d2 sin(2θ )]

= 2 j[d1 + 2d2]θ − 2 j

6
[d1 + 8d2]θ3 = jθ. (7)

Thus, choosing 2(d1 + 2d2) = 1 and d1 + 8d2 = 0
we get that the second term vanishes and the approx-
imation holds rather well. The obtained filter is thus
1

12 [−1, 8, 0, −8, 1]. Since the truncated Taylor expan-
sion error grows as a function of θ , we get that the
obtained filter is similar to a weighted least-squares es-
timate of a differentiator, with higher weights at low
frequencies. Again, this choice of weight is reasonable
if pre-smoothing is applied. Filters with higher num-
ber of taps can be obtained using higher orders of the
Taylor expansion in a similar manner [9].

Figure 2 presents the 3-D filters that are applied using
the above described filters. A 3-D [5 × 5 × 5] pre-

Figure 2. Barron’s proposed filters configuration.

smoothing kernel is first applied to the image sequence,
followed by a differentiator per each axis separately.
The resulting three 3-D kernels F1, F2, and F3, refer to
the BCCE as given in Eq. (4).

Figure 3 presents the actual 1-D filters for 9-taps:
pre-smoother p(x) and differentiator (combined with
the smoother) d(x) ∗ p(x). The pre-smoother is taken
to be a sampled Gaussian filter with 1.5 variance, and
the differentiator is the optimal 5-taps filter as de-
scribed above. The presented filters are given in their
continuous form, interpolated using the sinc function.
Figure 4 presents the power spectrum of the differen-
tiator, |D(θ )P(θ )|, compared to an analytic differenti-
ation of the smoother filter, | jθ · P(θ )|. These filters
were proposed by Barron [2] as good candidates for the
BCCE approximation. As expected, the error between
these two responses is very small for low frequencies,
but gets higher as the frequency tends to ±π .

2.3. Simoncelli’s Filters

An innovative design approach for the determination
of the required filters is presented by Simoncelli [15].
Several important aspects that were traditionally over-
looked are referred in this work:

1. Continuum versus the discrete grid—Most of the
differentiators are designed on the given discrete
grid. However, the given discrete signal is a result
of a 3-D sampling of an originally continuous image
sequence. In order to be more accurate, the design
of discrete differentiator filters should be done with
respect to the continuum. This means that a function
b(x, y, t), interpolating the signal to the continuum
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Figure 3. Pre-smoothing filter p(x) (a) and (b) its derivative d(x)∗ p(x) (b) as given by applying the optimal differentiator suggested by Barron.

Figure 4. Barron’s differentiator filters in the frequency domain
|D(θ )P(θ )| (solid line) and | jθ · P(θ )| (dashed line).

is required. Simoncelli [15] suggests using the sinc
function or more “gentler function” such as a Gaus-
sian of some sort.

2. Design of pairs of filters—Instead of designing a
single derivative filter, two filters are designed si-
multaneously, where one of them relates to the other
as a differentiator. This new idea suggests that a sig-
nal I (x) and its derivative Ix (x) are hard to come-
by accurately. Alternatively, we can supply the pair
{I ∗ p}(x) and {I ∗ d}(x) which relate to each other
as an original and its derivative in a more accurate
form.

If we denote a smoothing and a differentiating
1-D filter pair in the frequency domain by P(θ ) and
D(θ ) respectively, then the error [ jθ P(θ ) − D(θ )]
can be minimized in a more accurate manner. For

example, high frequencies which are not treated cor-
rectly by D(θ ) are attenuated by P(θ ) in order to
minimize the above approximation.

3. Weighting the approximation error—Since the
required filters are designed to work on natural im-
ages, it is reasonable to weigh the approximation
error accordingly. Simoncelli [15] suggests that the
design should be done in the frequency domain, and
the weight should manifest the 1/θ spectral behavior
of typical images.

Using the above, Simoncelli’s approach proposes a
design of the filters using the WLS criterion

ε2(p, d) =
∫ π

−π

1

|θ |0.5
[ jθ P(θ ) − D(θ )]2dθ (8)

where: P(θ ) =
L∑

k=−L

p(k) exp{− jkθ} and

D(θ ) =
L∑

k=−L

d(k) exp{− jkθ}.

The solution is obtained using the Singular Value De-
composition (SVD) approach. The resulting filters are
normalized so that p(k) yields a fixed DC response.
This way, a pair of 1-D filters is obtained: p(k), the
smoothing, and d(k), the derivative filter. Referring to
Eq. (4) and assuming the separability of the 3-D filters,
the filters to be used are

{I ∗ F1}(x, y, t)ux (x, y, t) + {I ∗ F2}(x, y, t)

× uy(x, y, t) + {I ∗ F3}(x, y, t) = 0 (9)
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Figure 5. Simoncelli’s proposed filters configuration.

Figure 6. Simoncelli’s proposed filters (a) p(x) and (b) d(x).

where: F1(x, y, t) = d(x) ∗ p(y) ∗ p(t)

F2(x, y, t) = p(x) ∗ d(y) ∗ p(t)

F3(x, y, t) = p(x) ∗ p(y) ∗ d(t).

Figure 5 presents the 3-D filters that are applied using
the above described filters. This flow of operations is
consistent with Eq. (9).

Figure 6 presents the actual 1-D Simoncelli’s filters
for 9-taps: pre-smoother p(x) and differentiator d(x).
The presented filters are given in their continuous form,
interpolated using the sine function. Figure 7 presents
the frequency response of the differentiator, D(θ ), com-
pared to an analytic differentiation of the smoother fil-
ter, jθ · P(θ ). This time the error between these two
options is very small, compared to the result obtained
with Barron filters.

