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Abstract

We discuss the recovery of a planar polygon from
its measured complex moments. Previous work on this
problem gave necessary and sufficient conditions for
such successful recovery and focused mainly on the
case of exact measurements. This paper extends these
results by treating the case where a longer than neces-
sary series of noise corrupted moments is given. Sim-
ilar to methods found in array processing, and sys-
tem identification we discuss possible estimation pro-
cedures. We then present an improvement over these
methods based on the direct use of the Maximum-
Likelihood estimator. Finally, we show how regular-
ization, and thus Maximum A-posteriori Probability
estimator could be applied to reflect prior knowledge
about the recovered polygon.

1 Introduction

An intriguing inverse problem proposed in [9] sug-
gests the reconstruction of a planar polygon from a
set of its complex moments. Considering an indicator
function being 1 in the interior of the polygon and 0
elsewhere, these moments are global functions created
by integrating the power function zk over the plane,
and weighted by this indicator function. Given such a
finite list of values, the problem posed in [9] is focused
on the necessary and sufficient conditions that allow a
recovery of the polygon vertices from the given exact
moments. In later work, described in [6], the treat-
ment of this reconstruction problem is extended by
suggesting better numerical procedures.

When the given moments are contaminated by
noise, the recovery problem becomes an estimation
one. Previous work on the shape-from-moment prob-
lem concentrated on the numerical aspects of the
noiseless case. In this work we would like to extend
the treatment to a given noisy but longer set of mo-
ments. The principal question we are facing is how to
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robustify the existing procedures to stably recover the
polygon vertices from perturbed moment data.

Interestingly, the formulation of the shape-from-
moments problem is very similar to other diverse ap-
plications such as (i) identifying an auto-regressive
system using its output; (ii) decomposing a signal built
as a linear mixture of complex exponentials; (iii) es-
timating the direction of arrival (DOA) in array pro-
cessing; and more. The literature in these fields offer
many algorithms for solving the underlying estimation
problem (see [3] for detailed literature survey).

We explore an improvement of the above algorithms
by using them to produce an initial solution, and refine
it by exploiting the formulation of the problem via
Maximum-Likelihood (ML) estimator. Through this
change we are also able to incorporate prior knowledge
about the desired polygon and use a regularization
term. By this we introduce the use of the Maximum
A-posteriori Probability (MAP) estimator.

This paper is structured as follows: In the next sec-
tion we follow [9] formulating the shape-from-moment
problem. In Section 3 we describe the Prony’s and
the Pencil methods. Section 4 presents the improve-
ment over the above algorithms using the ML and the
MAP estimation approaches. Simulations and discus-
sion are given in Section 5. Concluding remarks are
given in Section 6. We note that a wider and more
detailed description of this work can be found in [3].

2 Problem Formulation

An arbitrary closed N -sided planar polygon P is
assumed. Its vertices are denoted by {zn}

N
k=1. These

values are scalar and complex. Based on Davis’s The-
orem [1], there exists a set of N coefficients {an}

N
k=1,

depending only on the vertices, such that for any an-
alytic function f(z) in the closure of P , we have

∫∫

P

f ′′(z)dxdy =
N

∑

n=1

anf(zn). (1)



Davis’ Theorem shows that the coefficients {an}
N
k=1

are related to the vertices via the equation

an =
i

2

(

zn−1 − zn

zn−1 − zn

−
zn − zn+1

zn − zn+1

)

. (2)

Since the polygon is closed, we define ∀k, zN+k = zk.
This formula is exploiting not only the vertices them-
selves, but also their connection order. For a geometric
interpretation of this relationship, see [6, 9].

A special case of interest is obtained for the analytic
function f(z) = zk. Using (1) we get

k(k − 1)

∫∫

P

zk−2dxdy =

N
∑

n=1

anf(zn) =

N
∑

n=1

anzk
n. (3)

The expression
∫∫

P
zk−2dxdy stands for the (k − 2)th

moment computed over the indicator function defined
as 1 inside the polygon and zero elsewhere. We de-
note k(k − 1)

∫∫

P
zk−2dxdy as the complex moment

τk. Clearly, by definition we have that τ0 = τ1 = 0.
Our reconstruction problem is defined as follows:

