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Image Decomposition via the Combination of Sparse
Representations and a Variational Approach

Jean-Luc Starck, Michael Elad, and David L. Donoho

Abstract—The separation of image content into semantic parts
plays a vital role in applications such as compression, enhance-
ment, restoration, and more. In recent years, several pioneering
works suggested such a separation be based on variational for-
mulation and others using independent component analysis and
sparsity. This paper presents a novel method for separating im-
ages into texture and piecewise smooth (cartoon) parts, exploiting
both the variational and the sparsity mechanisms. The method
combines the basis pursuit denoising (BPDN) algorithm and
the total-variation (TV) regularization scheme. The basic idea
presented in this paper is the use of two appropriate dictionaries,
one for the representation of textures and the other for the natural
scene parts assumed to be piecewise smooth. Both dictionaries
are chosen such that they lead to sparse representations over one
type of image-content (either texture or piecewise smooth). The
use of the BPDN with the two amalgamed dictionaries leads to
the desired separation, along with noise removal as a by-product.
As the need to choose proper dictionaries is generally hard, a
TV regularization is employed to better direct the separation
process and reduce ringing artifacts. We present a highly efficient
numerical scheme to solve the combined optimization problem
posed by our model and to show several experimental results that
validate the algorithm’s performance.

Index Terms—Basis pursuit denoising (BPDN), curvelet, local
discrete cosine transform (DCT), piecewise smooth, ridgelet,
sparse representations, texture, total variation, wavelet.

I. INTRODUCTION

THE TASK of decomposing signals into their building
atoms is of great interest in many applications. The

typical assumption made in such problems is that the given
signal is a linear mixture of several source signals of a more
coherent origin. These kinds of problems have drawn a lot of
research attention recently. Independent component analysis
(ICA), sparsity methods, and variational calculus, have all been
used for the separation of signal mixtures with varying degrees
of success (see, for example, [1]–[5]). A classic example is the
cocktail party problem where a sound signal containing several
concurrent speakers is to be decomposed into the separate
speakers. In image processing, a parallel situation is encoun-
tered in cases of photographs containing transparent layers due
to reflection.
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An interesting decomposition application—separating tex-
ture from nontexture parts in images—has been recently studied
by several researchers. The importance of such separation is for
applications in image compression, image analysis, synthesis
and more (see, for example, [6]). A variational-based method
was proposed recently by Vese and Osher [3] and later followed
by others [5], [7], [8]. Their approach uses a recently introduced
mathematical model for texture content [9] that extends the
notion of total-variation (TV) [10]. A different methodology
toward the same separation task is proposed in [2] and [4]. The
work in [2] describes a novel image compression algorithm
based on image decomposition to cartoon and texture layers
using the wavelet-packet transform. The work presented in [4]
shows a separation based on the matching pursuit algorithm
and an MRF modeling. We will return to these works and give a
more detailed description of their contribution and their relation
to the work presented here.

In this paper, we focus on the same decomposition
problem—texture and natural (piecewise smooth) additive
ingredients. Fig. 1 presents the desired behavior of the separa-
tion task at hand for a typical example. In this work, we aim at
separating these two parts on a pixel-by-pixel basis, such that if
the texture appears in parts of the spatial support of the image,
the separation should succeed in finding a masking map as a
by-product of the separation process.

The approach we take for achieving the separation starts with
the basis pursuit denoising (BPDN) algorithm, extending re-
sults from previous work [11], [12]. The core idea here is to
choose two appropriate dictionaries, one for the representation
of texture, and the other for the natural scene parts. Both dictio-
naries are to be chosen such that each leads to sparse represen-
tations over the images it is serving, while yielding nonsparse
representations on the other content type. Thus, when amalga-
mated to one dictionary, the BPDN is expected to lead to the
proper separation, as it seeks for the overall sparsest solution,
and this should align with the sparse representation for each
part. We show experimentally how indeed the BPDN framework
leads to a successful separation. Furthermore, we show how to
strengthen the BPDN paradigm, overcoming ringing artifacts by
leaning on the TV regularization scheme.

The rest of the paper is organized as follows. Section II
presents the separation method, how the BPDN is used, and
how TV is added to obtain a further improvement. In Sec-
tion III, we discuss the choice of the dictionaries for the texture
and the natural scene parts. Section IV addresses the numerical
scheme for solving the separation problem efficiently. We
present several experimental results in Section V. Relation to
prior art relevant to this work is presented in Section VI, and
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Fig. 1. Example of a separation of texture from piecewise smooth content in an image.

conclusions are drawn in Section VII. Two appendices in this
paper give a detailed presentation of a numerical algorithm that
is found useful here, and a preliminary theoretical study of the
separation task.

