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Abstract

In target recognition applications of discriminant or classification analysis, each
‘feature’ is a result of a convolution of an imagery with a filter, which may be derived
from a feature vector. It is important to use relatively few features.
We analyze an optimal reduced-rank classifier under the two-class situation. As-

suming each population is Gaussian and has zero mean, and the classes differ through
the covariance matrices: Σ1 and Σ2. The following matrix is considered:

Λ = (Σ1 +Σ2)−1/2Σ1(Σ1 +Σ2)−1/2.

We show that the k eigenvectors of this matrix whose eigenvalues are most different
from 1/2 offer the best rank k approximation to the maximum likelihood classifier. The
matrix Λ and its eigenvectors have been introduced by Fukunaga and Koontz; hence
this analysis gives a new interpretation of the well known Fukunaga-Koontz transform.
The optimality that is promised in this method hold if the two populations are

exactly Gaussian with the same means. To check the applicability of this approach to
real data, an experiment is performed, in which several ‘modern’ classifiers were used
on an Infrared ATR data. In these experiments, a reduced-rank classifier–Tuned Basis
Functions–outperforms others.
The competitive performance of the optimal reduced-rank quadratic classifier sug-

gests that, at least for classification purposes, the imagery data behaves in a nearly-
Gaussian fashion.
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1 Introduction

Since Fukunaga and Koontz published their paper [4] on feature selection in 1970, many
researchers have used their method in various applications, such as target recognition, face
detection [10], etc. A citation search of this paper can easily generate hundreds of references.
On the other hand, in statistics, it is well understood that by using the likelihood ratio,
when the two distributions are multivariate normal, equal variance and covariance matrices
lead to Linear Discriminant Analysis (LDA) (or Fisher analysis) and unequal variance and
covariance matrices lead to Quadratic Discriminant Analysis (QDA) [7]. Apparently the
method of Fukunaga and Koontz belongs to the second case. Note that Fukunaga and
Koontz transform (FKT) is not a QDA — it chooses a subset of features. In this paper, we
show that the FKT, in an appropriate sense, is the ‘best’ low-rank approximate to QDA.
Moreover, in the application of target recognition, it is important to realize a low rank
approximate. Because each feature is obtained through a convolution of the imagery with
a filter; the number of the features determines the complexity of the algorithm.

In Section 2, the method of Fukunaga and Koontz, which is also called Tuned Basis
Functions (TBF), is reviewed, together with its implementation in a target recognition
scenario. In Section 3, we argue that given the rank of the classifier, the method of TBF
(or FKT) is the most optimal low rank approximate. In Section 4, an experiment on
infra-red image data is reported, in which several other machine learning methods (e.g.
maximal rejection, LDA, QDA, support vector machine, multiple additive regression trees)
are used to compare with the FKT approach. It is found that FKT gives the best overall
performance, which indicates that the transformed infrared ATR imagery data behaves in
a nearly-Gaussian fashion. We give some concluding marks in Section 5.

2 Fukunaga and Koontz Transform & Tuned Basis Functions

In this section, we review the basic principle of the Fukunaga-Koontz transform, and an
architecture that implements this principle.

Consider a library of target image chips, {xi, i = 1, . . . , T} where each xi is an image
chip of size m × n, containing a target in the library. Similarly, we assume the existence
of a set of clutter chips, {yi, i = 1, . . . , C}, where each yi is an image chip of size m × n,
containing an example of clutter. We can re-order the pixels in each image chip into an
mn × 1 vector and without ambiguity, represent this vector by the same variable as the
image.

The structure of the detector can be viewed as projecting the image onto a set of basis
vectors and accumulating the energy in the coefficient sequence of the projection. There are
many different orthogonal basis sets that may be utilized to generate the filters in Figure
1. The TBF is a systematic methodology to find such a basis set, which separates targets
from clutter. The details of the TBF are as follows.

Let the vectors {xi} and {yi} represent target and clutter vectors. For simplicity, assume
that the mean chip has been removed from each class. Let

Σ1 = E[xx′] and Σ2 = E[yy′].