Figure 7. Simoncelli’s proposed filters in the frequency domain
|D(θ )| (solid line) and | jθ − P(θ )| (dashed line) (they are actually
one on top of the other).
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2.4. Existing Approaches—Summary

So far we have presented the existing methods for the
determination of the filters to be applied in the BCCE
for motion estimation. Among the various properties
of these proposed filters, the following concepts are
beneficial and should be kept in any design of derivative
filters:

1. The produced filters should be FIR linear phase fil-
ters.

2. The design should relate to an interpolated version
of the discrete image sequence in order to refer to
the continuum.

3. The design of all the required filters should be done
simultaneously, in order to assure general form of
optimality.

4. The design procedure should consider the spec-
tral construction of typical images, or better yet -
the specific spectral structure of a given image se-
quence.

5. The design procedure should consider the number
of taps allocated for the required filters, and should
exploit them in the best possible manner.

6. If possible, the design should yield separable fil-
ters which are easier to implement. However,
in the following discussion we shall deal with
separable filters as emerging from 1-D design
procedure.

Beyond these specifications, there are two more im-
portant requirements that are missing from the discus-
sion so far, and should be met in order to obtain better
results:

1. For the general optimal solution the motion char-
acteristics should be considered. For example, as-
sume that the motion vectors components are in the
range of [−2, 2] or [−0.2, 0.2]. This choice should
somehow influence the applied filters. No existing
method suggests such property.

2. Most important of all, minimization should be done
with respect to the motion estimation error (or re-
lated terms, if direct minimization of this error is
too complicated), which is our final goal.

The next section presents a new approach for the
design of the required filters with the attempt to answer
all the above requirements.

3. The Proposed Approach

3.1. Shiftable Filters

As said earlier, we will restrict our treatment to the
1-D case. Extension of the methodology presented here
to higher dimensions is straightforward, but involves
longer and cumbersome expressions.

Assume that a pair of 1-D discrete images (vec-
tors) are given with apparent small motion between
them. These images are denoted by I1(k) and I2(k) =
I1(k + τ (k)), (k ∈ [1..L I ]). The goal is to estimate the
space varying motion field τ (k). Using an interpolat-
ing function b(x) we can recover the continuous images
Î 1(x) and Î 2(x) by

Î 1(x) =
L I∑

k=1

I1(k)b(x − k) = b(x) ∗ I1(k)

(10)

Î 2(x) =
L I∑

k=1

I2(k)b(x − k) = b(x) ∗ I2(k).

Assuming that τ (x) is small, and taking the first order
Taylor expansion of the image Î 2(x) = Î 1(x + τ (x))
around x yields

Î 2(x) = Î 1(x + τ (x)) = Î 1(x)

+ ∂ Î 1(x)

∂x
τ (x) + o{τ (x)2} (11)

⇒ b(x) ∗ I2(k) = b(x) ∗ I1(k) + τ (x) · ∂b(x)

∂x
∗ I1(k)

+ o{τ (x)2}.

In the above expansion we have neglected the terms
which correspond to the derivative of τ (x) since τ (x)
is assumed to be locally smooth.

This equation is actually the BCCE as mentioned in
the previous section. It contains an error term which
is quadratic with respect to the motion vector τ (x), re-
sulting from the convergence property of the Taylor
series. This error term means that small displacements
are estimated more accurately than bigger ones. In the
general case, however, this behavior is too restrictive.
There is no reason to assume that small displacements
are required more accurately than others. It is a desir-
able property to be able to closely control the behavior
of the above error, and match it to prior knowledge on
the motion field.

The above equation contains the application of three
filters; one filter is applied to I2 (the filter b(x)), and
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two filters to I1 (the pair b(x) and ∂b(x)/∂x). Two of
these three filters are identical, and the third is a pure
derivative of the formers. Again, this choice of filters
is too restrictive. In the general case, the application of
three different filters can be suggested as an alternative.
These filters will be designed to meet some desired
error properties according to our prior knowledge on
the motion field. This general form can be expressed
as

m̂(x) ∗ I2(k) = ĥ(x) ∗ I1(k) + τ (x) · ĝ(x) ∗ I1(k)

+ ε(x, τ (x)), (12)

where m̂(x), ĥ(x), and ĝ(x) are three different filters.
Here, m̂(x), ĥ(x), and ĝ(x) are represented as continu-
ous filters. However, note that these filters are actually
discrete FIR kernels whose interpolated versions are
the continuous filters

m̂(x) =
L∑

k=−L

m(k)b(x − k) = mT b(x)

ĥ(x) =
L∑

k=−L

h(k)b(x − k) = hT b(x) (13)

ĝ(x) =
L∑

k=−L

g(k)b(x − k) = gT b(x),

where mT = [m(−L), . . . , m(L)], hT = [h(−L), . . . ,
h(L)], gT = [g(−L), . . . , g(L)], and b(x)T = [b(x +
L), . . . , b(x − L)]. Though the number of taps of these
filters is 2L +1, there is no restriction to an odd support
in the general case.

In order to obtain the optimal triplet m̂(x), ĥ(x), and
ĝ(x), the above equation should hold approximately for
each position x and for any possible motion field τ (x).
In other words, the error term that should be minimized
is

�(m, h, g) = Eτ (x)

{ ∫
x
ε(x, τ (x))2dx

}
, (14)

where the term ε(x, τ (x)) is as defined in Eq. (12), and
Ez{ f (z)} is the expectation value of f (z). The error
term is minimized over all possible x and τ (x). While
the minimization over all the relevant x is simple, the
minimization over all possible τ (x) is problematic due
to the necessity to specify an infinite number of possible
motion patterns. To avoid this problem, the motion field
can be expressed as a parametric function where the

minimization will be done over the admissible range of
the parameters. A simple parametric expansion using
again the Taylor series gives

τ (x) = τ (x0) + τx (x0)x + o(x2). (15)

The zero-th order approximation approximates τ (x) as
a pure translation: τ (x) ≈ τ (x0) ≡ τ . The first order
approximation adds an additional term τx (x0)x resem-
bling a scaling factor to the motion field. At this point,
we will concentrate on the pure translation model. More
complicated motion model may be treated similarly.