II. SEPARATION OF IMAGES—BASICS

A. Model Assumption

Assume that the input image to be processed is of size
. We represent this image as a one-dimensional (1-D) vector

of length by simple reordering. For such images that
contain only pure texture content we propose an over-complete
representation matrix (where typically

) such that solving

subject to (1)

for any texture image leads to a very sparse solution. The no-
tation is the norm of the vector , effectively counting
the number of nonzeros in it. We further assume that is such
that if the texture appears in parts of the image and otherwise
zero, the representation is still sparse, implying that the dictio-
nary employs a multiscale and local analysis of the image con-
tent. The definition in (1) is essentially an overcomplete trans-
form of , yielding a representation , such that sparsity is
maximized.

We further require that when this forward transform with
is applied to images containing no texture and pure

piecewise-smooth content, the resulting representations are
nonsparse. Thus, the dictionary plays a role of a discriminant
between content types, preferring the texture over the natural
part. A possible measure of fidelity of the chosen dictionary is
the functional

where

subject to

subject to (2)

This functional of the dictionary is measuring the relative spar-
sity between a family of textured images and a family
of natural content images . This, or a similar measure,
could be used for the design of the proper choice of . How-
ever, in this paper, we take a different approach, as will be dis-
cussed shortly.

Similar to the above, assume that for images containing piece-
wise smooth content , we have a different dictionary ,
such that their content is sparsely represented by the above def-
inition. Again, we assume that beyond the sparsity obtained by

for natural images, we can further assume that texture im-
ages are represented very inefficiently (i.e., nonsparsely) and
also assume that the analysis applied by this dictionary is of
multiscale and local nature, enabling it to detect pieces of the
desired content.

For an arbitrary image containing both texture and piece-
wise smooth content (overlayed, side-by-side, or both), we pro-
pose to seek the sparsest of all representations over the aug-
mented dictionary containing both and . Thus, we need
to solve

subject to (3)

This optimization task is likely to lead to a successful separation
of the image content, such that is mostly texture and
is mostly piecewise smooth. This expectation relies on the as-
sumptions made earlier about and being very efficient
in representing one content type and being highly ineffective in
representing the other.

While sensible from the point of view of the desired solu-
tion, the problem formulated in (3) is nonconvex and hard to
solve. Its complexity grows exponentially with the number of
columns in the overall dictionary. The basis pursuit (BP) method
[11] suggests the replacement of the norm with an norm,
thus leading to a solvable optimization problem (linear program-
ming) of the form

subject to (4)

Interestingly, recent work have shown that for sparse enough
solutions, the BP simpler form is accurate, also leading to the
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sparsest of all representations [13]–[16]. More about this rela-
tionship is given in Appendix II, where we analyze theoretically
bounds on the success of such separation.

B. Complicating Factors

The above description is sensitive in a way that may hinder
the success of the overall separation process. There are two com-
plicating factors, both have to do with the assumptions made
above.

Assumption: The image is decomposed cleanly into texture
and natural (piecewise smooth) parts. For an arbitrary image,
this assumption is not true, as it may also contain additive noise
that is not represented well both by and . Generally
speaking, any deviation from this assumption may lead to a
nonsparse pair of vectors , and with that, due to
the change from to , to a complete failure of the separation
process.

Assumption: The chosen dictionaries are appropriate. It
is very hard to propose a dictionary that leads to sparse
representations for a wide family of signals. A chosen dictionary
may be inappropriate because it does not lead to a sparse
representation for the proper signals. If this is the case, then,
for such images, the separation will fail. A more complicating
scenario is obtained for dictionaries that does not discriminate
well between the two phenomena we desire to separate. Thus,
if, for example, we have a dictionary that indeed leads to
sparse representations for natural scenes, but also known to
lead to sparse representations for some texture content, clearly,
such a dictionary could not be used for a successful separation.
Put more generally, we may ask whether such dictionaries exist
at all.

A solution for the first problem could be obtained by relaxing
the constraint in (4) to become an approximate one. Thus, in the
new form, we propose the solution of

(5)

Thus, an additional content in the image that is not represented
sparsely by both dictionaries will be allocated to be the residual

. This way, we not only manage to separate
texture from natural scene parts, but also succeed in removing
an additive noise as a by-product. This new formulation is fa-
miliar by the name BP denoising, shown in [11] to perform
well for denoising tasks. We should note here that the choice
of as the error norm is intimately related to the assump-
tion that the residual behaves like a white zero-mean Gaussian
noise. Other norms can be similarly introduced to account for
different noise models, such as Laplacian ( ), uniformly dis-
tributed noise ( ), and others.