The sum of these matrices Σ1+Σ2 is positive definite and can be factorized in the form

Σ1 +Σ2 = ΦDΦ′. (1)
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Figure 1: Architecture of a TBF detector.

where Φ is the matrix of eigenvectors of Σ1+Σ2 and D is a diagonal matrix with diagonal
elements being equal to the eigenvalues. We can define a transformation operator P as

P = ΦD−1/2, (2)

and new data vectors
x̃ = P ′x and ỹ = P ′y.

The sum of the variance and covariance matrices for x̃ and ỹ becomes

P ′(Σ1 +Σ2)P = I. (3)

The covariance matrices for the transformed data x̃ and ỹ are T=P ′Σ1P and C=P ′Σ2P
respectively. From (2) it is easy to show that

T + C = I.

It is easy to verify that if �θ is an eigenvector of T with corresponding eigenvalue λ, then
it is also an eigenvector of C but with eigenvalue (1 − λ). This relationship guarantees
that the covariance matrices of the transformed data will have the same eigenvectors. It
should be noted that the the sum of the corresponding eigenvalues of T and C associated
with the same eigenvector is equal to 1. Consequently, the dominant eigenvector of T is the
weakest eigenvector of C, and vice versa. In the language of target detection, the dominant
eigenvector of T contains maximal information about the target space, while containing the
least information about the clutter space. Therefore, the first several dominant eigenvec-
tors of T (target basis functions) should be used to correlate an input image; and a high
correlation coefficient suggests the presence of a target. Similarly, the weakest eigenvectors
of T (Anti-target basis functions) should be correlated with an input image, and a high
correlation reflects the presence of clutter, or equivalently the absence of a target. The TBF
detector utilizes both facts to create a detection algorithm, which is tuned to the available
training samples. To give readers a sense of eigenvalues in real applications, in Figure 2,
eigenvalues for some images chips with targets and clutters are plotted.
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Figure 2: Eigenvalues for targets and clutters.

In target recognition, one typically wants to use a small number of filters. Because
adding one more filter means doing one more convolution with the image. In the matrix
language, it is equivalent to say that we only want to consider the target recognition in a
subspace. Note that the set of eigenvectors of the matrix T , which are also the eigenvectors
of the matrix C, form an orthogonal basis forRmn. From a previous analysis, the eigenvalue
associated with a particular eigenvector yields a measure of the amount of target and/or
clutter information that is described by that eigenvector. In the TBF formulation, only a
small subset of dominant target and clutter basis functions are chosen. Specifically, one
chooses the N1 basis functions that best represent targets and the N2 basis functions which
best represent clutters. A matrix Θ is defined as

Θ = [�θ1, . . . , �θN1 ,
�θmn−N2+1, . . . , �θmn]. (4)

Note that matrix Θ is an mn by N1+N2 matrix, and it determines a (N1+N2)-dimensional
subspace in Rmn.

A test image vector z (z ∈ Rmn) is projected onto this set, to obtain a feature vector
v, which is of length N1 +N2 , i.e, v = Θ′z = (v1, v2, . . . , vN1+N2). The detection metric is
defined as

φ =
N1+N2∑
i=N1+1

v2
i −

N1∑
i=1

v2
i , (5)

which also is the output of the diagram that is depicted in Figure 3.
The first summation on the right hand side of the above metric is the net energy in the

projections of the test image on the target-like basis function. The second summation is the
net energy projected on the clutter-like basis functions. The metric is thus the difference
in the two projected energies, and is expected to be large for targets and small for clutter.
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Figure 3: Another illustration of a TBF detector.

3 Optimal quadratic classifiers

In the FKT framework, an important property is that it realizes the dimension reduction.
In this section, we show that FKT, under some assumption, is nearly the best classifier that
one can do under the principle of likelihood ratio method and a Gaussian distributional
assumption.

In Section 3.1, we start with a review of Bayes classifier and its application in target
and clutter classification. We then prove the ‘best’ low rank approximation in Sections 3.2
and 3.3.

