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ABSTRACT

This paper presents a novel method for separating images into texture and piecewise smooth parts. The proposed
approach is based on a combination of the Basis Pursuit Denoising (BPDN) algorithm and the Total-Variation
(TV) regularization scheme. The basic idea promoted in this paper is the use of two appropriate dictionaries,
one for the representation of textures, and the other for the natural scene parts. Each dictionary is designed
for sparse representation of a particular type of image-content (either texture or piecewise smooth). The use
of BPDN with the two augmented dictionaries leads to the desired separation, along with noise removal as a
by-product. As the need to choose a proper dictionary for natural scene is very hard, a TV regularization is
employed to better direct the separation process. Experimental results validate the algorithm’s performance.

Keywords: Basis Pursuit Denoising, Total Variation, Sparse Representations, Piecewise Smooth, Texture,
Wavelet, Local DCT, Ridgelet, Curvelet.

1. INTRODUCTION

The task of decomposing signals into simpler atoms is of great interest for many applications. In such problems
a typical assumption is made that the given signal is a linear mixture of several source signals of more coherent
origin. This kind of problem has attracted considerable research attention recently. Independent Component
Analysis (ICA) and sparsity methods are typically used for the separation of signal mixtures with varying
degrees of success. A classic example is the cocktail party problem where a sound signal containing several
concurrent speakers is to be decomposed into the separate speakers. In image processing, a parallel situation is
encountered for example in cases of photographs containing transparent layers.

Following the work of Vese, Osher, and others,1, 2 in this paper we focus on the decomposition of a given
image into a texture and natural (piecewise smooth) additive ingredients. Such separation is important for
applications in image coding, and in image analysis and synthesis (see3). Figure 1 presents the desired behavior
of the separation task at hand for two examples. As can be seen, we aim at separating these two parts on a
pixel-by-pixel basis, such that if the texture appears on parts of the spatial support of the image, the separation
should succeed in finding a masking map as well.

The approach we take for the separation is based on the Basis-Pursuit denoising (BPDN) algorithm, ex-
tending results from previous work.4, 5 The basic idea behind this new algorithm is to choose two appropriate
dictionaries, one for the representation of textures, and the other for the natural scene parts. Both dictionaries
are to be designed such that each leads to sparse representations over the images it is serving, while yield-
ing non-sparse representations on the other content type. Thus, when combined to an overall dictionary, the
BPDN is expected to lead to the proper separation, as it seeks for the overall sparsest solution, and this should
align with the sparse representation for each part separately. We show experimentally how indeed the BPDN
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Figure 1. Our goal: Schematic illustrating ideal separation of texture from piecewise smooth contents in images.

framework leads to a successful separation. Furthermore, we show how to strengthen the BPDN paradigm,
overcoming inappropriate dictionary choices, leaning on the Total-Variation (TV) regularization scheme.

The rest of the paper is organized as follows: Section 2 presents the separation method via the BPDN
and the way to combine the TV for its improvement. In Section 3 we discuss the choice of dictionaries for
the texture and the natural scene parts. Section 4 addressed the numerical scheme for solving the separation
problem efficiently. We present several experimental results in Section 5 and conclude in Section 6.

2. SEPARATION OF IMAGES - BASICS

2.1. Model Assumption

Assume that the input image to be processed is of size N ×N . We represent this image as a 1D vector of length
N2 by simple reordering. For such images X t that contain only pure textures we propose an over-complete

representation matrix Tt ∈ MN2×L. While Xt = Ttαt has no unique solution because of over-completeness,
we suppose that

αoptt = ArgMinα
t
‖αt‖0 subject to: Xt = Ttαt (1)

for any texture image X leads to a very sparse solution (i.e. ‖αoptt ‖0 is very small). We further assume that
Tt is such that if the texture appears in parts of the image, the representation is still sparse, implying that the
dictionary offers a spatially localized multi-scale representation of the image content. In words, the definition
(1) yields a representation αt with maximal sparsity. Empirically we have found that if indeed the proper
choice of a dictionary is made, we get very sparse representations for textures and non-sparse representations
for different image types (e.g. natural scenes).