As for the second problem mentioned here, we propose an
underlying model to describe image content, but we do not, and
cannot, claim that this model is universal and will apply to all
images. There are certainly images for which this model will
fail. Still, in properly choosing the dictionaries, the proposed
model holds true for a relatively large class of images. Indeed,
the experimental results to follow support this belief.

Also, even if the above-described model is feasible, the
problem of choosing the proper dictionaries remains open and
difficult. This matter will be discussed in the next section.

Suppose we have chosen and , both generally well
suited for the separation task. By adding external forces that di-
rect the images and to better suite their expected
content, these forces will fine tune the process to achieve its task.
As an example for such successful external force, adding a TV
penalty [10] to (5) can direct the image to fit the piece-
wise smooth model. This leads to

(6)

The expression is essentially computing the image
(supposed to be piecewise smooth) and applying

the TV norm on it (computing its absolute gradient field and
summing it with an norm). Penalizing with TV, we force the
image to be closer to a piecewise smooth image and, thus,
support the separation process. This idea has already appeared
in [17]–[19], where TV was used to damp ringing artifacts near
edges, caused by the oscillations of the curvelet atoms. We note
that combining TV with wavelet has also been done for similar
reasons in [20], although in a different fashion.

C. Different Problem Formulation

Assume that each of the chosen dictionaries can be composed
into a set of unitary matrices such that

and

where is the Hermite adjoint (conjugate and transpose) of
. In such a case we could slice and into and parts,

correspondingly, and obtain a new formulation of the problem

(7)

In the above formulation, the representation vector pieces
and are supposed to be sparse. Defining

and similarly , we
can reformulate the problem as
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(8)

and the unknowns become images, rather then representation
coefficients. For this problem structure, there exists a fast nu-
merical solver called the block-coordinate relaxation method,
based on the shrinkage method [21]. This solver (see Appendix I
for details) requires only the use of matrix-vector multiplica-
tions with the unitary transforms and their adjoints. See [22] for
more details. We will return to this form of solution when we
discuss numerical algorithms.

D. Summary of Method

In order to translate the above ideas into a practical algorithm,
we should answer three major questions: 1) Is there a theoret-
ical backup to the heuristic claims made here? 2) How should
we choose the dictionaries and ? 3) How should we nu-
merically solve the obtained optimization problem in a traceable
way? These three questions are addressed in the coming sec-
tions. The theoretical grounds for the separation is briefly dis-
cussed in Appendix II. The choice of dictionaries in the topic
of the next section, and the numerical considerations follow in
Section IV.

III. CANDIDATE DICTIONARIES

Our approach toward the choice of and is to pick
known transforms and not design those optimally as we hinted
earlier as a possible method. We choose transforms known for
representing well either texture or piecewise smooth behaviors.
For numerical reasons, we restrict our choices to the dictionaries

and that have a fast forward and inverse implementation.
In making a choice for a transform, we use experience of the user
applying the separation algorithm, and, thus, the choices made
may vary from one image to another. We shall start with a brief
description of our candidate dictionaries.

A. Dictionaries for Piecewise Smooth Content

1) Bi-Orthogonal Wavelet Transforms (OWT): Previous
work has established that the wavelet transform is well suited
for the effective (sparse) representation of natural scene [21].
The application of the OWT to image compression using the
7–9 filters and the zero-tree coding leads to impressive results
over the JPEG [23]–[25].

The OWT implementation requires operations for an
image with pixels, both for the forward and the in-
verse transforms. Represented as a matrix-vector multiplication,
this transform is a square matrix, either unitary, or nonunitary
with accompanying inverse matrix of a similar simple form. The
OWT presents only a fixed number of directional elements in-
dependent of scales, and there is no highly anisotropic elements
[26]. Therefore, we expect the OWT to be nonoptimal for detec-
tion of highly anisotropic features. Moreover, the OWT is non-

shift invariance—a property that may cause difficulties in our
analysis.

The undecimated version (UWT) of the OWT is certainly the
most popular transform for data filtering. It is obtained by skip-
ping the decimation, implying that this is an overcomplete trans-
form represented as a matrix with more columns than rows. The
redundancy factor (ratio between number of columns to number
of rows) is , where is the number of resolution layers.
With this over-completeness, we obtain the desired shift invari-
ance property.