3.1 Bayes classifier on TBF transformed data

A classical result states that the Bayes classifier is the classifier which minimizes the proba-
bility of classification error, assuming that the distribution under each population is given.
Normally, the Bayes classifier can be derived from likelihood ratio statistics.

Assuming that the populations are Gaussian with equal means, and have been normal-
ized by (Σ1 +Σ2)−1/2, so that their covariance matrices T and C, satisfies T + C = I, the
Bayes classifier takes the form

S =
∑

i

wiv
2
i ≶ α,

where

1. S is the detector statistic, which is a weighted sum of squares of projection: for an
image chip z,

v = (Σ1 +Σ2)−1/2z = (v1, v2, . . . , vN )′.

Here N is the dimension of an image chip (or an image).

2. The constant α depends on the clutter/target prior probability, cost of misclassifica-
tion, as well as other factors.
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3. The weights wi depends on λi =i-th largest eigenvalue of T :

wi =
(2λi − 1)
λi(1− λi)

=
1

1− λi
− 1

λi
.

4. The statistic S can be derived by considering the difference of the negative log-
likelihoods of the two classes.

For detailed derivation of the above results, we refer to Appendix A.
Note that 0 ≤ λi ≤ 1, so

1. for small λi, a weight wi behaves like −1/λi;

2. for large λi ∼ 1, a weight wi behaves like 1/(1− λi);

3. for λi ∼ 1/2, we have wi ≈ 0.

Hence, if it happens that there is a group IT of indices where λi ∼ (1− ε) and a group
IC of where λi ∼ ε and if all the other indices have λi ∼ 1/2, then

S ∼ 1
ε
∗ (

∑
IT

v2
i −

∑
IC

v2
i ).

In short, the optimal detector statistic is approximately the TBF classifier.
Now, what happens if the λi are not exactly distributed the way that was just supposed?

Will it still be true that the statistic

∆ = (
∑
IT

v2
i −

∑
IC

v2
i ) (6)

is a low-rank approximation to the optimal detector? To prove a theoretical results, we
introduce the following assumption.

Condition 3.1 (Plateau condition) Let n be the total number of eigenvalues λi’s. For
an integer k, k < n, the Plateau condition is satisfied if there exist at least k λi’s, such that
they simultaneously achieve the maximal value among the set {|λi − 1

2 |, i = 1, 2, . . . , n}.

We can show that when the above condition is satisfied, the TBF gives the low rank
classifier that minimizes the classification error. This indicates that TBF is the optimal
low rank approximate. Note that the above condition does not assume anything on the λi’s
that are associated with relative small values of |λi − 1

2 |.

3.2 Low rank approximation to the optimal classifier

We start formulating our problem. Let us suppose that we have rotated our data by
(Σ1+Σ2)−1/2 such that the covariance matrix of our new data is diagonal, with λi diagonal
entries on the target class and (1 − λi) entries on the clutter class. Then we may see our
discrimination problem as a hypothesis testing problem as follows.
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For random variables zi
i.i.d.∼ N(0, 1),

H0 : yi =
√

λizi, i = 1, 2, . . . , n, and (7)

H1 : yi =
√
1− λizi, i = 1, 2, . . . , n,

where 0 ≤ λi ≤ 1, ∀i.
Suppose the optimal decision rule is of the form

D(Wy),

where W is a rank k(k < n) matrix, WW T = Ik and

y = (y1, y2, . . . , yn)T .

We need to show that function D(·) is a quadratic function and W is ‘nearly’ a diagonal
matrix, which ‘picks’ yi’s that are associated with the largest-k values of |12 − λi|.

More specifically, let λ(j) denote the λi that has the j-th largest value of |12 − λi|. Let
y(j) denote the yi that is associated with λ(j) (as in (7)). We show that the optimal decision
rule is

D(Wy) =
k∑

i=1

(
1

λ(i)
− 1
1− λ(i)

)
y2
(i). (8)

Note that the above is similar to the decision rule when matrix W is allowed to have full
rank; the difference is that the number of terms is reduced. Also note that by taking into
account the fact that we have either λ(i) = ε ∼ 0 or λ(i) = 1 − ε ∼ 1, following a similar
argument, the (8) is numerically close to the ∆ in (6).