Similar to the above, assume that for images containing piecewise smooth content, Xn, we have a different
dictionary Tn, such that their content is sparsely represented by a minimum `0-norm decomposition. Again,
we assume that beyond the sparsity obtained by Tn for natural images, we can further assume that texture



images are represented very inefficiently (i.e. non-sparsely), and also assume that the analysis applied by this
dictionary is of multi-scale nature, enabling it to detect pieces of the desired content.

For an arbitrary image X containing both texture and piecewise smooth content (overlayed, side-by-side,
or both), we seek the sparsest of all representations over the combined dictionary containing both Tt and Tn.
Thus we need to solve

{αoptt , αoptn } = ArgMin{αt, αn} ‖αt‖0 + ‖αn‖0 subject to: X = Ttαt + Tnαn. (2)

We explore in this paper the proposition that this optimization task is likely to lead to a successful separation
of the image content, such that Ttαt is mostly texture and Tnαn is mostly piecewise smooth. The reason for
this expectation relies on the assumptions made earlier about Tt and Tn being very efficient in representing
one phenomenon and being highly non-effective in representing the other image type.

While conceptually appealing, the problem formulated in Equation (2) is computationally intractable in
general. Its complexity grows exponentially with the number of columns in the overall dictionary. The Basis
Pursuit (BP) method4 suggests the replacement of the `0-norm with an `1-norm, thus leading to a solvable
optimization problem (Linear Programming) of the form

{αoptt , αoptn } = ArgMin{αt, αn} ‖αt‖1 + ‖αn‖1 subject to: X = Ttαt + Tnαn. (3)

Interestingly, recent work shows that when (2) admits sufficiently sparse solutions, the BP form also leads to
the sparsest of all representations.6–9

2.2. Complicating Factors and Their Treatment

The above description depends on qualitative assumptions whose failure may hinder the success of the overall
separation process.

• Assumption: The image is decomposed cleanly into texture and natural (piecewise smooth) parts. For an
arbitrary image this assumption may fail, as the image may contain additive noise that is not represented
well by Tt or Tn. Generally speaking, any deviation from this assumption may lead to a non-sparse pair
of vectors {αoptt , αoptn }.

• Assumption: The chosen dictionaries are appropriate. It is very hard to propose a dictionary that leads
to sparse representations for a wide family of signals. Such is the case for textures which may come in
many forms, and such is definitely the case for representing natural scenes. Also, dictionaries may not
discriminate well between the two phenomenon we desire to separate. Thus, if for example, we have a
dictionary Tn that leads to sparse representations for natural scenes, but is also known to lead to sparse
representations for some textures, clearly, such a dictionary could not be used for a successful separation.

A solution for the first problem could be obtained by relaxing the equality constraint in Equation (3) to
become an approximate one like so:

{αoptt , αoptn } = ArgMin{α
t
, α

n
} ‖αt‖1 + ‖αn‖1 + λ ‖X −Ttαt −Tnαn‖22 . (4)

This way, if an additional content exist in the image so that it is not represented sparsely by both dictionaries,
(4) may accommodate this as the residual X −Ttαt −Tnαn. Hopefully, we manage to separate texture from
natural scene parts, and also manage to remove additive noise as a by-product. This new formulation is familiar
by the name Basis Pursuit Denoising, shown in4 to perform well for denoising tasks.

As for the second problem, we assume that this problem is more acute for the choice of Tn since textures are
less diverse, and a proper dictionary for such images is easier to obtain. While we will choose a specific matrix
Tn which is generally well suited for separating piecewise smooth images from textures, we should require that
the image Tnαn is indeed only piecewise smooth, throwing away any other content. This is achieved by adding
a TV penalty10 to Equation (4), leading to

{αoptt , αoptn } = ArgMin{α
t
, α

n
} ‖αt‖1 + ‖αn‖1 + λ ‖X −Ttαt −Tnαn‖22 + γTV {Tnαn}. (5)



The expression TV {Tnαn} is essentially the computation of the image Tnαn (supposed to be piecewise smooth),
computing its absolute gradient field and summing it (`1-norm). Penalizing with TV, we force the image Tnαn
to be closer to a piecewise smooth image. We note that Candes et. al. have had a good success combining TV
with other optimization schemes to enhance separation.

