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1. ABSTRACT

In the last two decades, many papers have been published,
proposing a variety methods of multi-frame resolution en-
hancement. These methods are usually very sensitive to
their assumed model of data and noise, which limits their
utility. This paper reviews some of these methods and ad-
dresses their shortcomings. We propose a different imple-
mentation usingL1 norm minimization and robust regular-
ization to deal with different data and noise models. This
computationally inexpensive method is robust to errors in
motion and blur estimation, and results in sharp edges. Sim-
ulation results confirm the effectiveness of our method and
demonstrate its superiority to other robust super-resolution
methods.

2. INTRODUCTION

Theoretical and practical limitations usually constrain the
achievable resolution of any imaging device. Super-resolution
techniques are employed to combine a sequence of low-
resolution frames from a scene and produce a higher resolu-
tion picture or sequence. Many different iterative methods
have been proposed in the last two decades (e.g. [1], [2]
and [3]). In [4], [5] and [6] non-iterative methods have been
addressed, assuming correct estimations of motion and blur
are available. These methods have a wide range of com-
plexity, memory and time requirements. None of the above
methods addressed noise models other than Gaussian addi-
tive noise, and regularization was either not implemented or
it was limited to Tikhonov regularization. Considering out-
liers, [7] has proposed a successful robust method, without
proper mathematical justification.

In this paper, we will use theL1 norm, both for the reg-
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ularization and the error terms. Whereas the former is re-
sponsible for edge preservation, the latter seeks robustness
with respect to motion error, blur, outliers, and other kinds
of errors in the fused images. Moreover, following [8], we
use a robust regularizer, related to Total-Variation [9], called
the bilateral filter, to get better performance. We will show
that our method’s performance is superior to what was pro-
posed earlier in [7], with the same or better convergence
speed.

This paper is organized as follows: Section 3 defines our
model , 3.1 introduces formulation for the general case, and
3.2 justifies a very fast and effective robust super-resolution
method for special models of data and noise. Simulations
are presented in Section 4, and Section 5 concludes this pa-
per.

3. ROBUST SUPER-RESOLUTION

Based on the number of available low-resolution frames,
the accuracy of estimated motion or noise model, several
data structures are possible. In this section, we proposeL1

norm minimization based solutions to deal with situations
in which the confidence in motion estimation results is not
high or noise model is not pure additive Gaussian. We will
show thatL1 norm minimization is a superior method in
dealing with outliers, and produces outstanding results even
when there are no outliers present, and the noise is restricted
to pure additive Gaussian.

We use the super-resolution notation of [2]:

Y k = DkHkFkX + V k k = 1, . . . , N (1)

whereFk is the geometric warp operator between the high-
resolution frameX andkth low-resolution frameYk which
are rearranged in lexicographic order (X andYk present
their matrix form). The camera’s point spread function (PSF),
is modelled by the blur matrixHk, andDk represents the
decimation operator.Vk is the additive noise andN is the
number of available low-resolution frames.



3.1. General Formulation

In this subsection, we explain an iterative solution for the
super-resolution problem. As we desire to produce a high-
resolution result which is similar to low-resolution frames,
we need a cost function which compares the similarity of
low and high resolution frames. We chooseL1 norm cost
function instead of the commonL2 norm cost function, as
including the effects of outliers in this comparison is not
desirable. In the underdetermined super-resolution cases
(N < l2 in which N is the number of non-redundant low-
resolution frames andl is the resolution enhancement fac-
tor), we need to add a regularization term for efficiently
calculating missing data (i.e. interpolation). Regulariza-
tion is a useful tool even in the square and overdetermined
cases (N = l2 andN > l2 respectively) as generally super-
resolution is an ill-conditioned problem. The following ex-
pression formulates our minimization criteria:

X̂ = ArgMin
X

[
N∑

k=1

‖DkHkFkX − Y k‖1+

λ

P∑

l=0

P∑
m=0

αm+l‖X − Sl
xSm

y X‖1
]

(2)

λ is a scalar for properly weighting the first term (similar-
ity cost) against the second term (regularization cost).Sl

x

is the operator corresponding to shiftingX by l pixels in
horizontal direction and operatorSk

y shiftsX by k pixels in
vertical direction, presenting several scales of derivatives.
Scalar weightα, 0 < α < 1, is applied to give a spatially
decaying effect to the summation of the regularization term.
The steepest descent solution of this minimization problem
is:

X̂n+1=X̂n− β

[
N∑

k=1

FT
k HT

k DT
k sign(DkHkFkX̂n− Y k)

+λ

P∑

l=0

P∑
m=0

αm+l[I − S−m
y S−l

x ]sign(X̂n − Sl
xSm

y X̂n)

]
(3)

whereβ is the step size,S−l
x andS−m

y define the transposes
of matricesSl

x andSm
y respectively and have a shifting ef-

fect in the opposite directions ofSl
x andSm

y . It is easy to
show that this regularization method is a generalization of
other popular regularization methods. If we limitm, l to the
two cases ofm = 1, l = 0 andm = 0, l = 1 and define op-
eratorsQx andQy as representatives of the first derivative:
Qx = I − Sx andQy = I − Sy, then (2) results in:

X̂ = ArgMin
X

[
N∑

k=1

‖DkHkFkX − Y k‖1

+ λ(‖QxX‖1 + ‖QyX‖1)
]

(4)

which is very close in spirit to the Total-Variation prior [10].
Simulation results in Section 4 will show the strength

of the proposed algorithm. The matricesF , H, D, S and
their transposes can be exactly interpreted as direct image
operators such as shift, blur, and decimation. Simulating the
effects of these matrices as a sequence of operators spares us
from explicitly constructing them. This property helps our
method to be implemented in an extremely fast and memory
efficient way.