3.3 Proof of the low rank approximation

Under the Plateau condition, we have the following.

Theorem 3.2 When the plateau condition is satisfied, the rank k decision takes has the
form in (8), and λi’s takes maximal values in the set {|λi − 1

2 |, i = 1, 2, . . . , n}.

We prove the result step by step. There are four steps in the proof. We first specify the
optimality condition. Then the problem is rewritten in multivariate analysis, and the new
eigenvalues are analyzed. We prove a greedy incremental result for the objective function.
The final proof is based on all the above, and is given in the last step.

3.3.1 Optimality condition

The optimal decision rule is the one that will maximize the value of the following objective
function:

max
D(·),W,t

PH1{D(Wy) > t}

subject to rank(W ) = k, WW T = Ik,

PH0{D(Wy) > t} ≤ α.
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Using the idea of Lagrangian multiplier, the above is equivalent to the following,

min
D(·),W,t

PH1{D(Wy) < t}+ c1 · PH0{D(Wy) > t} (9)

subject to rank(W ) = k, WW T = Ik,

where appropriate value of c1 will render the exact solution to the previous optimization
problem. In the rest of this note, we consider the latter optimality condition.

3.3.2 Rewritten in vectors

The original problem in (7) is equivalent to the following:

H0 : y ∼ mN
(
�0, D

)
, and

H1 : y ∼ mN
(
�0, In − D

)
,

where

D =




λ1

λ2

. . .
λn


 ,

y is a n-dimensional random vector, �0 is a zero vector of the same dimension, and mN
stands for multivariate normal.

For Wy, we have

H0 : Wy ∼ mN
(
�0,WDW T

)
, and

H1 : Wy ∼ mN
(
�0,W (In − D)W T

)
.

The matrix WDW T has to be semi-definite. Consider its Jordan decomposition

WDW T = OD̃OT ,

where O ∈ Rk×k, OOT = Ik. Apparently, we have

WDW T +W (In − D)W T = Ik.

Hence
W (In − D)W T = O(Ik − D̃)OT .

Note that an orthogonal matrix will not change the density function of a multivariate
normal distribution. From all the above, for ỹ = Wy, it is equivalent to consider the
following hypothesis testing problem:

H0 : ỹ ∼ mN
(
�0, D̃

)
, and (10)

H1 : ỹ ∼ mN
(
�0, Ik − D̃

)
,
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where

D̃ =




λ̃1

λ̃2

. . .
λ̃k


 .

Since
D̃ = OT WDW T O.

We have

λ̃i =
n∑

j=1

w2
ijλj , i = 1, 2, . . . , k,

where (wi1, wi2, . . . , win) form the ith row of the matrix OT W . Recall that

n∑
j=1

w2
ij = 1, i = 1, 2, . . . , k,

and
k∑

i=1

w2
ij ≤ 1, j = 1, 2, . . . , n.

Suppose
λ1 ≥ λ2 ≥ · · · ≥ λn,

we can easily prove the following,

λ̃1 ≤ λ1,

λ̃1 + λ̃2 ≤ λ1 + λ2,
...

and

λ̃k ≥ λn,

λ̃k + λ̃k−1 ≥ λn + λn−1,

...