2.3. Different Problem Formulation

Assume that each of the chosen dictionaries is a concatenation of unitary matrices:

Tt = [T(1)t, T(2)t, . . . ,T(Lt)t] Tn = [T(1)n, T(2)n, . . . ,T(Ln)n]

and

T(1)Ht T(1)t = T(2)Ht T(2)t = · · · = T(Lt)
H
t T(Lt)t

= T(1)Hn T(1)n = T(2)Hn T(2)n = · · · = T(Ln)Hn T(Ln)n = I.

In that case we could slice αt and αn into corresponding parts Lt and Ln, and obtain a new formulation of the
problem

min
{α(k)t}Ltk=1

, {α(j)n}Lnj=1

Lt∑

k=1

‖α(k)t‖1 +

Ln∑

j=1

‖α(j)n‖1 (6)

+λ

∥∥∥∥∥∥
X −

Lt∑

k=1

T(k)tα(k)t −
Ln∑

j=1

T(j)nα(j)n

∥∥∥∥∥∥

2

2

+ γTV





Ln∑

j=1

T(j)nα(j)n



 .

Defining X(k)t = T(k)tα(k)t and similarly X(j)n = T(j)nα(j)n, we can reformulate the problem as

min
{X(k)t}Ltk=1

, {X(j)n}Lnj=1

Lt∑

k=1

∥∥T(k)Ht X(k)t
∥∥

1
+

Ln∑

j=1

∥∥T(j)Hn X(j)n
∥∥

1
(7)

+λ

∥∥∥∥∥∥
X −

Lt∑

k=1

X(k)t −
Ln∑

j=1

X(j)n

∥∥∥∥∥∥

2

2

+ γTV





Ln∑

j=1

X(j)n





and the unknowns become images, rather then representation coefficients. For this problem structure there
exist a fast numerical solver called Block-Coordinate Relaxation Method, based on the shrinkage method.11

This solver requires only the use of matrix-vector multiplications with the unitary transforms and their inverses.
See12 for more details. We remark that the same algorithm can be applied with non-unitary transforms although
theoretical validation may require more challenging analysis than in the block-unitary case. In practice, block
coordinate methods work well in the non-unitary cases we have explored.

To summarize so far, in order to translate the above idea into a practical algorithm we should answer two
major questions: (i) How should we choose the dictionaries Tt and Tn? and (ii) How should we numerically
solve the obtained optimization problem in a tractable way? These two questions are addressed in the coming
sections.

3. CANDIDATE DICTIONARIES

Our approach towards the choice of Tt and Tn is to pick transforms known for representing well either texture or
piecewise smooth behaviors. For numerical reasons, we restrict our choices to dictionaries Tt and Tn which have
a fast forward and inverse implementation. We shall start with a brief description of our candidate dictionaries:



• Bi-Orthogonal Wavelet Transforms (OWT): Previous work has shown that the wavelet transform is well
suited for the effective (sparse) representation of natural scenes11 . The application of the OWT to image
compression using the 7-9 filters13 and the zero-tree coding14, 15 has led to impressive results compared to
previous methods like JPEG.

The OWT implementation requires O(n2) operations for an image with n×n pixels, both for the forward
and the inverse transforms. Represented as a matrix-vector multiplication, this transform is a square
matrix, either unitary, or non-unitary with accompanying inverse matrix of a similar simple form.

The OWT presents only a fixed number of directional elements independent of scale, and there are no
highly anisotropic elements16 . For instance, the Haar 2D wavelet transform is optimal to find features
with a ratio length/width = 2, in a horizontal, vertical, or diagonal orientation. Therefore, we naively
expect the OWT to be non-optimal for detection of highly anisotropic features. Moreover, the OWT is
non-shift invariant - a property that may cause problems in signal analysis.

The undecimated version (UWT) of the OWT is certainly the most popular transform for data filtering.
It is obtained by skipping the decimation and implies that this is an overcomplete transform represented
as a matrix with more columns that rows when multiplying a signal to be transform. The redundancy
factor (ratio between number of columns to number of rows) is 3J + 1 - where J being the number of
resolution layers. With the over-completeness comes a shift invariance property that we desire.

