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Variable Projection for Near-Optimal Filtering in Low Bit-Rate Block Coders
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Abstract—Recent work on block-based compression for low
bit-rate coding has shown that employing a block coder within a
sampling scheme where the image is downsampled prior to coding
(and upsampled after the decoding stage) results in superior per-
formance compared to standard block coding. In this paper, we
explore the use of optimal decimation and interpolation filters in
this coding scheme. We show that the problem of finding optimal
filters for a general, unknown, ‘‘black-box’’ coder can be written
as a separable least squares problem in two sets of variables. We
then elegantly solve this optimization problem using the Variable
Projection method. The experimental results presented clearly
exhibit a significant improvement over existing approaches.

Index Terms—Block coders, deblocking, separable least squares,
variable projection.

1. INTRODUCTION

LOCK-BASED coders, such as the JPEG standard for still

image compression [1] and the MPEG-1 [2] and MPEG-2
[3] standards for coding of video sequences, are among the most
common compression tools used for compression of visual data.
Their low computational complexity along with their good per-
formance make them a very attractive choice for many applica-
tions. A well-known drawback of block coding schemes is the
introduction of visually disturbing blocking artifacts in the re-
constructed image. As block-based coders became increasingly
more popular, the need to diminish the effects of blocking arti-
facts grew stronger. A great deal of effort has been invested in
attempts to reduce these artifacts, while preserving the informa-
tion content of the image.

Various postprocessing techniques have been suggested
for the reduction of blocking artifacts, based on different ap-
proaches. Among these we count techniques based on adaptive
filtering [4], [5], projection on convex sets (POCS) [6]-[8],
Markov random field modeling [9], [10], and many others (see
[11] for a review). Most of these methods work well when the
image is compressed at high or medium bit rates, but the ma-
jority of them fail to produce satisfactory results when applied
on images compressed at low bit rates.

In search of a more suitable scheme for low bit-rate block
coders, several authors considered the idea of downsampling
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before coding and subsequent upsampling at the decoder stage.
Indeed, in [12], for instance, Bruckstein et al. considered down-
sampling an image before applying the JPEG coding algorithm,
and interpolating at the decoder stage to obtain the image in full
resolution. Earlier, Zeng and Venetsanopoulos [13] considered
an interpolative image coding scheme based on these notions,
and Jung, Mitra, and Mukherjee in [14] introduced the idea of
”subband DCT,” which they later used for image resizing in the
compressed domain [15]. Most recently, Dugad and Ahuja [16]
proposed an elegant scheme for spatial scalability using non-
scalable coders that again makes use of the down/up-sampling
methodology.

These approaches have several attractive properties. First and
foremost, at low bit rates there is a marked gain in performance,
both in terms of PSNR and in terms of visual quality. Second,
the computational complexity involved in coding/decoding is
substantially reduced, since the input to the encoder is consid-
erably smaller in size. In addition, the range of low bit rates
is expanded, allowing compression at lower bit rates. Finally,
since most of these methods do not modify the basic coding al-
gorithm, but only apply preprocessing/postprocessing, they can
be used in applications where the codec is already implemented
without introducing substantial modifications.

Motivated by these features, the authors of [12] specifically
derived an analytical model for the JPEG encoder in order to
obtain an optimality criterion on the sampling factor for a given
input image. Throughout their experiments, they used fixed fil-
ters for decimation and interpolation, and did not consider the
effect of different filters on the quality of the results. To the best
of our knowledge, all of the papers that have taken the same
approach used fixed, standard filters in the down/up-sampling
process.

The main contribution of this paper is to address the issue
of finding optimal filters in practice for the decimation and in-
terpolation stages in order to achieve better performance. We
shall see that the use of carefully chosen filters, based on least
squares (LS) optimality, results in a significant gain in perfor-
mance, both visually and quantitatively. We do not derive a spe-
cific model for the encoder, but consider it to be a “black box.”
We view this as an advantage, rather than a shortcoming because
under this framework, the results of this paper are not restricted
solely to a particular block coding scheme, and can be applied
to other coders as well.