2) Isotropic à Trous Algorithm: This transform decomposes
an image as a superposition of the form

, where is a coarse or smooth ver-
sion of the original image and represents the details of
at scale (see [27]). Thus, the algorithm outputs sub-
band arrays of size . This wavelet transform is very well
adapted to the detection of isotropic features, and this explains
the reason of its success for astronomical image processing,
where the data contains mostly (quasi-)isotropic objects, such
as stars or galaxies [28].

3) Local Ridgelet Transform: The ridgelet transform is the
application of a 1-D wavelet to the angular slices of the Radon
transform [26]. Such transform has been shown to be very ef-
fective for representing global lines in an image. In order to de-
tect line segments, a partitioning must be introduced [29], and
a ridgelet transform is to be applied per each block. In such a
case, the image is decomposed into 50% overlapping blocks of
side-length pixels. The overlap is introduced in order to avoid
blocking artifacts. For a image, we count such
blocks in each direction. The overlap introduces more redun-
dancy (over-completeness), as each pixel belongs to four neigh-
boring blocks. The ridgelet transform requires
operations. More details on the implementation of the digital
ridgelet transform can be found in [30].

4) Curvelet Transform: The curvelet transform, proposed in
[31], [32], and [30], enables the directional analysis of an image
in different scales. The idea is to first decompose the image into
a set of wavelet bands, and to analyze each band with a local
ridgelet transform. The block size is changed at each scale level,
such that different levels of the multiscale ridgelet pyramid are
used to represent different subbands of a filter bank output. The
side-length of the localizing windows is doubled at every other
dyadic subband, hence maintaining the fundamental property of
the curvelet transform, which says that elements of length about

serve for the analysis and synthesis of the th subband
. The curvelet transform is also redundant, with a re-

dundancy factor of whenever scales are employed. Its
complexity is of the , as in ridgelet. This method
is best for the detection of anisotropic structures and smooth
curves and edges of different lengths.

B. Dictionaries for Texture Content

1) (Local) Discrete Cosine Transform (DCT): The DCT
is a variant of the Discrete Fourier Transform, replacing the
complex analysis with real numbers by a symmetric signal
extension. The DCT is an orthonormal transform, known to
be well suited for first order Markov stationary signals. Its
coefficients essentially represents frequency content, similar
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to the ones obtained by Fourier analysis. When dealing with
nonstationary sources, DCT is typically applied in blocks. Such
is indeed the case in the JPEG image compression algorithm.
Choice of overlapping blocks is preferred for analyzing signals
while preventing artefact. In such a case we get again an
overcomplete transform with redundancy factor of 4 for an
overlap of 50%. A fast algorithm with complexity of
exists for its computation. The DCT is appropriate for a sparse
representation of either smooth or periodic behaviors.

2) Gabor Transform: The Gabor transform is quite popular
among researchers working on texture content. This transform
is essentially a localized DFT, where the localization is obtained
by windowing portions of the signal in an overlapping fashion.
The amount of redundancy is controllable. For a proper choice
of the overlap and the window, both the forward and the inverse
transforms can be applied with complexity of .

IV. NUMERICAL CONSIDERATIONS

A. Numerical Scheme

Returning to the separation process as posed in (6), we need
to solve an optimization problem of the form

(9)

Instead of solving this optimization problem, finding
, let us reformulate the problem so as to get

the texture and the natural part images, and , as our un-
knowns. The reason behind this change is the obvious simplicity
gained by searching lower dimensional vectors—representa-
tion vectors are far longer than the images they represent for
overcomplete dictionaries as the ones we use here.

Define and . Given , we can re-
cover as where is an arbitrary vector
in the null-space of , and is the Moore–Penrose pseudo-
inverse of . Note that, for tight frames, this matrix is the same
(up to a constant) as the Hermite adjoint one, and, thus, its com-
putation is relatively easy. Put these back into (6), and, thus, we
obtain

subject to (10)

The term is an overcomplete linear transform of the
image . Similarly, is an overcomplete linear trans-
form of the natural part. In our attempt to replace the repre-
sentation vectors as unknowns, we see that we have a pair of
residual vectors to be found as well. If we choose (rather arbi-
trarily at this stage) to assign those vectors as zeros we obtain
the problem

(11)

We can justify the choice and in several ways.
Bounding Function: Since (11) is obtained from (10) by

choosing , , we necessarily get that the value of
(10) (after optimization) is upper bounded by the value of (11).
Thus, in minimizing (11), instead, we guarantee that the true
function to be minimized is of even lower value.