• The isotropic à trous algorithm: The isotropic “à trous” wavelet transform algorithm decomposes an n×n
image I as a superposition of the form I(x, y) = cJ(x, y) +

∑J
j=1 wj(x, y), where cJ is a coarse or smooth

version of the original image I and wj represents ‘the details of I’ at scale 2−j , see17 for more information.
Thus, the algorithm outputs J + 1 sub-band arrays of size n × n. (The present indexing is such that
j = 1 corresponds to the finest scale (high frequencies)). This wavelet transform is very well adapted
to the detection of isotropic features, and this explains the reason of its success for astronomical image
processing, where the data contain mostly (quasi-)isotropic objects, such stars or galaxies.18

• The Local Ridgelet Transform: The two-dimensional continuous ridgelet transform of a function is defined
by:

Rf (a, b, θ) =

∫
ψa,b,θ(x)f(x)dx.

where the ridgelet function ψa,b,θ is given by

ψa,b,θ(x) = a−1/2 · ψ((x1 cos θ + x2 sin θ − b)/a); (8)

with
∫
ψ(t)dt = 0, a > 0, b ∈ R and each θ ∈ [0, 2π).

It has been shown16 that the ridgelet transform is precisely the application of a 1-dimensional wavelet
transform to the slices of the Radon transform where the angular variable θ is constant and t is varying.

The ridgelet transform is optimal to find only global lines (starting and ending on the image boundaries).
To detect non-global line segments, a localization partitioning must be introduced.19 The image is
decomposed into smoothly overlapping blocks of side-length b pixels in such a way that the overlap
between two vertically adjacent blocks is a rectangular array of size b × b/2; we use overlap to avoid
blocking artifacts. For a n × n image, we count 2n/b such blocks in each direction. The partitioning
introduces redundancy (over-completeness), as each pixel belongs to 4 neighboring blocks.

The ridgelet transform requires O(n2 log2 n) operations. More details on the implementation of the digital
ridgelet transform can be found in.20 The ridgelet transform is optimal to detect line or edge segment of
length equal to the block size used.

• The Curvelet Transform: The curvelet transform, proposed by Candes and Donoho21, 22 enables the
possibility to directionally analyze an image with different angular resolutions in a single and effective
transform. The idea is to first decompose the image into a set of wavelet bands, and to analyze each band
with a local ridgelet transform. The block size is changed at each scale level, such that different levels of
the multi-scale ridgelet pyramid are used to represent different sub-bands of a filter bank output.



The side-length of the localizing windows is doubled at every other dyadic sub-band, hence maintaining
the fundamental property of the curvelet transform, which says that elements of length about 2−j/2 serve
for the analysis and synthesis of the j-th sub-band [2j , 2j+1]. The curvelet transform is also redundant,
with a redundancy factor of 16J + 1 whenever J scales are employed.Its complexity is of the O(n2 log2 n,
as with ridgelet. This method is best for the detection of anisotropic structures of different lengths.

• The (Local) Discrete Cosine Transform (DCT): The DCT is a variant of the Discrete Fourier Transform,
replacing the complex analysis with real numbers by a symmetric signal extension. The DCT is an
orthonormal transform, known to be well suited for stationary signals. Its coefficients essentially represents
frequency content, similar to the one obtained by Fourier analysis. When dealing with non-stationary
sources, DCT is typically applied in blocks. Such is indeed the case in the JPEG image compression
algorithm. Choice of overlapping blocks is preferred for analyzing signals while preventing blotchiness
effects. In such a case we get again an overcomplete transform with redundancy factor of 4 for an overlap
of 0.5. A fast algorithm with complexity of n2 log2 n exists for its computation. The DCT is appropriate
for a sparse representation of smooth or periodic behaviors.

3.1. Dictionaries Choice - Summary

For texture description (i.e. Tt dictionary), the DCT seems to have good properties. If the texture is not
spatially homogeneous, a local DCT should be preferred. The second dictionary Tn should be chosen depending
on the content of the image. If it contains lines of a fixed size, the local ridgelet transform will be good. More
generally the curvelet transform represents well edges in an images, and should be a good candidate in many
cases. The un-decimated wavelet transform could be used as well. Finally, for images containing isotropic
features, the isotropic à trous wavelet transform is the best. In our experiments, we have chosen images with
edges, and decided to apply the texture/signal separation using the DCT and the curvelet transform.