The rest of this letter is organized as follows. Section II
presents the algorithm for finding the optimal interpolation
filter, by formulating the problem as linear LS minimization.
Section III addresses the problem of jointly optimizing both
filters, which we formulate as a nonlinear, but separable LS
problem. We apply a mechanism known as variable projection
to reduce this problem into a nonlinear LS problem in one
set of variables, and then demonstrate that even a suboptimal

1051-8215/$20.00 © 2005 IEEE
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Fig. 1. Sampling/filtering scheme for block coders.

approach results in superior performance. In Section IV we
provide a discussion of the results, summarize our findings and
make some concluding remarks.

II. OPTIMAL INTERPOLATION BY LINEAR LEAST SQUARES

Throughout the rest of this paper, we consider the system
shown in Fig. 1. An input image is convolved with a linear
filter f, and then downsampled by a factor k. The low-resolu-
tion image is then encoded using a block coder. At the decoder,
the image is first decoded using the block decoder, then upsam-
pled back to its original resolution and filtered by a filter g to
produce the reconstructed result. The authors in [12] took f to
be a standard antialiasing filter, and g to be a linear interpola-
tion kernel (hat function). The sampling factor k£ was chosen
according to their analytical predictions. Throughout this paper,
we will assume, for simplicity, & = 2. For a thorough discussion
on choosing the optimal k, the reader is referred to [12].

Let X denote the input image of size m X n, Y denote the
image after decimation (size /2 X n/2), and X the recon-
structed image after interpolation as in Fig. 1. Our ultimate goal
is to minimize the /5 error norm || X — X||5. At first, we shall
only consider the optimization of the interpolation filter g, while
keeping f fixed. To do so, we note that the interpolation stage can
be equivalently expressed as matrix multiplication. In our for-
mulation below, we consider the upsampling and filtering steps
as a unified process and consequently use a set of filters, rather
than first inserting zeros and then using one filter for interpola-
tion.

Specifically, we define X »9) p ¢ € {0, 1}, such that

X®D (i 5) = X(2i +p, 2§ + q)

ie, X®9 js X shifted by (p,q) and then downsampled by
2. Clearly, the set {X®9 p g € {0,1}} is just a reordered

version 0~f X. In addition, we let x(P.9) denote the row-stacked
form of X9 i.e., each (% has length mn /4, with elements

%(P:9) (z > g +j) — X(p,(I)(Lj).

Now, for our two-dimensional (2-D) interpolation filter g with
dimensions [ x [, we similarly define {g(p*‘I),O <pq< 1},
where each g(7'9) is a vector of length /2 that represents the filter
in the filter set which produces X (w.a) by filtering Y. Finally,

30

29 -

P
Optimal Interp.

PSNR

25+

Bruckstein et al. [5]
24

23+

22

21+

0.1 02 0.3 0.4 05 0.6
bpp

Fig. 2. Optimal interpolation for Barbara.

we construct a matrix @ with dimensions mn /4 x [ out of the
image Y, of the form

$0.0
$0.1

> o))

. :
Bm/2)—1,(n/2)—1

where ¢,L-’ i is the row-stacked form of an [ x [ window, centered
around the pixel location (7, j) of Y.

Using these definitions, we can now express each x(?*%) (and

equivalently X)asa product of the matrix ® and the filter g(»-%)
in vector form

xP0) = §gra), )

Looking at (2), we can immediately see that an optimal solution
(in the LS sense) is obtained by setting X = X and minimizing
over all g(»9)_ Specifically, we solve

2

min ||x®9 — g9 3)
g(P.a) 2
This is an LS problem, with the solution g(*-¢) given by
g??) = +x(Pa) 4)

where @ denotes the pseudo-inverse of @ [17]. Obviously,
in practice, there is no need to construct the matrix ® nor its
pseudo-inverse ®" . Rather, (3) is solved by applying recursive
least squares (RLS).