According to the above assumption we get that
I2(k) = I1(k + τ (k)) ≈ I1(x + τ ). That in turn
means that applying the shift invariant filter m̂(x) to
the image I2(k) (which is equal to I1(x + τ )), can be
performed equivalently by first applying the (shift in-
variant) transformation to the filter, and then convolv-
ing with the original image, namely m̂(x) ∗ I2(k) =
m̂(x) ∗ I1(k + τ ) = m̂(x + τ ) ∗ I1(k). Therefore, we
can rewrite Eq. (12) with respect to I1(x) solely, i.e.,

m̂(x + τ ) ∗ I1(k) = ĥ(x) ∗ I1(k) + τ · ĝ(x) ∗ I1(k)

+ ε(x, τ ). (16)

In the above equation, the function m̂(x), shifted by
τ , is approximated by ĥ(x) + ĝ(x)τ . This resembles
the concept of “Shiftable Filters” as defined in [17],
where a transformed version of a function is expressed
as a linear sum of a set of basis functions.

3.2. The Penalty Function

Assuming that the possible τ are bounded to the range
|τ | ≤ D, and assuming that the interpolating function
is b(x) = sin(πx)/(πx) , the error term �(m, h, g) can
be rewritten as

�(m, h, g) =
∫

x

∫ D

τ=−D
ε2(x, τ ) dx dτ

=
∫

x

∫ D

τ=−D
[I1(x) ∗ (m̂(x + τ ) − ĥ(x)

− ĝ(x)τ )]2 dx dτ

=
∞∑

k=−∞

∫ D

τ=−D
[I1(k) ∗ (m(k + τ ) − h(k)

− g(k)τ )]2dτ, (17)
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where m̂(x), ĥ(x), ĝ(x) are as defined in Eq. (13). The
fact that the integration over all x is equivalent to the
summation over all integer values of x is based on the
choice of the interpolating function. A proof of this
property is given in Appendix A.

Note that if we have a prior knowledge about the dis-
tribution of the motion vectors (for example, knowing
that smaller values are more probable), we can add a
weighting function, w(τ ), into the internal integration,
forcing smaller error for more probable values. Simi-
larly, if we know that errors around the origin (τ = 0)
are detrimental (e.g. in a pyramidal motion estimation
methods), this could be easily inserted as weight to the
above defined penalty function.

In order to avoid the required convolution in the
above function, it is possible to apply the minimiza-
tion in the frequency domain. Using Parseval’s theo-
rem we get that the design goal is equivalent to the
following:

�(m, h, g) =
∫ π

θ=−π

∫ D

τ=−D
�θ [ε(k, τ )]2dθdτ

=
∫ π

θ=−π

∫ D

τ=−D
|ϒ(θ, τ )|2dθdτ

=
∫ π

θ=−π

∫ D

τ=−D
|I1(θ )|2|(e jθτ M(θ )

− H (θ ) − G(θ )τ )|2dθdτ

=
∫ π

θ=−π

∫ D

τ=−D
|I1(θ )|2|ϒ0(θ, τ )|2dθdτ,

(18)

where �θ [ f (k)] stands for the Discrete Fourier
Transform (DFT) of f (k). The terms M(θ ), H (θ ),
G(θ ), I1(θ ), and ϒ(θ, τ ) are the DFT of m(k), h(k),
g(k), I1(k), and ε(k, τ ), respectively. I1(θ ) is normal-
ized to be in the range 0 ≤ |I1(θ )| ≤ 1.

The error term �(m, h, g) is constructed as a
Weighted Least Squares (WLS) of the error ϒ0(θ, τ )
summed over all the frequencies θ and all admissi-
ble τ , and weighted by the spectra of the image I1(θ ).
This term exhibits the desired property that smaller er-
ror |ϒ0(θ, τ )| is required in frequencies where |I1(θ )|
is higher. However, this term also causes the energy
of the resulting filters M(θ ), H (θ ) and G(θ ) to be lo-
cated in frequencies where |I1(θ )| has low energy. This
in turn means that the obtained filters are likely to be
modulated, and applying them to the image may lead
to an uninformative result, leading to inaccuracies. The
correction of this behavior can be obtained by adding

an additional term enforcing the designed filters to be
located at frequencies where |I1(θ )| is high. The overall
penalty function is therefore

�total(m, h, g)=
∫ π

θ=−π

∫ D

τ=−D
|I1(θ )|2|ϒ0(θ, τ )|2dθdτ

+ α

∫ π

θ=−π

∫ D

τ=−D
[1 − |I1(θ )|2]

× |ϒ0(θ, τ )|2dθdτ

=
∫ π

θ=−π

∫ D

τ=−D
[α + (1 − α)|I1(θ )|2]

× |ϒ0(θ, τ )|2dθdτ. (19)

The parameter α controls the relative weight between
�(m, h, g) and the new penalty, and should be in the
range 0 ≤ α ≤ ∞. For α = 0 we get the previous error
term. For α = 1 the error term contains a flat frequency
weight.

The proposed criterion uses the knowledge on the
maximal length of the motion vectors, and possibly,
their distribution. Additionally, the specific image is
considered in the minimization procedure as well. This
is a natural and beneficial property since we expect
that different images require different filters. From the
application point of view, however, for a given pair
of images, we have to compute their corresponding
optimal filters, and then estimate their motion field.
In cases were we want to avoid these computations
we can supply a set of filters which should match the
spectral characteristics of typical images (such as 1/θ

as proposed by Simoncelli [15]).
The minimization term in Eq. (19) can be rewritten

in a bilinear form �total(m, h, g) = xH Rx, where the
vector x contains all the filters coefficients, and the
operation xH is the complex conjugate of x,

xH = [mH , hH , gH ]. (20)

The matrix R is an (3L +3)×(3L +3) positive definite
matrix, which depends on the interpolating function
b(x), the maximal motion D, and the spectral form of
the image I1(k). Appendix B presents the content of this
matrix for two cases; where the original three filters m,
h and g are different from each other, and where m = h.
In order to avoid the trivial solution, the minimization
is performed with the following constraint

Minimize xH Rx Subject to xH x = 1. (21)



354 Elad, Teo and Hel-Or

The solution of the above problem is the eigenvector of
the matrix R corresponding to the smallest eigenvalue,
and can be readily obtained using the SVD method
[7].