Relation to the Block-Coordinate-Relaxation Algo-
rithm: Comparing (11) to the case discussed in (8), we
see a close resemblance. If we assume that the dictionaries
involved are unitary, we get a complete equivalence between
solving (10) and (11). In a way, we may refer to the approx-
imation we have made here as a method to generalize the
block-coordinate-relaxation method for the nonunitary case.

Relation to MAP: The expression written as a penalty func-
tion in (11) has a maximum a posteriori estimation flavor to it.
It suggests that the given image is known to originate from
a linear combination of the form , contaminated by
Gaussian noise—this part comes from the likelihood function

. For the texture image part, there is the as-
sumption that it comes from a Gibbs distribution of the form

. As for the natural part, there is
a similar assumption about the existence of a prior of the form

. While different
from our original point of view, these assumptions are reason-
able and not far from the BP approach.

The bottom line to all this discussion is that we have chosen
an approximation to our true minimization task and, with it,
managed to get a simplified optimization problem, for which an
effective algorithm can be proposed. Our minimization task is,
thus, given by equation (11). The algorithm we use is based on
the block-coordinate-relaxation method [22] (see Appendix I),
with some required changes due to the nonunitary transforms
involved, and the additional TV term. The algorithm is given as
follows.

The algorithm for minimizing (11). Here is the curvelet
transform, and is the local DCT.1

1. Initialize , number of iterations per layer , and
threshold .
2. Perform times:
Part A—Update of assuming is fixed:
– Calculate the residual .
– Calculate the curvelet transform of and obtain

.
– Soft threshold the coefficient with the threshold and

obtain .
– Reconstruct by .

Part B—Update of assuming is fixed:
– Calculate the residual .
– Calculate the local DCT transform of and obtain

.
– Soft threshold the coefficient with the threshold and

obtain .
– Reconstruct by .

1If the texture is the same on the whole image, then a global DCT should be
preferred.
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Part C—TV Consideration:
– Apply the TV correction by

.
– The parameter is chosen either by a line-search mini-

mizing the overall penalty function, or as a fixed step-size of
moderate value that guarantees convergence.
3. Update the threshold by .
4. If , return to Step 2. Else, finish.

In the above algorithm, soft threshold is used due to our for-
mulation of the sparsity penalty term. However, as we have
explained earlier, the expression is merely a good approxi-
mation for the desired one, and, thus, replacing the soft by a
hard threshold toward the end of the iterative process may lead
to better results.

We chose this numerical scheme over the BP interior-point
approach in [11], because it presents two major advantages.
1) We do not need to keep all the transformations in memory.
This is particularly important when we use redundant trans-
formations such as the un-decimated wavelet transform or the
curvelet one. Also, 2) we can add different constraints on the
components. Here we applied only the TV constraint on one of
the components, but other constraints, such as positivity, can
easily be added as well. Our method allows us to build easily
a dedicated algorithm which takes into account the a priori
knowledge we have on the solution for a specific problem.

B. TV and Undecimated Haar Transform

A link between the TV and the undecimated Haar wavelet
soft thresholding has been studied in [33], arguing that in
the 1-D case the TV and the undecimated single resolution
Haar are equivalent. When going to two-dimensional (2-D),
this relation does not hold anymore, but the two approaches
share some similarities. Whereas the TV introduces translation-
and rotation-invariance, the undecimated 2-D Haar presents
translation- and scale-invariance (being multiscale). In light of
this interpretation, we can change the part C in the algorithm
as described below. This method is expected to lead to similar
results to the ones obtained with the regular TV.

Alternative Stage C—Replacement of the TV
by undecimated Haar.
Part C—TV Consideration:
– Apply the TV correction by using the
undecimated Haar wavelet transform and
a soft thresholding:
• Calculate the undecimated Haar wavelet

transform of and obtain .
• Soft threshold the coefficient with

the threshold
• Reconstruct by .
– The parameter is chosen as before.

C. Noise Consideration

The case of noisy data can be easily considered in our
framework, and merged into the algorithm such that we get

a three-way separation to texture, natural part, and additive
noise— . We can normalize both transforms

and such that for a given noise realization with
zero-mean and a unit standard deviation, and

have also a standard deviation equals to 1. Then,
only the last step of the algorithm changes by replacing the
stopping criterion by , where is the noise
standard deviation and , 4. This ensures that coefficients
with an absolute value lower than are not taken into account.