To test the performance of this method, we used a standard
JPEG coder as our block coder and applied this optimization al-
gorithm to several standard test images. We also compared our
results with those of Bruckstein et al. [12]. Figs. 2—4 show the
rate-distortion curves obtained for the images Barbara, Gold-
hill, and Boats, respectively. For the decimation filter, we used
an 11-tap antialiasing filter, designed using a Hamming window
and normalized cutoff frequency w,, = 0.5. For the interpola-
tion filter, we set [ = 5, and solved (4) to find the optimal g(p7q).
The results clearly display a significant gain in performance over
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Fig. 3. Optimal interpolation for Goldhill.
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Fig. 4. Optimal interpolation for Boats.

the original results in [12]. We see that the optimal curve inter-
sects the JPEG curve at a higher bit rate than the curve obtained
by Bruckstein er al. This essentially means that our algorithm is
applicable to a wider range of bit rates, since it performs better
than direct JPEG compression up to a higher bit rate. The visual
improvement over [12] is clearly evident in Figs. 5-7. We can
see that the optimal filter provides a significantly sharper image,
while virtually eliminating the blockiness. In terms of PSNR, in
all three cases, when coded with 0.2 bpp, the gain over standard
JPEG is around 1-1.5 dB.

It would be interesting to examine the filters obtained in the
optimization process. Fig. 8 shows the 2-D frequency response
of the optimal interpolation filters obtained for Barbara (recall
that 4 filters are needed). As we can see, all four filters exhibit
a low-pass behavior with some high-pass components. In other
words, the filters attempt to smooth out the blockiness while
preserving edge and texture information.

The overhead of sending the filter coefficients to the decoder
is not included in the rate calculation, yet it is in the order of

(©

Fig. 5. Compression results for Barbara, 0.2 bpp. (a) JPEG, PSNR =
23.42 dB. (b) Bruckstein er al., PSNR = 24.19 dB. (c) Optimal interpolation,
PSNR = 24.74 dB.

a few hundred bits per filter, which is negligible even for very
low bit rates (we found that for the parameters used in our ex-
periments, each filter would occupy around 200 bits when prop-
erly entropy coded). We would like to comment that the 4-fil-
ters approach we have taken is completely equivalent to a single
filter approach, in which case zero-padding is used prior to fil-
tering, and only one vector x is constructed. Indeed, it is not
hard to see that the LS problem ®g = x, with ® a row-stacked
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Fig. 6. Compression results for Goldhill, 0.2 bpp. (a) JPEG, PSNR =
27.43 dB. (b) Bruckstein et al., PSNR = 27.95 dB. (c) Optimal interpolation,
PSNR = 28.91 dB.

form of the image Y after zero-padding, can be decoupled into
four subproblems of the form of (3). The advantage of using the
4-filters approach is apparent when the matrix ® needs be con-
structed explicitly, in which case it is four times smaller than if
zero-padding was used. However, in instances where the sam-
pling factor is greater than two, or when it is a rational number,
we note that such an approach may not be feasible, and so the
problem should be formulated using a single filter.

Fig.7. Compression results for Boats, 0.2bpp. (a) JPEG, PSNR = 26.82 dB.
(b) Bruckstein er al., PSNR = 27.42 dB. (c) Optimal interpolation, PSNR =
28.58 dB.

III. OPTIMAL DECIMATION AND INTERPOLATION BY VARIABLE
PROJECTION

Inspired by the results obtained when optimizing over the in-
terpolation filter, we now turn our attention to the decimation
filter. If we consider minimizing the difference between X and
X over both f and g, then the image Y at the output of the de-
coder is no longer fixed, hence our matrix ® of (1) which origi-
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Fig. 8. Optimal interpolation filters obtained for Barbara.
nated from Y is now dependent on f, i.e., ® = ®(f). Nonethe-

less, we can still write our problem as a matrix system in the
form of (2)

%@ — {)(f)g(l)ﬂ) 5)
and our minimization problem (3) now becomes
min ||x®? — &(f)g®? ‘ (6)
f,g(P-Q) 2

This is a nonlinear LS problem with respect to the variables
f, g9 To find a solution for this problem, we apply Golub
and Pereyra’s Variable Projection method [18]. This method is
applicable when dealing with separable nonlinear LS problems,
i.e., problems for which the model function is a linear combi-
nation of nonlinear functions. Since first published, the variable
projection method (sometimes coined VARPRO) has been ap-
plied in a variety of different fields in engineering and scientific
computing (see [19] for an extensive survey).