3.3. The Relationship to Simoncelli’s Filters

As mentioned above, Simoncelli also proposed a fre-
quency domain WLS criteria for the design of the op-
timal filters. It can be shown that the filters that are
suggested by Simoncelli are actually a particular case
of the proposed approach, where

1. m = h;
2. b(x) = sin c(x) = sin(πx)

πx ;
3. |I1(θ )|2 = 1√|θ | ;
4. D → 0; and
5. α = 0.

This equivalence can be shown using the truncated
Taylor series e jθτ ≈ 1 + jθτ , which is an accurate
approximation for small τ (τε[−D, D]). Using this re-
lation and the above assumptions within our error term
in Eq. (19)) we obtain

�total(m, h, g)

=
∫ π

0=−π

∫ D

τ=−D

1√|θ | |(1 + jθτ − 1)M(θ )

− G(θ )τ |2dθdτ

=
∫ π

θ=−π

1√|θ | | jθ M(θ ) − G(θ )|2
∫ D

τ=−D
τ 2dτdθ

= 2D3

3

∫ π

θ=−π

1√|θ | | jθ M(θ ) − G(θ )|2dθ. (22)

As can be seen, up to a constant we got the same op-
timality criteria as in Eq. (8). Since Simoncelli’s fil-
ters correspond to infitesimal motion, the estimation
of larger motion vectors are expected to lead to larger
errors.

An interesting question in this context is the fol-
lowing: Assume that it is known that D → 0 (very
small motion vectors, as assumed by Simoncelli),
α = 1 (which means that the weights are 1 for all
frequencies—we found this choice to better suit the fil-
ters design), and that b(x) = sinc(x) (the trivial choice).
The question is: What are the optimal filters m, h and g
in this case? Appendix C treats this question, showing
that these assumptions lead to the following result:

1. m = h,
2. The filter g is given by the sampled derivative of the

interpolated filter m:

g( j) =
L∑

k=−L

m(k)
(−1) j−k

j − k
− L ≤ j ≤ L , (23)

where (−1)k/k is the sampled derivative of the sinc
interpolation function (see Appendix C).

3. The filter m can be approximated by the raised co-
sine function:

m(k) ≈ 1 + cos

[
kπ

L + 1

]
− L ≤ k ≤ L . (24)

The implication of the above result is that optimal filters
according to Simoncelli’s definition (changing only the
frequency weight, which, as will be shown later, is bet-
ter) can be obtained analytically in a very simple man-
ner, overcoming the need for a specific filters design
procedure.

4. Experiments and Results

In this Section we present several examples which
demonstrate the ability of the proposed optimal filters
to give better motion estimation performance. We start
this section with the obtained filters. Figure 8 presents
the 3 obtained 9-taps filters m, h and g for for 3 dif-
ferent values of D (the maximal expected motion vec-
tor): D = 0.1, 2 and 4 pixels. In all these cases the
filters where obtained with α = 1 (which means that
no frequency weight is involved). For comparison, Si-
moncelli’s 9-taps filters (m = h) are given as well
(with α = 0). All these graphs correspond to inter-
polated versions of the discrete filters using the sinc
function.

As expected, when D is very small we get that m =
h, similar to the way it is assumed for Simoncelli’s
filters. Another property that can be seen from these
graphs is the better exploitation of the filters support.
As D gets higher, the obtained filters (with the same
number of taps) are getting wider.

Recall that the proposed filters are the ones which
obtain the minimum of the shiftable filters error aver-
aged over all x and all τ in the range [−D, D],

∫
x

∫ D

τ=−D
(m(x + τ ) − h(x) − g(x)τ )2 dτ dx .
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Figure 8. Simoncelli’s filters (top row) and the optimal filters for D = 0.1 (second row), 2 (third row) and 4 pixels (last raw).

Figure 9. The error [
∫

x (m(x + τ ) − h(x) − g(x)τ )2dx]0.5 as a
function of τ for Barron (solid line), Simoncelli’s (dotted line) and
the optimal filters (dashed line).

Figure 9 presents a graph of this error as a function,
of τ (i.e., the integration over τ is removed in the error
computation) for Barron 9-taps filters, Simoncelli’s 9-
taps filters, and the optimal 9-taps filters for D = 2 and
α = 1. As can be seen, Simoncelli and Barron filters
results with exact zero error for τ = 0, whereas the
optimal filters give non-zero error. This comes from
the fact that in the optimal case m 
= h. Beyond that, it

is easy to notice that the overall error is much smaller
with the optimal filters, because of moderate errors for
large values of τ . The average error term (the value
of the integral) for Barron, Simoncelli and the opti-
mal filters is 0.172, 0.1782 and 0.0961 respectively.
This experiment also reveals that Simoncelli’s filters
are comparable to Barron’s—a fact that we found to be
true in later experiments as well.

Clearly, the above comparison does not prove that
the obtained filters are indeed the optimal ones, since
optimality (or at least better performance) should be
proven with respect to optical flow estimation errors
directly. This is the reasoning behind the next example.
We take random pairs of vectors of length 160 having
relative global translation between them in the range
τ ∈ [−3, 3]. We estimate the motion field using two
different techniques: Lucas and Kanade [10], and Horn
and Schunck [8] algorithms. We implement these two
algorithms with three different sets of filters: Barron
filters, Simoncelli’s filters and the optimal filters.