3.2. Special Case: No Regularization

In this section we propose a faster version of the method
described in 3.1 for dealing with square or overdetermined
cases when no regularization is considered in the data fusion
process. We show that in the square case, the performance
of L1 andL2 norm minimizations (without regularization)
are exactly the same, and in the most realistic situations of
overdetermined case,L1 norm minimization has better per-
formance thanL2 norm minimization.

When the additive noise is pure Gaussian, the ML opti-
mum solution results from the following minimization for-
mula [2]:

X̂ = ArgMin
X

[
N∑

k=1

‖DkHkFkX − Y k‖22
]

(5)

Considering translational motion and with reasonable
assumptions such as space-invariant PSF, and similar deci-
mation factor for all low-resolution frames (i.e.∀k Hk =
H & Dk = D), [5] showed that (5) can be solved in two
separate steps, speeding up the implementation:

1. Pixelwise averaging the low-resolution frames after
proper zero filling and warping (shift and add step).

2. Deblurring the resulting shifted and added picture (de-
convolution step).

In this section, considering the same assumptions as [5], we
will justify a similar two step implementation forL1 norm
minimization and we will also show that in special casesL1

andL2 norms converge to the same answer. Given

X̂ = ArgMin
X

[
N∑

k=1

‖DHFkX − Y k‖1
]

(6)

the steepest descent solution will be:

X̂n+1 = X̂n − β

[
N∑

k=1

FT
k HT DT sign(DHFkX̂n − Y k)

]

H andFk are block circulant matrices which commute (FkH =
HFk andFT

k HT = HT FT
k ), therefore:

X̂n+1 = X̂n − β

[
HT

N∑

k=1

FT
k DT sign(DFkHX̂n − Y k)

]



Multiplying both sides byH we obtain:

HX̂n+1 =HX̂n

−β

[
HHT

N∑

k=1

FT
k DT sign(DFkHX̂n− Y k)

]

DefiningZn = HX̂n:

Zn+1 = Zn − β

[
HHT

N∑

k=1

FT
k DT sign(DFkZn − Y k)

]

As HHT is a positive semi-definite matrix it has no effect
on the steady state solutionZ∞, which is reached when the
gradient termG =

∑N
k=1 FT

k DT sign(DFkZn−Y k) tends
to zero. There is a simple interpretation for the steady state
solution. Z∞ is nothing but the pixelwise median of all
measurements after proper zero filling and motion compen-
sation. To appreciate this fact, we note thatFT

k DT copies
the values of low resolution grid to high resolution grid af-
ter proper shifting and zero filling, andDFk copies a se-
lected set of pixels in high resolution grid to low-resolution
grid. None of these two operators changes the pixel val-
ues. Therefore, each element ofG, which corresponds to
one element inZ∞, is the aggregate of the effect of each
low-resolution frame. Each effect has one of the following
three forms:

1. Addition of zero, which results from zero filling.

2. Addition of+1, which means a pixel inZ∞ was larger
than the corresponding pixel in frameY k.

3. Addition of −1, which means a pixel inZ∞ was
smaller than the corresponding pixel in frameY k.

A zero gradient state (G = 0) will be the result of adding an
equal number of−1 and+1, which means each element of
Z∞ should be the median value of corresponding elements
in low-resolution frames.̂X∞, the final super-resolved pic-
ture, is calculated by deblurringZ∞ (regularization may be
considered in this step).

In the square case, there is only one measurement avail-
able for each high-resolution pixel and as median and mean
operators for one or two measurements give the same re-
sult, L1 andL2 norm minimization will result in identical
answers.

It is interesting to compareL1 andL2 norm performances
for overdetermined cases where multiple measurements for
each high resolution pixel is available. In an unrealistic sit-
uation in which the only noise in the system is pure additive
Gaussian and motion estimation is very accurate,L2 norm
performance is slightly better thanL1 norm as averaging
effectively reduces the noise variance. As noise variance

increases, the accuracy of motion estimation decreases, re-
sulting in the appearance of systematic motion artifacts in
theL2 norm minimization results. But as the median oper-
ator is robust to outliers, these motion artifacts do not have
a significant effect onL1 norm minimization results.

We should note that the outliers are not limited to mo-
tion estimation artifacts. In many situations, it is desirable
to remove an object which is only present in a few low-
resolution frames (e.g. removing the effects of a flying bird
from a static scene). For these type of outliers,L1 norm
minimization is clearly more adequate thanL2 norm mini-
mization.

4. SIMULATIONS

In this section we compare the performance of the proposed
algorithm to other methods. We present a simulated exam-
ple, in which the original frame was blurred and downsam-
pled by a factor of three. The motion vectors for two of the
nine low-resolution frames were intentionally computed er-
roneously.

Figure 1 is one of the input low-resolution frames. The
result of implementing the method described in [5] is shown
in Figure 2. The robust super-resolution method which was
proposed in [7] resulted in Figure 3. Figure 4 shows the im-
plementation of the proposed method described in section
3.1. Comparing Figure 4 to Figures 2 and 3, we notice not
only our method has removed the outliers more efficiently
than other methods, but also it has resulted in sharper edges
without any ringing effects.

5. CONCLUSION

In this paper we presented a robust super-resolution method
based onL1 norm used both in the regularization and the
measurement term in our penalty function. We showed that
our method removes outliers efficiently, resulting in images
with sharp edges. The proposed method was fast and easy
to implement. We also proposed a very fast method for the
square and overdetermined cases and mathematically justi-
fied a pixelwise shift and add (median) method and related
it to L1 norm minimization.
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