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Abstract

In this article we develop a fast high accuracy
Polar FFT. For a given two-dimensional signal of
size N X N, the proposed algorithm’s complezity is
O(N?%log N), just like in a Cartesian 2D-FFT. A spe-
cial feature of our approach is that it involves only
1-D equispaced FFT’s and 1D interpolations. A cen-
tral tool in our approach is the pseudo-polar FFT, an
FFT where the evaluation frequencies lie in an over-
sampled set of non-angularly equispaced points. The
pseudo-polar FFT plays the role of a halfway point —
a nearly-polar system from which conversion to Polar
Coordinates uses processes relying purely on interpo-
lation operations. We describe the conversion process,
and compare accuracy results obtained by unequally-
sampled FFT methods to ours and show marked ad-
vantage to our approach.

1 Introduction

Fourier analysis is a fundamental tool in mathemat-
ics and mathematical physics, and also in theoretical
treatments of signal and image processing. The dis-
covery, popularization, and digital realization of fast
algorithms for Fourier analysis — so called FFT — has
had far reaching implications in science and technol-
ogy in recent decades. The scientific computing com-
munity regards the FFT as one of the leading algo-
rithmic achievements of the 20th century [1]. In fact,
even ordinary consumer-level applications now involve
FFT’s — think of web browser decoding a JPEG im-
ages — so that development of new tools for Fourier
analysis of digital data may be of potentially major
significance.

In this paper we develop tools associated with
Fourier analysis in which the set of frequencies is equi-
spaced when viewed in polar coordinates. When deal-
ing with images defined over the continuum, f(x) =
f(x1,22), = (x1,72) € R, let

f((j)):/f(x)exp(fiqﬁlx)dx
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be the usual continuum Fourier transform of f. Writ-
ing the frequency ¢ = {rcos(0), rsin(0)} in polar coor-
dinates, we let f(r,0) = f(¢(r,0)). In this paper, the
term Polar Fourier Transform refers to the operation
f(r,0) = PF{f(z)}, namely, getting f(z) in Carte-
sian variables and computing f (r,0) defined with po-
lar variables in the frequency domain. While changes
of variables are, of course, banal per se, their signif-
icance lies in the change of viewpoint they provide.
The polar FT can be a powerful tool for organizing
our understanding of operators and functions on the
two dimensional continuum.

Turning to digital images sampled over a Cartesian
grid, we similarly desire a transform that produces po-
lar coordinates in the frequency domain, and in a way
that have many of the properties of the continuum
polar FT, including relations to rotation, registration,
Radon transform, and so on. Naturally, we desire such
transform to be a fast one, similar to the digital trans-
form that produces the Cartesian grid in the frequency
domain. Unfortunately, the prevailing belief seems to
be that there cannot exist such an algorithm [2]. This
is intimately related to the strong reliance of the FFT
on separability of the axes, and the equispaced sam-
ples on both grids - properties lost when dealing with
polar coordinates.

In this paper we propose a notion of polar FT which
is well suited for digital data — a procedure which is
faithful to the continuum polar FT concept, highly
accurate, fast, and generally applicable. We define
the polar grid of frequencies &, , = {&:[p, ql,&y[p, q]}
in the circle inscribed in the fundamental region £ €
[—7,7)2, and, given digital Cartesian data f[iy,i2] we
define the polar FT to be the collection of samples
{F(&p.q)}, where F(&) is the trigonometric polynomial

F(&pq) = Z Z Flir,iz) exp (—iréalp, a] — i2&y[p. q]) -

Thinking of the polar Discrete Fourier Transform
(PDFT) mapping PDFT : fli1,i2] — F(&pq) as a



linear operator, we can also consider a generalized in-
verse procedure of it, going back from discrete polar
Fourier data to cartesian spatial data.

This paper briefly defines the polar FT concept for
digital data, the associated fast algorithms, and dis-
cuss its features such as accuracy and computational
complexity. In this paper we concentrate on the for-
ward transform. We refer the reader to a more detailed
report of our work in [3].

2 Current State of the Art

For evaluating the Fourier transform of a equally
spaced Cartesian grid image over non-equispaced non
Cartesian set of frequencies, a body of literature we
refer to as USFFT (short for Unequally Spaced Fre-
quency Fourier Transform) proposes the use of the reg-
ular FFT, followed by interpolation [4, 5, 6, 7, 8, 9, 10,
11, 12, 13].

The existing state-of-the-art expressed by this liter-
ature can be adapted to produce an approximate Polar
FFT (PFFT) and its inverse. While we are unaware
of any publication which does so, we describe here the
basic principles of such an adaptation. A suggested
PFFT, based on our interpretation of ideas in the ex-
isting literature on USFFT, is described in Algorithm
A.