Note that when choosing a transform, we may want to prune some of the representation coefficients for
better selectivity. For example, using the DCT (for the texture part) along with the wavelet transform (for the
piecewise smooth part) implies some overlap between the two, when smooth content exists in the image. Thus,
the low-resolution coefficients of the DCT could be simply discarded for a better definition of the separation
process.

4. NUMERICAL CONSIDERATIONS

Assume hereafter that we use the DCT (actually several local versions of it, with varying block sizes) for the
texture - we denote this multi-scale dictionary by D. Assume further that given the representation coefficients
of this transform, we have a reconstruction from these DCT coefficients, denoted as D+. In such an inversion we
refer to the frame approach that generalizes the inverse by a pseudo-inverse. Similarly, we choose the curvelet
transform for the natural scene part, denote the analysis operator by C, and the synthesis operator by C+.

Returning to the separation process as posed in Equation (7), we have two unknowns - X t and Xn - the
texture and the piecewise smooth images. The optimization problem to be solved is

min
{X

t
, X

n
}
‖DXt‖1 + ‖CXn‖1 + λ ‖X −Xt −Xn‖22 + γTV {Xn} . (9)

The algorithm we use is the following:

1. Initialize a coefficient Lmax, the number of iterations per layer N , and threshold δ = λ · Lmax.

2. Perform N times:

• Part A - Update of Xn:

– Calculate the residual R = X −X t −Xn.

– Calculate the curvelet transform C of Xn +R and obtain αn = C(Xn +R).



– Soft∗ threshold the coefficient αn with the δ threshold and obtain α̂n.

– Reconstruct Xn by Xn = C+α̂n.

• Part B - Update of Xt:

– Calculate the residual R = X −X t −Xn.

– Calculate the local DCT transform D of X t +R and obtain αt = D(Xt +R).

– Soft threshold the coefficient αt with the δ threshold and obtain α̂t.

– Reconstruct Xt by Xt = D+α̂t.

• Part C - TV Consideration: Apply the TV correction by Xn = Xn − µγ
∂TV {Xn}

∂X
n

. The parameter

µ is chosen either by a line-search minimizing the overall penalty function, or as a fixed step-size of
moderate value that guarantees convergence.

3. Update the threshold by δ = δ − λ.

4. If δ > λ, return to Step 2. Else, finish.

The described algorithm uses the Block-Coordinate Relaxation Method discussed earlier, but employs it even
though the involved dictionaries are non-unitary. Further work is required to establish the convergence of this
algorithm to the desired solution of the penalty function in Equation (9). We chose this numerical scheme over
the Basis Pursuit interior-point approach in4 because it presents two major advantages:

• We do not need to keep all the transformations in memory. This is particularly important when we use
redundant transformations such the un-decimated wavelet transform or the curvelet transform.

• We can add different constraints on the components. Here we applied only the TV constraint on one of
the components, but other constraints, such as positivity, can easily be added as well.

If the texture extends across the whole image, then a global DCT should be preferred to a local DCT. Our
method allows us to build easily a dedicated algorithm which takes into account the a priori knowledge we have
on the solution for a specific problem.

5. EXPERIMENTAL RESULTS

5.1. Image Decomposition

We start the description of our experiments with a synthetically–generated image composed of a natural scene
and a texture, where we have the ground truth parts to compare with. We implement the proposed algorithm
with the curvelet transform (five resolution levels) for the natural scene part, and a global DCT transform for
the texture. The TV parameter γ has been fixed to 0.5.

Figure 2 shows the original image (top), the two original parts the image was composed from (middle left
and right) and the separated texture part (bottom left) and the separated natural part (bottom right).

The texture reconstructed component X t (middle left), the natural scene part (middle right), and the two
original parts the image was composed from (bottom left and right). As we can see, the separation is reproduced
rather well.

We have also applied our method to the Barbara (512x512) image. We have used the curvelet transform
algorithm described in20 with the five resolution levels, and overlapping DCT transform with block size 32. The
TV parameter γ has been fixed again to 0.5. Figure 3 top left and right shows respectively the Barbara and
its upper right part. Figure 3 middle shows the reconstructed Cosine component X t and Figure 3 bottom the
reconstructed curvelet component Xn.