Assume that M + 1 complex moments, {τk}
M
k=0, are

measured and known exactly. How can we recover
the polygon vertices using the above relationships? In
order to answer this question, we start by forming a
set of equations from (3)
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Define t{k1,k2}
as the column vector of length k2 con-

taining the complex moments starting with τk1
. Also,

define V{k1,k2} as the Vandermonde matrix of size
k2 × N built from the vertices {zn}

N
n=1 with powers

starting with k1. Finally, define the vector a as a col-
umn vector of length N containing the parameters an.
Then, the above equation can be re-written as

t{0,M+1} = V{0,M+1}a. (5)

Both V{0,M+1} and a are functions of the vertices. It
is interesting to note that in related problems men-
tioned above, such as AR system identification, de-
composition of a mixture of complex exponentials, and
the DOA problem, a similar equation is obtained but
with coefficients {an}

N
n=1 which are independent of the

unknown vertices. Nevertheless, the results obtained
in this paper will be applicable to these cases as well.

This equation as posed is hard to use for solving
for {zn}

N
k=1 given the complex moments, since it is

non-linear as zn appear both inside the Vandermonde
matrix, and are also hidden in the values of an. More-
over, solving for {zn}

N
k=1 using this equation requires

not only the vertices but also their order. Alternative
relations can be suggested, leading to a practical esti-
mation procedure. These will be discussed in the next
section. We further assume that the complex moments
are contaminated by additive noise, τ̂k = τk + uk,
where uk are assumed to be white i.i.d. zero-mean
complex Gaussian noise.

3 Prony and Pencil Methods
One alternative relation to (4) can be suggested,

leading to Prony’s method [9]. From (4) we see that

{τk}
M
k=0 satisfy an Nth-order difference equation. It

can be shown [9, 6, 3] that the following relationship
holds

−
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. (6)

The vector p denotes a set of coefficients of an N-
th order polynomial [9, 6, 3], whose roots are exactly
the vertices we seek. Define T{k1,k2,k3} as the Hankel
matrix of size k2×k3, built from the complex moments
sequence such that the τk1

is the top left-most entry.
Clearly, the matrix uses the moments {τk}

k1+k2+k3−2
k=k1

.
Using this notation, the above equation is re-written
as

−t{N,M−N+1} = T{0,M−N+1,N}p. (7)

Note that this equation is true only if the exact mo-
ments are used. Using the noisy moments, we should
expect to deviate from this relationship. In [9] it is
proven that for non-degenerate polygons, the above
(M −N +1)×N matrix T{0,M−N+1,N} is of full rank.
Therefore, since we have M −N + 1 equations and N
unknowns, requiring M ≥ 2N − 1 leads to an over-
complete and well-posed system of equations.

The polynomial coefficients {pn}
N
n=1 can now be es-

timated using (6) in a variety of ways, such as ordinary
or total least-squares [9]. Armed with these coeffi-
cients, the vertices {zn}

N
n=1 can be found by comput-

ing the roots of the polynomial and this concludes our
brief description of the Prony’s method.

Going back to (4), we now show another helpful re-
lationship, which leads to the pencil method [6]. From
the existing M + 1 equations in this set, take only
M−N+1, starting with an arbitrary index 0 ≤ k ≤ N



and obtain

t{k,M−N+1} = V{0,M−N+1}Diag{a}VT
{k,1}. (8)

In the above equation we define the operator Diag as
the construction of a diagonal matrix from a given
vector. By row-concatenation of the N columns cor-
responding to 0 ≤ k ≤ N − 1 we get

T{0,M−N+1,N} = V{0,M−N+1}Diag{a}VT
{0,N}. (9)

A similar concatenation could be built with columns
corresponding to 1 ≤ k ≤ N resulting in

T{1,M−N+1,N} = (10)

= V{0,M−N+1}Diag{a}Diag{z}VT
{0,N}.

The matrix Diag{z} is an N×N diagonal matrix with
{zn}

N
n=1 on its main diagonal. The square N × N

Vandermonde matrix V{0,N} is non-singular since the
polygon is assumed to be non-degenerate [6, 9]. Based
on (9) and (10) we obtain

T{1,M−N+1,N}V
−T
{0,N} = (11)

= T{0,M−N+1,N}V
−T
{0,N}Diag{z}.