Task :  Given f[iy,iz2], 0 <iy,is < N—1, compute
the polar Fourier data F'(&, ).

Step 1: Define an oversampled N.Sx NS Cartesian
grid frequencies &, x, € [—m, 7%

Step 2 : Apply regular FFT at &, 4,.

Step 3 : For each polar destination frequency point
identify nearby points from &, i,.

Step 4 : Perform approximate interpolation from
the neighbors in &g, 1, to the desired polar lo-
cation at &, 4.

Algorithm A - Polar Fast Fourier Transform (PFFT)
based on USFFT methodology.

There are various uncertainties, complexities, and
shortcomings associated with an implementation us-
ing the current state-of-the-art ideas from the USFFT:
(i) the need to choose parameters; (i) the need to
adopt high oversampling S in order to obtain high in-
terpolation accuracy; (iii) the burden of identifying,
for each irregular grid point, the corresponding Carte-
sian points and loading those from memory efficiently;
and (iv) the need to have the “forward” and the “in-

verse” polar FT’s defined this way to relate well to
each other.

3 The New Approach

The approach we propose for PFFT factors the
problem into two steps: first, a Pseudo-Polar FFT is
applied, in which a pseudo-polar sampling set is used,
and second, a conversion from pseudo-polar to polar
FT is performed.

3.1 Pseudo-Polar FFT

At the heart of the method proposed here for the
PFFT we use the pseudo-polar FFT — an FFT where
the evaluation frequencies lie in an oversampled set of
non-angularly equispaced points (see Figure 1). The
pseudo-polar grid is separated into two groups — the
Basically Vertical (BV) and the Basically Horizontal
(BH) subsets. The BV group (filled dots in Figure 1)
is defined by

B g =2 for —N<(<N
BV‘{gw:%ggf for —& <m<¥ @)

and a similar definition describes the BH group.
Whereas the polar grid is built as the points on the
intersection between linearly growing concentric cir-
cles and angularly equispaced rays, the pseudo-polar
uses a set of linearly growing concentric squares and
a linearly growing sloped rays.

4

2

-3k

. Eo T 2 s 4
Figure 1: The pseudo-polar grid and its separation

into BV and BH coordinates (N = 8).

This polar-like 2D grid enables fast Fourier compu-
tation. This grid has been explored by many since the
1970-s and until recently. The pioneers in this field
are Mersereau and Oppenheim [14] who proposed the
Linogram grid as an alternative grid to the polar one.
Later work by Munson and others [15, 16] have shown



how these ideas can be extended and used for tomogra-
phy. Recently, The pseudo-polar grid (essentially the
Linogram with a proper choice of oversampling) was
proposed as the base for a stable forward and inverse
Radon transform called Fast Slant-Stack [17].

For this grid we have the following fundamental re-
sult [17, 3]:

Theorem 1 Given the signal fli1,is], 0 < iy,is <
N, the EXACT evaluation of the FT on the oversam-
pled pseudo-polar grid with N.S concentric squares and
2NP rays can be done by 1D-FFT operations only,
and with complexity of 120N?PSlog(NS) operations.

3.2 From Pseudo-Polar to Polar

Similar to the USFFT approach, we suggest to com-
pute the polar-FT values based on a different grid for
which fast algorithm exists, and then go to the po-
lar coordinates via an interpolation stage. However,
instead of using the cartesian grid in the first stage,
we use the pseudo-polar one discussed in the previous
section. Since this grid is closer to the polar destina-
tion coordinates, there is a reason to believe that this
approach will lead to better accuracy and thus lower
oversampling requirements. However, as we shall see
next, beyond the proximity of the pseudo-polar coordi-
nates to the polar ones, other very important benefits
are the ability to perform the necessary interpolations
via pure 1D operations without loosing accuracy, and
the ability to manipulate the data in an orderly fashion
that enables smart memory management. These prop-
erties are vital in understanding the superiority of the
proposed scheme over traditional USFFT methods.

We define the polar coordinate system based on the
Pseudo-Polar one, with manipulations that lay out the
necessary interpolation stages discussed later on. We
concentrate on the basically-vertical frequency sam-
pling points in the pseudo-polar grid as given in (1).
The polar BV ones are obtained by two operations:
Rotate the Rays: In order to obtain a uniform
angle ray sampling as in the polar coordinate system,
the rays must be rotated. This is done by replacing
the term 2m/N in &, above with tan(mm/2N). The
result is a set of points organized on concentric squares
as before, but the rays are spread differently with lin-
early growing angle instead of linearly growing slope.
Figure 2 presents this step as would be done as an
interpolation stage. Rotating the rays amounts to 1D
operation along horizontal lines (for the BV points). A
set of N uniformly spread points along this line are to
be replaced by a new set of IV points along the same
line in different locations (marked as small squares)
owing to the uniform angle sampling of the new rays.
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Figure 2: First Interpolation stage.