Figure 2. Original simulated image and DCT reconstructed component. Top - the combination image, Middle left -
original texture part, Middle right - Original natural part, Bottom left - separated texture part, Bottom right - separated
natural part.

5.2. Non–Linear Approximation

The efficiency of a given decomposition can be estimated by the non-linear approximation (NLA) scheme.
Indeed, a sparse representation implies a good approximation of the image with only few coefficients. An NLA-
curve is obtained by reconstructing the image from the m best term of the decomposition. For example, using

∗Soft threshold is used for comparability with the `1 sparsity penalty term. However, as we have explained earlier,
the `1 expression is merely a good approximation for the desired `0 one, and thus, replacing the soft by a hard threshold
towards the end of the iterative process may lead to better results.



Figure 3. Top, original Barbara image (512x512) and upper right part of it. Middle, reconstructed DCT component.
Bottom, reconstructed curvelet component.

the wavelet expansion of a function f (smooth away from a discontinuity across a C2 curve), the best m-term
approximation f̃Wm obeys23, 24:

‖ f − f̃Wm ‖22³ m−1, m→∞, (10)



Figure 4. Standard deviation of the error of reconstructed Barbara image versus the m largest coefficients used in the
reconstruction. Full line, DCT transform, dotted line orthogonal wavelet transform, and dashed line our signal/texture
decomposition.

while for a Fourier expansion, we have

‖ f − f̃Fm ‖22³ m−
1
2 , m→∞ (11)

Using the algorithm described in the previous section, we decompose the image X into two components X t and
Xn using the overcomplete transforms Tt and Tn. While the decomposition is (very) redundant, the exact
overall representation X may require a relatively small number of coefficients due to the promoted sparsity, and
essentially yield a better NLA-curve.

Figure 4 presents the NLA-curves for the image Barbara using (i) the wavelet transform (OWT), (ii)
the DCT, and (iii) the results of the novel algorithm discussed here, based on the OWT-DCT combination.
Denoting the wavelet transform as W and the DCT one as D, the representation we use includes the m largest
coefficients from {αt, αn} = {DXt, WXn}. Using these m values we reconstruct the image by

X̃m = D−1α̃t +W−1α̃n.

The curves in Figure 4 show the representation error standard deviation as a function of m (i.e. E(m) =
σ(X−X̃m)) relative to the Barbara image when using the DCT transform (continuous line), the OWT transform
(dotted line) and our method (dashed line). We see that for m < 15 %, our representation lead to a better non
linear approximation than both the DCT and the OWT separately.

6. DISCUSSION.

We have seen that our method presents several advantages compared to the standard basis pursuit. The
algorithm requires less memory and additive constraint can easily added on each of the components, which
gives more flexibility for a given application. Finally we have shown that it allows us to obtain very good non
linear approximation when we keep only a few coefficients.

Another approach has recently been proposed1, 25 for separating the texture v from the signal f (f = u+ v)
by using the following model inf(u,v)(‖ u ‖BV +λ ‖ v ‖BV ∗ , where f = u + v, u ∈ BV (R2), and v ∈ BV ∗(R2)



which is the Banach space BV ∗(R2) containing signals with strong oscillations, and defined1 as the space of
functions v(x, y) which can be written as

v(x, y) = ∂xg1(x, y) + ∂yg2(x, y), g1, g2 ∈ L∞(R2), (12)

and

‖ v ‖BV ∗=‖ (| g1(x) |2 + | g2(x) |2)
1
2 ‖∞ (13)

Even if nice numerical experiments have been presented in,1 we see two drawbacks in this model:

• the λ parameter is linked to the period of the oscillations. This means that a texture containing two kinds
of features with two different periods will not be well described by this model.

• non linearity: consider two images f1 = u + v and f2 = u + αv where v is the texture, the minimization
will not produce the same u for the two images.

These drawbacks can be considered as serious limitations of the model in practical issues.

These problems do not appear with our modelisation. Furthermore, our approach seems very promising in
many practical situations, where we want to separate two or more components, each of them being sparse in a
given domain associated to a transformation/reconstruction. Indeed, we address in this paper the texture/signal
separation based on the DCT/curvelet construction, but this method can be seen as a specific case of a more
general approach. This will be inverstigate in the future.
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