V. EXPERIMENTAL RESULTS

A. Image Decomposition

We start the description of our experiments with a syntheti-
cally generated image composed of a natural scene and a tex-
ture, where we have the ground truth parts to compare against.
We implemented the proposed algorithm with the curvelet trans-
form (five resolution levels) for the natural scene part, and a
global DCT transform for the texture. We used the soft thresh-
olding Haar as a replacement to the TV, as described in previous
section. The parameter was fixed to 2. The overall algorithm
converges in a matter of 10–20 iterations. Due to the inefficient
implementation of the curvelet transform, the overall run-time
of this algorithm is 30 min. Recent progress made in the imple-
mentation of the curvelet is expected to reduce this run-time by
more than one order of magnitude.

In this example, we got better results if the very low frequency
components of the image are first subtracted from it, and then
added to after the separation. The reason for this is the
evident overlap that exists between the two dictionaries—both
consider the low-frequency content as theirs, as both can
represent it efficiently. Thus, by removing this content prior
to the separation we avoid separation ambiguity. Also, by
returning this content later to the curvelet part, we use our
expectation to see the low frequencies as belonging to the
piecewise smooth image.

Fig. 2 shows the original image (addition of the texture and
the natural parts), the low frequency component, the texture re-
constructed component and the natural scene part . As
can be seen, the separation is reproduced rather well. Fig. 3
shows the results of a second experiment where the separation
is applied to the above combined image after being contami-
nated by additive noise ( ). We see that the presence
of noise does not deteriorate the separation algorithm’s perfor-
mance, and the noise is separated well.

We have also applied our method to the Barbara (512 512)
image. We used the curvelet transform with the five resolu-
tion levels, and overlapping DCT transform with a block size
32 32. The parameter has been fixed to 0.5. Here, we used
the standard TV regularization implementation. Fig. 4 shows the
Barbara image, the reconstructed cosine component and the
reconstructed curvelet component . Fig. 5 shows a magni-
fied part of the face. For comparison, the separated components
reconstructed by Vese–Osher approach [3] are also shown.

We note here that in general the comparison between different
image separation methods should be done with respect to the
application in mind. Here we consider the separation itself as
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Fig. 2. (Top left) Original combined image, (top right) its low frequency content,
(bottom left) the separated texture part, and (bottom right) the separated natural
part.

Fig. 3. (Top left) Original noisy image, (top right) the separated texture part,
(bottom left) the separated natural part, (bottom right) and the residual noise
component.

the application, and, thus, the results are compared by visually
inspecting the outcomes.

B. Nonlinear Approximation (NLA)

The efficiency of a given decomposition can be estimated by
a NLA scheme, where sparsity is a measure of success. An NLA
curve is obtained by reconstructing the image from the -first

Fig. 4. (Top) Original Barbara image. (Bottom left) The separated texture and
(bottom right) the separated natural part.

Fig. 5. Top: Reconstructed DCT and curvelet components by our method.
Bottom: v and u components using Vese’s algorithm.

best terms of the decomposition. For example, using the wavelet
expansion of a function (smooth away from a discontinuity
across a curve), the best -terms approximation obeys

, , while for a Fourier expansion
it is , [34], [35]. Using the
algorithm described in the previous section, we decompose the
image into two components and using the overcom-
plete transforms and . Since the decomposition is (very)
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Fig. 6. Standard deviation of the error of reconstructed Barbara image versus
them largest coefficients used in the reconstruction. Full line: DCT transform.
Dotted line: Orthogonal wavelet transform. Dashed line: Our signal/texture
decomposition.

redundant, the exact overall representation may require a rel-
atively small number of coefficients due to the promoted spar-
sity, and this essentially yields a better NLA curve.

Fig. 6 presents the NLA curves for the image Barbara using
1) the wavelet transform (OWT), 2) the DCT, and 3) the results
of the algorithm discussed here, based on the OWT-DCT com-
bination. Denoting the wavelet transform as and the DCT
one as , the representation we use includes the largest co-
efficients from . Using these
values we reconstruct the image by

The curves in Fig. 6 show the representation error standard de-
viation as a function of [i.e., ]. We see
that for , the combined representation leads to a better
NLA curve than both the DCT and the OWT alone.

C. Applications

The ability to separate the image as we show has many
applications. We sketch here two such simple experiments to
illustrate the importance of a successful separation.

Edge detection is a crucial processing step in many com-
puter-vision applications. When the texture is highly contrasted,
most of the detected edges are due to the texture rather than the
natural part. By separating first the two components we can de-
tect the true object’s edges. Fig. 7 shows the edges detected by
the Canny algorithm on both the original image and the curvelet
reconstructed component (see Fig. 2).