This relationship actually implies that for the pair
of matrices T{1,M−N+1,N} and T{0,M−N+1,N}, the
vertices are their generalized eigenvalues, and the
columns of the matrix V−T

{0,N} are their generalized

eigenvectors. Thus, given the sequence of moments
{τk}

M
k=0, we are to form the two (M − N + 1) × N

Hankel matrices T{1,M−N+1,N} and T{0,M−N+1,N},
and then solve for their generalized eigenvalues using
the relation

(T{1,M−N+1,N} − λT{0,M−N+1,N})v = 0. (12)

The eigenvalues are the vertices we desire. A com-
plicating aspect in this relationship is the fact that
the obtained pencil is rectangular with more rows
than columns. Note that this relationship is true for
the noiseless complex moments, and even weak noise
added to these moments may lead to no-solution for
this system of equations. Solving this pencil prob-
lem can be done by squaring the pencil by multiply-
ing both sides from the left by TH

{0,M−N+1,N}. It
can be shown that this approach is closely related to
the Least-Squares Prony method [3]. An alternative,
more sophisticated, method is the “Generalized Pen-
cil of Function” (GPOF) method, promoted by Hua
and Sarkar [7]. More details about this method and
its relation to previously discussed algorithms can be
found in [3].

4 Improved Estimation Algorithm

4.1 Exact ML Refinement

Returning to the basic relation in (4), it states
t{0,M+1} = V{0,M+1}a. In this equation both the
matrix V{0,M+1} and vector a are functions of the
vertices. If the measured moments are contaminated
with white Gaussian noise with variance σ2

u, then us-
ing (2), the Maximum Likelihood estimate of the ver-
tices {zn}

N
k=1 is obtained by

{ẑn}
N
k=1 = (13)

= ArgMinz1, z2, ... zN
‖t̂{0,M+1} − V{0,M+1}a‖

2

Using this minimization problem to directly solve for
the unknown vertices leads to two difficulties: (i) un-
less we successfully initialize the optimization proce-
dure, we are bound to fall into a local minimum; and
(ii) using this expression calls for the need to solve the
problem of ordering the vertices.

As to the first problem, we can assume that one of
the above mentioned estimation (either Prony or Pen-
cil based) methods is used and a reasonable estimate of
the polygon vertices is indeed given. Thus, using this
solution for initial values, we can expect to improve
when minimizing, even locally, the above function.

For the problem of ordering, we may consider ei-
ther solving the ordering directly [2] or disregarding
the dependency of the a coefficients on the vertices,
and replace this vector with the Least-Squares mini-
mizer of this error. Actually, the second approach is
suitable for using the proposed refinement idea when
dealing with applications such as AR-system identifi-
cation, where a is not a function of the unknowns in
any direct way.

Let us define our objective function to be minimized
by

f(z1, z2, . . . , zN ) = (14)

=

M
∑

k=0

∣

∣

∣

∣

∣

τ̂k −

N
∑

n=1

i

2

(

zn−1 − zn

zn−1 − zn

−
zn − zn+1

zn − zn+1

)

zk
n

∣

∣

∣

∣

∣

2

.

Hereafter we assume that, given a proposed solution,
we are able to order the vertices properly. Minimiz-
ing this function can be done by a line search for each
vertex with all the other points fixed. In this way we
update the algorithm through a coordinate descent
optimization procedure. Alternatively, more sophisti-
cated non-linear least-squares methods could be used.

It is interesting to note that there is a close rela-
tionship between the method proposed here and the
VarPro method [4] and its variants [8].



4.2 Regularization and MAP Estimator

If we have some prior knowledge about the desired
vertices, we can exploit this information and direct the
result towards this property by adding a regularization
term to (14). As an example, knowing that the angles
formed by the vertices are close to 90o, we may add a
term of the form

Reg
(

{zn}
N
k=1

)

= (15)

N
∑

n=1

(∣

∣

∣

∣

1

2

(

zn−1 − zn

zn−1 − zn

−
zn − zn+1

zn − zn+1

)∣

∣

∣

∣

− 1

)2

.

This expression exploits the geometric interpretation
of the an coefficients having a unit magnitude for ver-
tices forming a 90o angle. Since the minimization
described above is done numerically, any reasonable
regularization function can be incorporated and used.
When adding this term we should multiply it by some
confidence factor λ. Large λ implies that we are confi-
dent about this property of the vertices and thus this
penalty should play a stronger role. Automatic choice
of λ can also be made based on, for instance, the Gen-
eralized Cross-Validation (GCV) method [5].