3.3.3 Optimal decision rule

To minimize the objective function in (9), following a Neymann-Pearson type of argument
(considering the log of the likelihood ratio), it is easy to see that the decision rule must be

D(Wy) =
k∑

j=1

(
1
λ̃j

− 1
1− λ̃j

)ỹ2
j ≶ a threshold.
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Now we decompose the objective function

PH1{D(Wy) < t}+ c1 · PH0{D(Wy) > t}

=
∫

f1I{D(Wy) < t}+ c1f2I{D(Wy) > t}dy

=
∫ 

I{D(Wy) < t}Πk
j=1

1√
1− λ̃j

φ


 yj√

1− λ̃j




+ c1I{D(Wy) > t}Πk
j=1

1√
λ̃j

φ


 yj√

λ̃j





 dỹ1 · · · dỹk,

where f1 and f2 are the density functions under H1 and H0 respectively, I{·} is an indicator
function, and φ(·) is the probability density of the standard normal. When k = 1, one can
see that the above reduces to comparing two normal distributions with zero means and
different variances. It is easy to verify that the larger the value of |12 − λ| is, the smaller
the value of the following function

(∗) =
∫ [

I{( 1
λ
− 1
1− λ

)y2 > t̃} 1√
λ
φ(

y√
λ
) + I{( 1

λ
− 1
1− λ

)y2 < t̃} 1√
1− λ

φ(
y√
1− λ

)
]
dy

will be. This can be shown by the following, when λ < 1/2,

(∗) =
∫

I

(
1− 2λ

λ(1− λ)
y2 > t̃

)
1√
λ
φ

(
y√
λ

)
+ I

(
1− 2λ

λ(1− λ)
y2 < t̃

)
1√
1− λ

φ

(
y√
1− λ

)

=
∫

I

(
x2 >

(1− λ)t̃
1− 2λ

)
φ(x) + I

(
x2 <

λt̃

1− 2λ

)
φ(x)

= 1−
∫

I

(
λt̃

1− 2λ < x2 <
(1− λ)t̃
1− 2λ

)
φ(x).

When λ → 0, λ/(1− 2λ) decreases to 0. In the mean time, the difference (1−λ)t̃
1−2λ − λt̃

1−2λ is t̃.
Hence the value of (∗) decreases as λ decreases. For λ > 1/2, a similar result can be drawn.

This analysis demonstrates that by substituting λ̃j with a λi that has larger deviation
from 1

2 (i.e. larger |
1
2 −λ|), the value of the objective function in (9) is reduced. This shows

that the minimum can only be achieved when λ̃j , j = 1, 2, . . . , k are associated with the
largest k values of |12 − λi|, i = 1, 2, . . . , n.

3.3.4 Final argument

From all the above, we proved Theorem 3.2.
The Plateau condition seems to be a very strong assumption. It is hard to obtain a

more generic result. The difficulty in obtaining a generic result is to study the interplay
between values of different λi’s to the value of the objective function in (9).

4 Simulation

For an infra-red (IR) image dataset, we compare the TBF with six other classifiers. They
are
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1. (SVM) Support Vector Machine [1]. SVM based methods recently have gained sig-
nificant popularity. It is a maximal margin based classification method. Its derivation
is significantly different from other methods that are derived in statistics, e.g. Fisher
quadratic classifier. SVM can be formulated as a Quadratic Programming problem.
Hence it can be solved efficiently.

2. (MRC) Maximal Rejection classifier [2]. MRC builds a hierarchy of classifiers (rejec-
tors). At each stage, a proportion of input data is classified into one class, by utilizing
a simple classification rule. The remaining inputs are transferred to the next classifier.
The advantage of this approach is the speed and performance in many application
domain, such as face detection.

3. (FQC) Fisher Quadratic Classifier. FQC is a classical method, which is rooted in
statistics. This has become standard material in many statistical textbook. The basic
idea is to utilize a Gaussian model and to consider the likelihood ratio. The result is
a classifier, which depends on a quadratic function of the input.

4. (MART) Multiple Additive Regression Trees [3]. We consider two implementational
strategies:

(a) a MART with 50 features (MART-50), and

(b) a MART with 25 features (MART-25).

MART is an additive tree model. It takes advantages of both the tree models and
the generality of additive model. In spirit, it is close to a recently emerged powerful
technique: boosting. Its supreme performance has been observed in many applications.

5. (k-NN) k-Nearest Neighbor. k-NN is a classical non-parametric statistical method.
For each input x0, it considers the inputs that fall in a neighborhood of x0. It is a
standard benchmark.