Lucas and Kanade’s algorithm suggests that for each
pixel the BCCE of its local neighborhood should be
combined to form an LS solution. We use uniform
weights for 5 neighborhood pixels [2, 10]. Horn and
Schunck’s algorithm reconstructs the motion vectors
by adding a smoothness penalty. We use the Laplacian
operator for this penalty with β = 300. In order to
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Figure 10. An example of a pair of vectors used for the presented
tests.

Figure 11. The average absolute motion estimation error for Barron’s, Simoncelli’s and the optimal filters—(a) Horn and Schunck algorithm,
(b) Lucas and Kanade algorithm. Barron (solid line), Simoncelli’s (dotted line) and optimal filters (dashed line).

Figure 12. The accumulated error of the motion estimation for Barron’s, Simoncelli’s and the optimal filters—(a) Horn and Schunck algorithm,
(b) Lucas and Kanade algorithm. Barron (solid line), Simoncelli’s (dotted line) and optimal filters (dashed line).

reduce randomness effects, 10 such pairs are gener-
ated per each motion vector value. Figure 10 presents
one of such (τ = 2 pixels). Figure 11 presents the av-
eraged absolute motion estimated error with Horn and
Schunck, and Lucas and Kanade algorithms. Errors are
presented for the Barron filters, Simoncelli’s filters and
the optimal filters.

The results show that the theoretic graph presented
in Fig. 9 indeed manifests the actual errors obtained
in the motion estimation results. Figure 12 presents
the accumulative error as a function of D in the range
D ∈ [0, 3], based on the results shown in Fig. 11 (this
graph presents the area beneath the error function in
the range τ ∈ [−D, D] for different values of D).

We should note that in many optical flow estimation
applications a multi-resolution approach is used to en-
able estimation of large motion vectors. In such cases,
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Figure 13. 9-taps optimal filters m, h and g for D = 2 and α = 0 (first row), 0.02 (second row), 1 (third row), and 10 (last row).

filters that lead to non-zero error near the origin are ex-
pected to perform poorer. The proposed methodology
is general and can be used while forcing the error at the
origin to be zero (either as a constraint or by a strong
weight), thus getting a sub-optimal result with regard to
the original penalty function, but one that leads to more
practical filters when merged with multi-resolution
approach.

Another issue raised in the previous sub-section is
the choice of the parameter α. We have claimed that
using α = 0 (as in Simoncelli’s case) results some-
times (depends on the given image, number of taps,
and the maximal motion value) in uninformative filters
and instabilities. The following Figures describes the
influence of α on the obtained filters. Figure 13 presents
3 sets of 9-taps optimal filters m, h and g for D = 2
and α = 0, 0.01, 1, and 10.

These graphs reveal that for α = 0 the obtained fil-
ters are modulated, in order to be located in frequencies
where the image spectrum is low. When α is increased
(even for very small values), this problem is mostly re-
solved. Note that the obtained filters are robust with re-
spect to the choice of α (for non-zero values of α). This
of-course implies that α = 1 is a very good choice -
it results in uniform frequency weight which no longer
depends on the image spectrum. This in turn means
that this spectrum need not be evaluated. Beyond that,

we see that the obtained filters are general and serve
all the images, as they do not depend on the image
characteristics.

Figure 14 presents the average absolute motion esti-
mation error as a function of α for Horn and Schunck
and Lucas and Kanade algorithms. These graphs were
obtained using optimal filters designed to D = 2.
Again, each point in these graphs was obtained by av-
eraging on 10 different random vector pairs.

We can conclude from these graphs two things: (i)
Very low values of α gives very low quality estimate
results, and (ii) There is indeed robustness with respect
to the value of α beyond some very low threshold.

As a final stage of this section, we describe the
performance of the proposed filters on true images.
In this context we first have to define how the 2-D
(in the case where two images are given) and 3-D
(in a case where an image sequence is given) filters
are to be composed based on the obtained 1-D ker-
nels. The 2-D case can be modelled by the equation:
I2(k, j) = I1(k + τx (k, j), j + τy(k, j)). Similar to
Eq. (12), we have the general BCCE relationship

m̂2D(x, y) ∗ I2(k, j) ≈ ĥ2D(x, y) ∗ I1(k, j)

+ τx (x, y) · ĝ2D(x, y) ∗ I1(k, j)

+ τy(x, y) · f̂2D(x, y) ∗ I1(k, j). (25)
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Figure 14. The average absolute motion estimation error as a function of α for three different integration ranges: Solid line −τ ∈ [−3, 3],
Dotted line −τ ∈ [−2, 2], Dashed line −τ ∈ [−1, 1]. (a) Horn and Schunck algorithm, (b) Lucas and Kanade algorithm.

Notice that now there are four filters involved,
since the motion vector has two components—
[τx (x, y), τy(x, y)]. These four filters are constructed
from the 1-D filters m̂(x), ĥ(x) and ĝ(x) by

m̂2D(x, y) = m̂(x) · m̂(y)

ĥ2D(x, y) = ĥ(x) · ĥ(y)
(26)

ĝ2D(x, y) = ĝ(x) · ĥ(y)

f̂ 2D(x, y) = ĥ(x) · ĝ(y).

Similarly, the 3-D BCCE and the filters which corre-
sponds to a volume of images is given by

m̂3D(x, y, t) ∗ I (k, j, n + 1) ≈ ĥ3D(x, y) ∗ I (k, j, n)

+ τx (x, y, t) · ĝ3D(x, y, t) ∗ I (k, j, n)

+ τy(x, y, t) · f̂ 3D(x, y, t) ∗ (k, j, n). (27)

where

m̂3D(x, y, t) = m̂(x) · m̂(y) · m̂(t)

ĥ3D(x, y, t) = ĥ(x) · ĥ(y) · m̂(t)
(28)

ĝ3D(x, y, t) = ĝ(x) · ĥ(y) · m̂(t)

f̂ 3D(x, y, t) = ĥ(x) · ĝ(y) · m̂(t).