Fig. 8 shows a galaxy imaged with the GEMINI-OSCIR in-
strument at 10 . The data is contaminated by a noise and a strip-
ping artifact (assumed to be the texture in the image) due to the
instrument electronics. As the galaxy is isotropic, we used the
isotropic wavelet transform instead of curvelet. Fig. 8 summa-
rizes the results of the separation where we see a successful iso-
lation of the galaxy, the textured disturbance, and the additive
noise.

Fig. 7. Left: Detected edges on the original image. Right: Detected edges on
the curvelet reconstruct component.

Fig. 8. (Top left) Original image. (Top right) The reconstructed wavelet
component. (Bottom left) The DCT reconstructed component. (Bottom right)
The residual noise.

VI. PRIOR ART

This work was primarily inspired by the image separation
work by Vese and Osher [3]. However, there have been several
other attempts to achieve such separation for various needs. We
list here some of those works, present briefly their contributions,
and relate them to our algorithm.

A. Variational Separation Paradigm

Whereas piecewise smooth images are assumed to
belong to the bounded-variation (BV) family of functions

, texture is known to behave differently. A
different approach has recently been proposed for separating
the texture from the signal ( ) [3], based on a
model proposed by Meyer [9]. Similar attempts and addi-
tional contributions in this line are reported in [7], [8], [36].
This model suggests that a texture image is to belong to
a different family of functions denoted as .
This notation implies the existence of two functions
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such that .
The norm is defined using the two functions , as

. Vese and Osher
suggested a variational minimization problem that approximate
the above model. This approach essentially searches for the
solution , , of

subject to (12)

A numerical algorithm to solve this problem is described in [3]
with encouraging simulation results. Since the direct treatment
of the in the above formulation is hard, Vese and Osher
proposed an approximation by using an norm of the ,
functions. Also, the constraint is replaced by a penalty of the
form . Their method approaches Meyer’s model
as and go to infinity.

Although the approach we take is totally different, it bares
some similarities in spirit to the above described method. Re-
ferring to our formulation in (11) with the choice

(13)
we see the following connections (note that equivalence is not
claimed here).

• Based on our previous discussion on the relation between
the TV and the undecimated Haar, we can propose
as a replacement to . Here, is the undecimated
Haar transform (i.e., in our original notations).
Thus, there is a similarity between the effects of the first
terms in both (12) and (13).

• We may argue that images with sparse representations
in the DCT domain (local with varying block sizes and
block overlap) present strong oscillations and, therefore,
could be considered as textures, belonging to the Banach
space . This suggests that could also
be approximated by an norm term where is
the DCT transform (i.e., in our notations). This
leads to a similarity between the second terms in the two
optimization problems (12) and (13).

• The third expression is exactly the same in (12) and
(13), after the Vese–Osher modifications. Thus, we see
a close relation between our model and the one pro-
posed by Meyer as adopted and used by Vese and Osher.
However, there are also major differences that should be
mentioned.

• In our implementation, we do not use the undecimated
Haar with just one resolution, but rather use the complete
pyramid. We should note that The variational approach
could be extended to have a multiscale treatment by
adopting spatially adaptive and resolution adaptive co-
efficient .

• We have replaced the Haar with more effective transforms
such as curvelet. Several reasons justify such a change.
Among them is the fact that curvelet better succeeds in
detecting noisy edges.

• Our method does not search for the implicit , sup-
posed to be the origin of the texture, but rather searches
directly the texture part by an alternative and simpler
model based on the local DCT.

• We should note that the methodology presented in the
paper is not limited to the separation of texture and piece-
wise-smooth parts of an image. The basic idea advocated
here is how to separate signals to different content types,
leaning on the idea that each of the ingredients have a
sparse representation with a proper choice of a dictio-
nary. This may lead to other applications and different
implementations. We leave this generalized view for fu-
ture research.

• As a final note, we should remark that the Vese–Osher
technique is much faster than the one presented here.
The prime reason for this gap is the curvelet transform
runtime. Future versions of curvelet may change this
shortcoming.

B. Compression via Separation

A pioneering work described in [2] proposes a separation of
cartoon from texture for efficient image compression. This al-
gorithm relies on an experience gained on similar decomposi-
tions applied to audio signals [37]. Our algorithm is very sim-
ilar in spirit to the approach taken in [2], namely, use of different
dictionaries for effective (sparse) representation of each content
type, and pursuit that seeks the sparsest of all representations.
Still there are several major differences worth mentioning.

• While our algorithm uses curvelet, ridgelet, and several
other types of over-complete transforms, the chosen dic-
tionaries in [2] are confined to be orthonormal wavelet
packets (optimized per the task). This choice is crucial
for the compression to follow, but causes loss of sparsity
in the representations.

