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ABSTRACT

Block coders are among the most common compression tools
available for still images and video sequences. Their low
computational complexity along with their good performance
make them a popular choice for compression of natural im-
ages. Yet, at low bit-rates, block coders introduce visually
annoying artifacts into the image. One approach that alle-
viates this problem is to downsample the image, apply the
coding algorithm, and interpolate back to the original res-
olution. In this paper, we consider the use of optimal dec-
imation and interpolation filters in this scheme. We first
consider only optimization of the interpolation filter, by for-
mulating the problem as least-squares minimization. We
then consider the joint optimization over both the decima-
tion and the interpolation filters, using theVariable Projec-
tion method. The experimental results presented clearly ex-
hibit a significant improvement over other approaches.

1. INTRODUCTION

Block-transform coders are among the most common com-
pression tools available for still images and video sequences.
These coders divide the image to non-overlapping square
blocks and apply a transform on each block. Among the
available transforms, the DCT is the most widely adopted
as it exhibits very good energy compaction and decorrela-
tion properties. The low complexity of block-based method-
ology along with its good performance make it the promi-
nent choice for image compression. Both the JPEG standard
for still image compression [1] and the MPEG standards for
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compression of video sequences [2, 3] rely on block-based
compression.

Yet, at low bit rates images compressed with block coders
exhibit visually disturbing phenomena, known asblocking
artifacts. These are characterized by visually noticeable
changes in pixel values along block boundaries. Various
post-processing techniques have been suggested for the re-
duction of blocking artifacts (see [4] for an extensive sur-
vey), but they often introduce excessive blurring, ringing,
and in many cases produce poor deblocking results at cer-
tain areas of the image.

In [5], Brucksteinet al. considered downsampling an
image before applying the JPEG coding algorithm, and in-
terpolating at the decoder stage to obtain the image in full
resolution. This method has several attractive properties.
First and foremost, at low bit-rates there is a marked gain
in performance, both in terms of PSNR and in terms of vi-
sual quality. Second, it substantially reduces the compu-
tational complexity involved in coding/decoding, since the
input to the JPEG encoder is considerably smaller in size.
In addition, the range of low bit-rates is expanded, allow-
ing us to compress an image at lower bit-rates than possible
when using JPEG directly. Finally, since the method does
not change the coding algorithm, it can be used in applica-
tions where the JPEG codec is already implemented without
making substantial modifications.

Motivated by these features, Brucksteinet al. [5] went
on to analytically derive a model for the JPEG encoder in
order to obtain an optimality criterion on the downsampling
factor for a given input image. Throughout their experi-
ments, they used fixed filters for decimation and interpola-
tion, and did not consider the effect of different filters on the
quality of the results. In this paper, we take a more general
point of view, and consider the use of optimal filters for the
decimation and interpolation stages in order to achieve bet-
ter performance. We will show that optimizing over each
of the filters separately, and on both of the filters jointly, re-
sults in a significant gain in performance, both visually and
quantitatively. Unlike [5], we do not derive a model for the
encoder, but consider it to be a “black box”. Therefore, our
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Fig. 1: Sampling/filtering scheme for block coders.

derivations are not restricted to the JPEG mechanism, and
can be applied to other coders as well.

In section 2, we shall present the algorithms for find-
ing the optimal filters. We first consider the optimization
of the interpolation filter, followed by the joint optimization
of both filters. Experimental results for both cases are also
presented in this section. Section 3 discusses the results and
has some concluding remarks.

2. OPTIMAL FRAMEWORK

Throughout this section, we consider the system shown in
Fig. 1. An input image is convolved with a linear filterf ,
and then downsampled by a factork. The low-resolution
image is then encoded using a block coder. At the decoder,
the image is first decoded using the block decoder, then up-
sampled back to its original resolution and filtered by a fil-
terg to produce the reconstructed result. The authors in [5]
took f to be a standard anti-aliasing filter, andg to be a lin-
ear interpolation kernel. The sampling factork was chosen
according to their analytical predictions. Throughout this
paper, we will assume, for simplicity,k = 2. For a thor-
ough discussion on choosing the optimalk, the reader is
referred to [5].