In our formulation, we have two separable sets of variables,
namely f and g% . Moreover, the dependence on g9 is
linear. Hence, we can use VARPRO to transform the problem
into a nonlinear LS problem in one set of variables. More specif-
ically, assume for the moment we know the optimal f. If we plug
this f into (5), then ®(f) is now fixed, hence we again face a
linear LS problem, with the solution readily given by

g(p,q) — q,(f)+x(p,q)_ @)

Magnitude
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Now, we can use this expression for g(p*Q) in our minimization
problem (6), leading to

2
min Hx@»@ - ®(£)®(f) x| = min Hqu,(f)x@»q)

‘ 2

®
where Pq,(f) =1 — ®(f)®(f)* is the projector on the orthog-

onal complement of the column space of ®(f).

As we can see, by using VARPRO, we have essentially
eliminated the minimization with respect to g(””I), and we are
left with a nonlinear LS problem with respect to the decimation
filter f. Evidently, this procedure not only reduces the dimension
of the parameter space but also results in a better-conditioned
problem (see [19] for details). Nonetheless, solving (8) is
still a difficult task, due to the nonlinearity of the problem
at hand. For our purposes, we shall pursue a near-optimal
approach, by restricting our discussion to a fraction of the
parameter space for this optimization problem. We notice that
the parameter space for this problem is /-dimensional, where [
is the length of the filter f (assuming separability of f). Rather
than considering the entire space, we consider a family of
lowpass filters with a varying cutoff frequency. For the design
of the lowpass filter f;, p(w), we use the window method with
a Hamming window to design a separable filter with cutoff
frequency w. Consequently, a suboptimal solution of (5) is
given by the lowpass filter fyp(w), where & is given by

2
O = arg n})in HPé(fLP(w))x(M) H2

©)

This is a univariate minimization problem, which we solve using
Brent’s classic algorithm for minimization without derivatives
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Fig. 9. Optimal interpolation and decimation for Barbara.

Fig. 10. Optimal decimation and interpolation for Barbara, 0.2 bpp, PSNR =
25.5 dB.

[20]. We note that the optimization problem (9) is solved once
at the encoding stage, and the resulting decimation filter need
not be sent to the decoder as it is not used in the decoding
process. Hence, no additional overhead is introduced by this
stage.

Before examining the experimental results, we shall comment
about the computational burden involved in each iteration of
Brent’s algorithm. Each such iteration requires coding the image
after applying the filter fy p(w), followed by a decoding stage
and computation of the residual in (9). In our experiments on
typical 512 x 512 images, the execution time per iteration was
3.92 s, when executed on a P4 2-GHz machine, using Matlab. As
mentioned above, the solution of (9) is carried out once during
the encoding stage, and no further computations need be done
at the decoder.

Fig. 9 shows the rate-distortion curve obtained when applying
this algorithm on the test image Barbara. Clearly, optimizing
over both filters results in significantly better quality compared

to optimization of the interpolation filter alone. This is also in-
herent in Fig. 10, which displays the visual results for a bit rate
of 0.2 bpp (compare Fig. 5). The image obtained from the joint
optimization is sharper and exhibits more details, and is free of
any blocking artifacts. Interestingly enough, the optimal deci-
mation filter found in this case is a low-pass filter with cutoff
frequency w = 0.97, which is essentially an identity filter. In-
tuitively, this means that we do not want any filtering prior to
downsampling, in order to preserve the texture that dominates
Barbara.

IV. Di1SCUSSION AND CONCLUSION

This letter presented an algorithm for finding optimal filters
in a sampling/compression scheme. By a LS argument, we have
shown that the use of optimal interpolation filters achieves a
significant gain in performance, compared to using common fil-
ters. We demonstrated that a near optimal approach for finding
the decimation filter also results in a marked improvement in
quality. In addition, by using optimal filters, we outperform
JPEG for a wider range of bit rates compared to [12], making
this sampling/compression scheme applicable in more diverse
situations.

We note that even greater improvements can be gained by tai-
loring the filter optimization to the block structure of the coder.
By using one set of filters for block boundaries, and another for
block interior, we are likely to get better performance, as there
is much to be gained by treating these two regions separately.
Furthermore, we note that the restriction of the parameter space
when solving (9) to separable low-pass filters is quite stringent.
Better performance may result by considering a wider variety
of decimation filters, while keeping the optimization problem
tractable. These issues are left for future research.
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