The pairs of error rates—the false alarm rate and the mis-detection rate—for various
classifiers are provided in Figure 4. It can be seen that the TBF classifier in general,
gives the best overall performance. This shows that in the applications of IR based target
recognition, the transformed image chips are nearly Gaussian distributed, and the TBF
method catches it well.

5 Conclusion

The problem of low-rank approximation to a statistically optimal classifier is studied. We
present a condition, under which the well-known Fukunaga-Koontz transform (also known
as Tuned Basis Function) can be proven to be the best approximation. This condition is
still restrictive, but enough to provide some conceptual insight. In an IR database, we
compare our TBF with several existing dominant techniques. It is found that in the IR
database, the TBF outperforms nearly all other methods. This shows that in ATR practice,
a relatively cheap TBF is sufficient. Of course, this conclusion is limited by the data that
we are working on.
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A Optimal Quadratic Classifier – Gaussian Case

We now develop the Maximum-Likelihood (ML) classifier which minimizes the classification
error. We assume hereafter that both the target and clutter sets are drawn from the Gaussian
distributions:

PT (X) =
[

1
(2π) · det{ΣT }

]n/2

exp
{
−(X − MT )

TΣ−1
T (X − MT )

}
, and

PC (X) =
[

1
(2π) · det{ΣC}

]n/2

exp
{
−(X − MC)

TΣ−1
C (X − MC)

}
.

The optimal ML classifier is given by

f (X) =
PT (X)
PC (X)

(11)

= C · exp
{
−(X − MT )

TΣ−1
T (X − MT ) + (X − MC)

TΣ−1
C (X − MC)

}
≶ pc

pt
,

where pt and pc are the classes a-priori probabilities. Using the decomposition proposed
earlier, we can pre-multiply the vectors (X − MT ) and (X − MC)by PT . Define ZT =
PT (X − MT ) and ZC = PT (X − MC). Thus we get

f (X) = C · exp
{
−ZT

TP
−1Σ−1

T P−T ZT + ZT
CP

−1Σ−1
C P−T ZC

}
= C · exp

{
−ZT

TT
−1ZT + ZT

CC
−1ZC

}
.

If we now further assume that the means of the two classes is the same (i.e., MT = MC),
we have that ZT = ZC = Z and thus the ML decision rule becomes

exp
{
−ZT (T−1 −C−1)Z

}
≶ threshold.

Now, recall that we know that T +C = I, and we know that these pair of matrices share
the same eigenvectors, implying that they are jointly diagonalizable. Assume that

T = ΘTDΘ, and C = ΘT (I−D)Θ,

where D is a diagonal matrix with real values λk on the main diagonal in the range [0, 1].
Putting these relationships into the ML decision rule we have

exp
{
−(Θ−T Z)T

[
D−1 − (I−D)−1

]
(Θ−T Z)

}
≶ threshold.

Defining W = Θ−T Z we have

exp
{
−W T

[
D−1 − (I−D)−1

]
W

}
≶ threshold.

Or better yet

−W T
[
D−1 − (I−D)−1

]
W =

n∑
k=1

(
1

1− λk
− 1

λk

)
w2

k ≶ threshold.

So we see that by taking the incoming vector X, removing the mean MT (or MC , which
is assumed to be the same), and linearly transforming the obtained vector by the matrix
Θ−TPT , we obtain a simple elementwise quadratic decision rule.

13



References

[1] N. Cristianini and J. Shawe-Taylor (2000). Support Vector Machines and other kernel-
based learning methods. Cambridge University Press, New York.

[2] M. Elad, Y. Hel-Or, and R. Keshet (2002). Pattern Detection Using a Maximal Re-
jection Classifier. Pattern Recognition Letters, 23(12), 1459-1471, October.

[3] J. H. Friedman (2001). Greedy function approximation: a gradient boosting machine.
Ann. Statist. 29 (5), 1189–1232.

[4] F. Fukunaga and W. Koontz (1970). Applications of the Karhunen-Loève Expansion
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