2.1. Optimal Interpolation Filter

Let X denote the input image, of sizem × n, Y denote
the image after decimation (sizem2 × n

2 ), andX̃ the recon-
structed image after interpolation, as in Fig. 1. Our ultimate
goal is to minimize theL2 error norm‖X̃ −X‖2. At first,
we shall only consider the optimization of the interpolation
filter g, while keepingf fixed. To do so, we note that the
interpolation stage can be equivalently expressed as matrix
multiplication. In our formulation below, we consider the
upsampling and filtering steps as a unified process and con-
sequently use a set of filters, rather than first inserting zeros
and then using one filter for interpolation.

Specifically, we definẽX(p,q), p, q ∈ {0, 1}, such that

X̃(p,q)(i, j) = X̃(2i + p, 2j + q)

i.e., X̃(p,q) is X̃ shifted by(p, q) and then downsampled
by 2. Clearly, the set{X̃(p,q), p, q ∈ {0, 1}} is just a re-

ordered version of̃X. In addition, we let̃x(p,q) denote the
row-stacked form ofX̃(p,q), i.e. x̃ has lengthmn/4, with
elements

x̃(p,q)(i× n

2
+ j) = X̃(p,q)(i, j)

Now, for our 2-D interpolation filterg with dimensionsl ×
l, we similarly define

{
g(p,q), 0 ≤ p, q ≤ 1

}
, where each

g(p,q) is a vector of lengthl2 that represents the filter in
the filter set which produces̃X(p,q) by filtering Y . Finally,
we construct a matrixΦ with dimensionsmn × l2 out of
the imageY , of the form

Φ =




φT
0,0

φT
0,1
...

φT
m−1,n−1


 (1)

whereφi,j is the row-stacked form of anl× l window, cen-
tered around the pixel location(i, j) of Y .

Using these definitions, we can now express eachx̃(p,q)

(and equivalentlyX̃) as a product of the matrixΦ and the
filter g(p,q) in vector form,

x̃(p,q) = Φg(p,q) (2)

Looking at Eq. (2), we can immediately see that an optimal
solution (in the least-squares sense) is obtained by setting
X̃ = X and minimizing over allg(p,q). Specifically, we
solve

min
g(p,q)

‖x(p,q) −Φg(p,q)‖22 (3)

This is a linear least squares (LS) problem, with the solution
g(p,q) given by

g(p,q) = Φ+x(p,q) (4)

For practical purposes, one can avoid constructing the ma-
trix Φ and its pseudo-inverseΦ+ by applying recursive least
squares (RLS), or any of its block forms.

We applied this optimization algorithm to two of the
JPEG standard test images. Figs. 2,3 show the rate dis-
tortion curves obtained for the imagesBarbara andGold-
hill , respectively. For the decimation filter, we used the
same anti-aliasing filter used in [5]. For the interpolation
filter, we setl = 5, and used Eq. (4) to find the optimal
g(p,q). The results clearly display a significant gain in per-
formance over the original results in [5]. We see that the
optimal curve intersects the JPEG curve much later than the
curve obtained by Brucksteinet al. This essentially means
that our algorithm is applicable to a wider range of bit-rates,
since it performs better than direct JPEG compression up to
a higher bit-rate. The visual improvement over [5] is clearly
evident in Fig. 4 forGoldhill. We can see that the optimal
filter provides a significantly sharper image, while virtually
eliminating the blockiness. We note that the overhead of
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Fig. 2: Optimal Interpolation forBarbara.
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Fig. 3: Optimal Interpolation forGoldhill.

sending the filter coefficients to the decoder is not included
in the rate calculation, yet it is in the order of 200 bits, which
is negligible even for very low bit rates.