Applying m̂(t) in the temporal axis plays the roll of the
pre-smoothing operator which is typically used. Fig-
ure 15 presents this composition of the filters.

Barron’s filters were taken to be 11-taps pre-
smoothing and 5 taps differentiator. Thus, the filter
sizes are m̂2D − [11 × 11], ĥ2D − [11 × 11], ĝ2D −
[15 × 11], and f̂ 2D − [11 × 15]. In order to apply an
objective comparison, we have used [11 × 11] taps op-
timal filters. These filters were designed as 1-D 11-taps
filters with α = 1 and D = 2.

We estimate the motion between three different pairs
of images. We do not present the performance of the
Simoncelli’s filters since for this number of taps we got
that Simoncelli’s filters exhibit instability. Beyond that,
based on the 1-D results we expect the performance of
Simoncelli’s filters to be similar to Barron’s, once we
use a different frequency weighting.

In all cases we construct 2-D filters from the given
1-D ones, based on the above composition, Figures 16–
18 show the three images we use, together with the true
optical flow. These sequences, together with their true
flow, are taken from Barron’s WEB-site, and are called
Translating Tree, Diverging Tree and Yosemite, respec-
tively. In our simulations of motion estimation we use
the Lucas and Kanade [10] algorithm with neighbor-
hood of [7 × 7] pixels, weighted uniformly (adequate
for smooth motion flow).

Figures 19 and 20 summarize the obtained results for
the three sequences. Per each sequence we have com-
puted the average angular error [2] for varying density
values. We have also supplied the Mean Squared Er-
ror between the true and the estimated flow for varying
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Figure 15. The proposed optimal filters configuration for the 2-D and 3-D cases.

Figure 16. The first test sequence (Translating Tree) with its true optical flow.

Figure 17. The second test sequence (Diverging Tree) with its true optical flow.
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Figure 18. The third test sequence (Yosemite) with its true optical flow.

Figure 19. Average angular error of optical flow estimation for
three image sets. For each image, the dotted line shows the deviation
from the true optical flow using Barron’s filters, while the solid lines
using the proposed optimal filters.

density values. From the above results we can conclude
several things:

1. The confidence measure is the one proposed by Bar-
ron [2]. We can see that as the density grows the
errors increase monotonically. This property exists
for all three sequences, and both for Barron’s and
the optimal filters. The meaning of such behavior is
that the confidence measure assigns correct values
for the estimated motion field.

2. The use of the optimal filters, instead on Barron’s
filters, yields almost for all cases better estimation
results. This is certainly true for the first and the
second sequences.

Figure 20. Average pixel error of optical flow estimation for three
image sets. For each image, the dashed line shows the deviation from
the true optical flow using Barron’s filters, while the solid lines using
the proposed optimal filters.

3. The two filter options give comparable results for
the Yosemite sequence. This result can be explained
by looking at the motion field histogram per each
axis. It turns out that the majority of the pixels have
very small motion vector, which Barron’s filters are
near optimal for. In order to better understand this
behavior, we compute the estimation errors for a
100 × 100 pixels block, taken from the lower left
part of the image. This region corresponds to very
high (in the norm sense) motion vectors.

Figure 21 shows that for this part of the image, the
optimal filters are much better suited. In any case, note
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Figure 21. Average angular error (left) and average pixel error (right), for the lower-left part (100×100) of the Yosemite image. In both graphs,
solid lines plot the optimal filter results, and the dashed lines the Barron’s filters results.

that by using the correct prior for the motion probability
in the design procedure, the optimal filters results can
obtain better performance.

5. Summary and Conclusions

In this paper we have proposed a new design procedure
for filters that are required in gradient-based motion
estimation algorithms. The proposed design procedure
generates a set of optimal filters - minimizing a penalty
which was shown to be closely related to the motion
estimation error. There are several benefits to the new
obtained optimal filters. Their design procedure can
take into account the images spectrum, the transforma-
tion prior, and the available number of taps.

Since we have been dealing with the BCCE through-
out this paper, the obtained filters can be applied with
successful results for all the motion estimation algo-
rithms which uses the BCCE as the base-line. Simu-
lation results, both for 1-D and for 2-D validate the
benefit of using these filters. In our simulations we
have studied the performance of Lucas and Kanade [10]
(1-D and 2-D) and Horn and Schunck [8] (only for 1-D)
algorithms. We have tested Barron’s [2], Simoncelli’s
[15] and these new optimal filters.

This research could be extended in several ways:
(i) For the 2-D case, we have assumed that the op-
timal filters should be separable. Further research is
required in order to establish conditions under-which

such assumption is true; (ii) The most general optical
flow problem is the 3-D case, where volume of im-
ages is given. A generalization of the 1-D results to
the 3-D is required. Similar to the 2-D case, it is also
possible to search for separability of the filters; (iii) We
could use the Taylor expansion with higher derivative
terms. The alternative BCCE in this case would be, for
example,

m(x + τ ) = h(x) + g(x) · τ + f (x) · τ 2. (29)

This of course complicates the underlying estimation
algorithms, but with potentially much smaller estima-
tion errors. The methodology presented here can be the
basis for the design of higher number of filters, in the
same manner; (iv) Instead of the Taylor expansion, we
can use different expansion such as the Fourier series.
This way we get the phase based motion estimation
algorithms. The alternative BCCE in this case would
be

m(x + τ ) = h(x) + g(x) · sin(τ ) + f (x) · cos(τ ); (30)

(v) We have assumed that the local behavior of the
motion flow is pure translation. We can replace this as-
sumption with more accurate model of affine motion
(translation and scaling in the 1-D case). The optimiza-
tion algorithms in such a case becomes more compli-
cated, but the resulting filters should be better suited
for practical problems.
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As a final remark, we should refer the interested
reader to a recently introduced contribution by Robin-
son and Milanfar on the same topic [12, 13]. In their
work, Robinson and Milanfar adopt an innovative sta-
tistical point of view to the problem, considering the
Carmer-Rao lower bound and the bias expression for a
specific gradient-based motion estimation. They derive
the best smoothing and derivative filters as those that
minimize the overall motion estimation error bound.
While there are some similarities between these two
works, these are two quite independent and different
methods addressing the same task.