We have the following property:

Theorem 2 The first interpolation stage from the
pseudo-polar grid to the polar one s applied on
trigonometric polynomials of order N.

The implication of this observation is that this func-
tion is relatively smooth and with a moderate over-
sampling (factor of 2 — 4) a near-perfect interpolation
is expected for a small neighborhood operation.
Circle the Squares: In order to obtain concentric
circles as required in the polar coordinate system, we
need to circle the squares. This is done by dividing
both &, and £, by a constant along each ray, based on
its angle, and therefore a function of the parameter m,

being R[m] = /1 + tan? (5%). Figure 3 presents this

step as would be done as an interpolation stage. Cir-
cling the squares amounts to 1D operation along rays,
which again is a 1D operation. A set of 2N uniformly
spread points along this line are to be replaced by a
new set of 2N points along the same line in different
locations (marked as small squares). However, this
time the destination points are also uniformly spread.
We have the following result:

Theorem 3 The second interpolation stage from the
pseudo-polar grid to the polar one is applied on band-
limited functions with required maximal sampling pe-
riod of w/N.

This result means that if this function is sampled in
this rate along the entire ray (from —oo to co) we have
a complete representation of it that enables knowledge
of its values at any location. In our case, for a limited
interval z € [—m, 7] we have 2N samples, which is the
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Figure 3: Second Interpolation stage.

critical sampling rate exactly. Thus, with a moderate
oversampling we may represent this function very ac-
curately. All this imply that this function is relatively
smooth as well and lends itself for high accuracy in-
terpolation.

4 Accuracy Analysis

There are many theoretical and empirical ways to
study the performance of the proposed scheme, and
compare it to the alternative USFFT approach. We
focus here on one such possible study, and refer the
reader to the more detailed report [?] for other com-
parisons.

Leaning on the linearity of the proposed transform
and its approximations, and using a matrix-vector rep-
resentation, we have that for a given signal z the
transform error for the USFFT method is given by
(Te—Ty)z, where T, is the USFFT transform and T
is the exact one. We solve,

T, - T,)z|?
N ¢ ) zl|5

5 ; (2)

z ]I
and this way, seek the worst-possible signal z to max-
imize the error, while being of unit ¢?-norm. Clearly,
the result is the first right singular vector of the ma-
trix (Te — T,), and the error is the first singular value
squared [18]. Figure 4 presents the real and imagi-
nary parts of these worst-case signals of size 16 x 16
for the USFFT (oversampling S = 9 in each axis)
and the Polar-FFT (oversampling along the rays with
S, = 20 and along the squares with S5 = 4 — over-
all oversampling of 80, parallel to the one adopted for
the USFFT), and the absolute frequency description
of this signal. The USFFT worst error is 8.9e — 3

while the Polar-FFT one is 1.92e — 6. We see that the
USFFT method is weaker, its worst signal is concen-
trated near the frequency origin where the method is
most weak. Note that the worst signal is modulated
(notice the shift from the center in the spatial domain)
to result with a very non-smooth frequency behavior.
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Figure 4: Worst case signal - Direct eigenvalue ap-
proach.

A problem with the above analysis is the difficulty
in understanding the meaning of the error found, be-
ing a ratio between energies in the frequency and the
spatial domains. An interesting alternative is the def-
inition of worst signals by

subject to Fiz =0, (3)

Put in words, we seek the worst signal such that it
has a fixed energy in the polar frequency coordinates.
However, if we do not restrict the solution, it will nat-
urally concentrate its energy in the frequency domain
corners for maximal effect. Thus, we add the con-
straint to force the signal to have zero energy in the
frequency domain outside the mw-radius circle. If F rep-
resents the regular cartesian FFT in a predetermined
density, then F; represents the rows from it corre-
sponding to the frequency points outside the circle.
This problem can be reposed as a generalized eigen-
value problem, and its results are shown in Figure 5.
The USFFT worst error is 2.7e — 6 and with the Polar-
FFT method the error we obtain is 1.0e — 10.

5 Conclusions

In this article we describe a fast high accuracy Polar
FFT. For a given two-dimensional signal of size N x N,
the proposed algorithm produces a polar FFT with
complexity of O(N?log N), just like in a Cartesian
2D-FFT. Two special features of this algorithm are (i)
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Figure 5: Worst case signal - relative eigenvalue ap-
proach with constraint.

it involves only 1-D equispaced FFT’s and 1D interpo-
lations, leading to highly efficient algorithm from the
memory management point of view; and (ii) it leads
to very high accuracy for moderate oversampling fac-
tors. It is shown that the presented approach is far
more accurate than state-of-the-art methods known as
Unequally-Spaced Fast Fourier Transform (USFFT)
methods.
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