There are many other choices for the regularization
function. Just to mention a few, one might be inter-
ested in smoothness of the final polygon suggesting

Reg
(

{zn}
N
k=1

)

=

N
∑

n=1

|zn − zn−1|
2

or

Reg
(

{zn}
N
k=1

)

=

N
∑

n=1

|2zn − zn−1 − zn+1|
2.

Alternatively, we might direct the solution to a less
”rough” polygon using the fact that the polygon
area is given by A = 0.5Im{

∑N

n=1 znzn+1} and

the perimeter is Π =
∑N

n=1 |zn − zn−1|. Defining
Reg

(

{zn}
N
k=1

)

= Π2/A or Reg
(

{zn}
N
k=1

)

= Π2−4πA
we can measure ”roughness” and penalize for it.

This regularization idea essentially leads to the
Maximum A-posteriori Probability (MAP) estimator.
The MAP estimator maximizes the posterior proba-
bility of the unknowns given the measurements [3].

5 Results
In this section we present reconstruction results cor-

responding to the algorithms presented in this paper.
We start by creating a polygon and computing its com-
plex moments using Davis’s Theorem equations (2)
and (4). We then add complex Gaussian white noise
to the moments and apply several of the estimation
procedures discussed above.

In the first experiment we use a star-shaped poly-
gon with 10 veritces, and apply the GPOF method
for obtaining an initialization solution. In this exper-
iment we assumed σu = 1e − 4. We then update each
vertex only once based on a local coordinate search,
i.e., choosing the location corresponding to the near-
est local minimum in a search window. Figure 1 shows
the behavior of the penalty function per each vertex
while fixing all the other vertices. Also overlayed are
the location of the true, GPOF estimated (+ symbol),
and improved vertices (dot symbol). In this case no
regularization was used. The error obtained using the
GPOF method is 0.0187, and after the proposed re-
finement it becomes 0.0074. Table 1 summarizes the
results of the average error obtained over 20 runs us-
ing the star-shape, applying the GPOF method for
initialization, and applying 20 iterations of the coor-
dinate descent algorithm. Each such iteration updates
every vertex once, and so we have 200 overall updates.
As can be seen, the results are improved dramatically
compared to the initialization.
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Figure 1: Estimation improvement - the penalty function as a

function of each vertex separately.

Noise var. GPOF Direct ML

1e-3 3.70e-1 3.19e-1
1e-4 1.49e-2 5.41e-3
1e-5 1.72e-3 2.12e-4

Table 1 - Star-shape - overall RMSE for the GPOF method (used

as initialization) and the Direct ML approach.

We next use an ‘E’-shaped polygon with 8 vertices,
with σu = 1e−3, and we initialize using the LS-Prony
algorithm. Similar to the process that created Figure
1, Figure 2 presents the ML function as obtained by
perturbing each vertex assuming that all the others



are fixed. We chose LS-Prony initialization and high
noise variance in order to better see the errors, and
the achieved improvement. In this example, the error
of the LS-Prony was found to be 0.106. After the
improvement stage we obtained an error of 0.062.

Figure 3 shows a similar result when regularization
term promoting 90o angles is added. The regulariza-
tion coefficient is λ = 1000. The error is reduced fur-
ther to 0.041 using a simple and single coordinate de-
scent update. Table 2 summarizes the results obtained
for the E-shape using the GPOF method as initializa-
tion and 20 iterations of the coordinate descent al-
gorithm, with and without regularization. Again, we
averaged 20 experiments in order to see the aggregate
effect of the Direct ML algorithm, and the regulariza-
tion.

Noise var. GPOF Direct ML MAP

1e-3 4.15e-3 2.16e-3 1.64e-3
1e-4 4.04e-4 3.13e-4 2.85e-4
1e-5 4.48e-5 1.23e-5 1.13e-5

Table 2 - E-shape overall RMSE for GPOF as initialization, the

Direct ML, and the MAP approaches.
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Figure 2: The ‘E’-shape estimation improvement - Direct ML

approach.

6 Concluding Remarks
This paper discusses the problem of reconstructing

a planar polygon from its measured moments. When
these moments are contaminated by additive noise,
statistical estimation procedures are required. Two
families of known estimation algorithms are presented
- the Prony and the Pencil–based methods. We use
these methods as initialization for direct ML and MAP
(via regularization) methods, and show marked im-
provement over the initial solution.
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Figure 3: The ‘E’-shape estimation improvement - Adding regu-

larization.
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