Appendix A: The Choice of the Interpolating
Function

Based on the assumption that the interpolating func-
tion is b(x) = sin(πx)/(πx), we will show that the
following equation holds true

�(m, h, g) =
∫ ∞

x=−∞

∫ D

τ=−D
ε2(x, τ ) dx dτ

=
∫ ∞

x=−∞

∫ D

τ=−D
[I1(k) ∗ (m̂(x + τ )

− ĥ(x) − ĝ(x)τ )]2 dx dτ

=
∞∑

k=−∞

∫ D

τ=−D
[I1(k) ∗ (m(k + τ )

− h(k) − g(k)τ )]2dτ. (A.1)

Based on Parsevals theorem we can replace the error
term ε(x, τ ) with its continuous Fourier transform (de-
noted by �ω[ε(x, τ )], and sum it over the continuous
frequency ω in the range (−∞, ∞),

�(m, h, g) =
∫ ∞

ω=−∞

∫ D

τ=−D
�ω[ε(x, τ )]2 dω dτ

=
∫ ∞

ω=−∞

∫ D

τ=−D
|ϒ(ω, τ )|2 dω dτ

=
∫ ∞

ω=−∞

∫ D

τ=−D
|I1(ω)|2|(e jωτ M̂(ω)

− Ĥ (ω) − Ĝ(ω)τ )|2 dω dτ. (A.2)

Note that even though I1(k) is discrete time signal, we
use its continuous Fourier transform. Using the defi-
nition of m̂(x), ĥ(x), ĝ(x) as given in Eq. (13), their

continuous Fourier transform is given by

M̂(ω) =
∫ ∞

−∞
m̂(x)e− jωx dx

=
∫ ∞

−∞

k=L∑
k=−L

m(k)b(x − k)e− jωx dx

=
k=L∑

k=−L

m(k)e− jωk
∫ ∞

−∞
b(x)e− jωx dx

= B(ω)
k=L∑

k=−L

m(k)e− jωk = B(ω)M(ω), (A.3)

where we have defined M(θ ) = ∑k=L
k=−L m(k)e− jθk .

Similar relations can be written for the filters Ĥ (ω)
and Ĝ(ω). According to the above assumption on the
interpolating function we get

b(x) = sin(πx)

(πx)
⇒ B(ω) =

{
1 −π ≤ ω ≤ π

0 otherwise
(A.4)

Putting the above transforms in the error term integral
obtained in (A.2) we get that the frequency integral are
in the range [−π, π ], since

�(m, h, g) =
∫ ∞

ω=−∞

∫ D

τ=−D
|I1(ω)|2|(e jωτ M̂(ω)

− Ĥ (ω) − Ĝ(ω)τ )|2dωdτ

=
∫ ∞

ω=−∞

∫ D

τ=−D
|I1(ω)|2|B(ω)|2

× |(e jωτ M(ω) −H (ω) − G(ω)τ )|2dωdτ

=
∫ π

ω=−π

∫ D

τ=−D
|I1(ω)|2|(e jωτ M(ω)

− H (ω) − G(ω)τ )|2dωdτ. (A.5)

Using again Parseval’s theorem we get:

�(m, h, g) =
∫ π

ω=−π

∫ D

τ=−D
|I1(ω)|2|(e jωτ M(ω)

− H (ω) − G(ω)τ )|2dωdτ

=
∞∑

k=−∞

∫ D

τ=−D
[I1(k) ∗ (m(k + τ )

− h(k) − g(k)τ )]2dτ, (A.6)

which proves Eq. (A.1).
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Appendix B: The Quadratic Form
of the Optimization Problem

This appendix presents the detailed error term as de-
scribed in Section 3.1. Let us define the weight function

W (θ ) = α + (1 − α)|I1(θ )|2. (B.1)

The error term given in the frequency domain can be
presented by

�total(m, h, g) =
∫ π

θ=−π

∫ D

τ=−D
W (θ )|(e jθτ M̂(θ )

− Ĥ (θ ) − Ĝ(θ )τ )|2dθdτ. (B.2)

�total(m, h, j) = xH


∫ π

0=−π

W (θ )
∫ D

τ=−D




F(θ ) −e− jθτ F(θ ) −τe− jθτ F(θ )

−e jθτ F(θ ) F(θ ) τF(θ )

−τe jθτ F(θ ) τF(θ ) τ 2F(θ )


 dτdθ


 x

= xH


∫ π

θ=−π

W (θ )
∫ D

τ=−D




1 −e− jθτ −τe− jθτ

−e jθτ 1 τ

−τe jθτ τ τ 2


 dτ ⊗ F(θ ) dθ


 x. (B.6)

Using the fact that M̂(θ ), Ĥ (θ ), and Ĝ(θ )
are the DFT of m̂(k), ĥ(k), and ĝ(k), respectively,

�total(m, h, g) = xH


∫ π

θ=−π

W (θ ) ·




2D −2 sin(θ D)
θ

−2 j θ D cos(θ D)−sin(θ D)
θ2

−2 sin(θ D)
θ

2D 0

2 j θ D cos(θ D)−sin(θ D)
θ2 0 2D3

3


 ⊗ F(θ )dθ


 x. (B.7)

R =
∫ π

−π

W (θ )