2.2. Optimal Decimation Filter

Inspired by the results obtained when optimizing over the
interpolation filter, we now turn our attention to the decima-
tion filter. If we consider minimizing the difference between
X andX̃ over bothf andg, then the imageY at the out-
put of the decoder is no longer fixed, hence our matrixΦ of
Eq. (1) which originated fromY is now dependent onf , i.e.
Φ = Φ(f). Nonetheless, we can still write our problem as
a matrix system in the form of Eq. (2),

x̃(p,q) = Φ(f)g(p,q) (5)

(a)

(b)

(c)

Fig. 4: Compression results forGoldhill, 0.2bpp: (a) JPEG,
PSNR = 27.43dB (b) Brucksteinet al., PSNR = 27.95dB (c)
Optimal Interpolation, PSNR = 28.91dB.



and our minimization problem (3) now becomes

min
f ,g(p,q)

‖x(p,q) −Φ(f)g(p,q)‖22 (6)

This is a non-linear LS problem with respect to the variables
f ,g(p,q). To find a solution for this problem, we apply the
Variable Projection(VP) method [6]. This method uses the
fact that our LS problem has two separable sets of variables,
namelyf andg(p,q), and the dependence ong(p,q) is linear.
More specifically, assume for the moment we know the op-
timal f . If we plug thisf into Eq. (5), thenΦ(f) is now
fixed, hence we again face a linear LS problem, with the
solution readily given by

g(p,q) = Φ(f)+x(p,q) (7)

Now, we can use this expression forg(p,q) in our minimiza-
tion problem (6), leading to

min
f
‖x(p,q) −Φ(f)Φ(f)+x(p,q)‖22 = min

f
‖P⊥Φ(f)x

(p,q)‖22
(8)

whereP⊥Φ(f) ≡ I −Φ(f)Φ(f)+ is the projector on the or-
thogonal complement of the column space ofΦ(f).

As we can see, by using VP, we have essentially elim-
inated the minimization with respect tog(p,q), and we are
left with a non-linear LS problem with respect to the deci-
mation filterf . This is still a difficult task, due to the non-
linearity of the problem at hand. For the purpose of vali-
dating our idea and demonstrating its performance, we shall
restrict our discussion to a fraction of the parameter space
for this optimization problem. We notice that the parameter
space for this problem isl-dimensional, wherel is the length
of the filterf (assuming separability off ). Rather than con-
sidering the entire space, we consider a family of lowpass
filters with a varying cutoff frequency. For the design of the
lowpass filterfLP (ω), we use the windowing method with
a Hamming window to design a separable filter with cutoff
frequencyω. Consequently, a sub-optimal solution of (5) is
given by the lowpass filterfLP (ω̂), whereω̂ is given by

ω̂ = arg min
ω
‖P⊥Φ(fLP(ω))x

(p,q)‖22 (9)

This univariate problem can be easily solved with various
methods.

Fig. 5 shows the rate-distortion curve obtained when
applying this algorithm on the test imageBarbara. Clearly,
optimizing over both filters results in significantly better
quality compared to optimization of the interpolation fil-
ter alone. This is also inherent in Fig. 6, which displays
the visual results for a bit rate of 0.2bpp. The image ob-
tained from the joint optimization is sharper and exhibits
more details, and is free of any blocking artifacts. Inter-
estingly enough, the optimal decimation filter found in this
case is a lowpass filter with cutoff frequencyω = 0.97,
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Fig. 5: Optimal Interpolation & Decimation forBarbara.

which is essentially an identity filter. Intuitively, this means
that we do not want any filtering prior to downsampling, in
order to preserve the texture that dominatesBarbara.

3. DISCUSSION AND CONCLUSIONS

In this paper, we presented an optimal framework for im-
proving the low bit-rate performance of block coders. By
carefully selecting the filters used in the decimation and in-
terpolation steps to be optimal, we have achieved a signif-
icant gain in performance, compared to using common fil-
ters. We demonstrated that the optimal framework outper-
forms JPEG for a wider range of bit-rates, making it appli-
cable in more diverse situations.

Current work in our research is focused in extending the
idea to spatially adaptive filters. By allowing different fil-
ters for different areas in the image, we can gain further im-
provement over shift-invariant filters. For instance, we can
use one set of filters for block boundaries, and another for
block contents.
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