2D −2 sin(θ D)
θ

−2 j θ D cos(θ D)−sin(θ D)
θ2

−2 sin(θ D)
θ

2D 0

2 j θ D cos(θ D)−sin(θ D)
θ2 0 2D3

3


 ⊗ F(θ ) dθ, (B.8)

we get

�total(m, h, g) =
∫ π

θ=−π

∫ D

τ=−D
W (θ )|[(e jθτ f(θ ),

− f(θ ), −τ f(θ )]x|2dθdτ, (B.3)

where f(θ ) is defined as the Discrete Fourier Transform
(DFT) vector,

f(θ ) = [e j Lθ , . . . , e− j Lθ ], (B.4)

and the vector x consist of all the discrete filters co-
efficients, namely, xT = [mT, hT, gT]. Defining the
Hermite matrix F(θ ) to be

F(θ ) = fH (θ )f(θ )

=




1 e− jθ . . . e− jθ2L

e jθ 1 . . . e− jθ (2L−1)

· · ·
e jθ2L e jθ (2L−1) . . . 1


 , (B.5)

the above error term can be rewritten as:

The notation ⊗ represents the Kronecker multiplica-
tion of matrices [7]. The internal integral, which corre-
sponds to τ , can be computed analytically. The result
is the expression

By defining the Positive Definite (PD) matrix

we see that, according to our notations in Section 3.1,
the error term can be represented as a quadratic form
�total(m, h, g) = xH Rx.

In the case where the filters m and h are identical (as
in Simoncelli’s case), using similar steps as described
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above we get that �total(m, g) is given by (see Eq. (B.2))

�total(m, g) =
∫ π

θ=−π

∫ D

τ=−D
W (θ )|([e jθτ − 1]M̂(θ )

− Ĝ(θ )τ |)2dθdτ (B.9)

⇒ R =
∫ π

−π

W (θ )

×
(

4D − 4 sin(θ D)
θ

2 j[θ D cos(θ D)+sin(θ D)]
θ2

2 j[θ D cos(θ D)−sin(θ D)]
θ2

2D3

3

)

× ⊗ F(θ )dθ.

Appendix C: Asymptotic Optimal Filters

Assume that D → 0 (very small motion vectors), α =
1 (which means that the weights are 1 for all frequen-
cies), and that b(x) = sinc(x) = sin(πx)

πx . In this ap-
pendix we approximate the solution for the optimal
1-D filters m, h and g and give a closed-form expres-
sion for their values. These filters should minimize the
following penalty (see Eq. (17)):

�(m, h, g) =
∞∑

k=−∞

∫ D

τ=−D
[m̂(k + τ ) − ĥ(k)

− ĝ(k)τ ]2dτ. (C.1)

The above expression contains only one difference
compared to the original Eq. (17) -I1(k) is omitted since
α = 1. Since D → 0 we apply an approximation of
the form

for − D ≤ τ ≤ D, m̂(k + τ ) = m̂(k)

+ τ · m̂ ′(k) + o{τ 2 · m̂ ′′(k)}. (C.2)

Replacing these terms in Eq. (C.1) we get

�(m, h, g) =
∞∑

k=−∞

∫ D

τ=−D
[m̂(k) − ĥ(k) + m̂ ′(k)τ

− ĝ(k)τ + o{τ 2 · m̂ ′′(k)}]2dτ. (C.3)

Since the range of the integral over τ is [−D, D] and
D is assumed to be very small, the first and the second
differences (i.e. [m̂(k) − ĥ(k)] and [m̂ ′(k) − ĝ(k)τ ] are
the dominant terms within the integral. Zeroing these
differences thus leads to the optimal solution. Since we
have to zero these terms for each τ , minimum for this
penalty is given by the conditions

1. ∀k, m̂(k) = ĥ(k),
2. ∀k, ĝ(k) = m̂ ′(k),
3. m̂(k) should be the non-trivial minimizer for the

penalty
∑∞

k=−∞ m̂ ′′(k)2. This is equivalent to a
penalty for non-smoothness of the filter m̂(k); we
require the filter m̂(k) to be as flat as possible.

Requiring that the interpolated filters m̂(k) and ĥ(k)
should be equal is equivalent to the requirement m =
h. According to the above, the filter g is given by the
sampled derivative of the interpolated filter m,

b′(k) =



0 k = 0

(−1)k

k
k 
= 0

(C.4)

⇒ g( j) =
L∑

k=−L

m(k)
(−1) j−k

j − k
, −L ≤ j ≤ L .

Regarding the third condition, we use the fact that

b′′(x) =




−π2

3
x = 0

−2(−1)x

x2
x 
= 0

(C.5)

The penalty of
∑∞

k=−∞ m ′′(k)2 is given by

Γ(m) =
∞∑

k=−∞
m ′′(k)2 =

∞∑
k=−∞

[∑
j

m( j)b′′(k − j)

]2

=
∑

j1

∑
j2

m( j1)m( j2)
∞∑

k=−∞
b′′(k − j1)b′′(k − j2)

=
∑

j1

∑
j2

m( j1)m( j2)C( j1 − j2), (C.6)

where we have defined the autocorrelation sequence
C( j1 − j2) = ∑∞

k=−∞ b′′(k − j1)b′′(k − j2). The above
penalty can be rewritten in matrix-vector form

Γ(m) = mT Cm = mT

×




C(0) C(1) .. C(2L)

C(1) C(0) .. C(2L − 1)

. . . .

C(2L) C(2L − 1) .. C(0)


m.

(C.7)

The matrix C is symmetric Toeplitz matrix which de-
cays very fast (1/k4) around the main diagonal. Results
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show that the obtained filter m can be approximated by
a raised cosine function,

m(k) ≈ 1 + cos

[
πk

L + 1

]
− L ≤ k ≤ L , (C.8)

as described in Section 3.2.
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