• Our separation approach is parallel, seeking jointly a de-
composition of the image into the two ingredients. The
numerical implementation uses “Sardy-like” sequential
transforms followed by soft thresholding, but applied it-
eratively, the algorithm gets closer to the BP result, which
is essentially a parallel decomposition technique. The al-
gorithm in [2] is sequential, pealing the cartoon content
and then treating the reminder as texture.

• The proposed method in [2] concentrates on compression
performance, and has less interest in the visual quality of
the separation. The algorithm presented here, on the other
hand, is all about getting pleasing images to a human
viewer. This is why TV penalty was added to treat ringing
artifacts.

• A large portion of our work came as a direct consequence
to the theoretical study we have done on the BP perfor-
mance limits (see Appendix II). When we assume spar-
sity under the chosen dictionaries, we can invoke the
uniqueness result, that says that the original sparsity pat-
tern is indeed the sparsest one possible. When we employ
the BP for numerically getting the result, we lean on the
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equivalence result promising that if indeed the combina-
tion is sparse enough, BP will find it well. The work in
[2] claims of success are leaning on the actual obtained
compression results.

Very recent similar attempt to exploit separation for image
compression is reported in [5]. The authors use the variational
paradigm for achieving the separation, and then consider com-
pression of each content type separately, as in [2].

The separation algorithm presented in [4] is proposed for a
general analysis of image content and not compression. How-
ever, it bares some similarities to both the algorithm in [2] and
the one presented in this paper. As in [2], the decomposition
of the image content is sequential: The first stage extracts the
sketchable content (similar to the piecewise smooth content, but
different), and this is achieved by the matching pursuit algo-
rithm, applied with a trained dictionary of local primitives. The
second stage represents the nonsketchable (texture) content and
is based on Markov random field (MRF) representation. The
goal of the proposed separation in [4] is somewhat different than
the one discussed here, as it focuses on a sparse description of
the sketched image. This is in contrast to the method proposed
here where sparsity is desired and found across all content types.

VII. DISCUSSION

In this paper, we have presented a novel method for separating
an image into its texture and piecewise smooth ingredients. Our
method is based on the ability to represent these content types
as sparse combinations of atoms of predetermined dictionaries.
The proposed approach is a fusion of the BP algorithm and the
TV regularization scheme, both merged in order to direct the
solution toward a successful separation.

This paper offers a theoretical analysis of the separation idea
with the BP algorithm, and shows that a perfect decomposition
of image content could be found in principle. While the theo-
retical bounds obtained for a perfect decomposition are rather
weak, they serve both as a starting point for future research, and
as motivating results for the practical sides of the work.

In going from the pure theoretic view to the implementation,
we manage to extend the model to treat additive noise—essen-
tially any content in the image that does not fit well with ei-
ther texture or piecewise-smooth contents. We also chang the
problem formulation, departing from the BP, and getting closer
to a maximum a posteriori estimation method. The new formu-
lation leads to smaller memory requirements, and the ability to
add helpful constraints.

APPENDIX I
BLOCK-COORDINATE-RELAXATION METHOD

In Section II-C, we have seen an alternative formulation to
the separation task, built on the assumption that the involved
dictionaries are concatenations of unitary matrices. Thus, we
need to minimize (7), given (after a simplification) as

(AI1)

Note that we have discarded the TV part for the discussion given
here. We also simply assume that the unknowns contain
both the texture and the piecewise-smooth parts.

Minimizing such a penalty function was shown by Bruce,
Sardy, and Tseng [22] to be quite simple, as it is based on the
shrinkage algorithm due to Donoho and Johnston [21]. In what
follows, we briefly describe this algorithm and its properties.

1) Property 1: Referring to (AI1) as a function of ,
assuming all other unknowns as known, there is a closed-form
solution for the optimal , given by

(AI2)

for .
This property is the source of the simple numerical scheme of

the block-coordinate-relaxation method. The idea is to sweep
through the vectors one at a time repeatedly, fixing all
others, and solving for each.

2) Property 2: Sweeping sequentially through and up-
dating as in Property 1, the block-coordinate-relaxation
method is guaranteed to converge to the optimal solution of
(AI1).

APPENDIX II
THEORETIC ANALYSIS OF THE SEPARATION TASK

In this Appendix, we aim to show that the separation as
described in this paper has strong theoretical justification roots.
Those lean on some very recent results in the study of the
BP performance. The presented material in this appendix is
deliberately brief, with the intention to present a more extensive
theoretical study in a separate paper.

We start with (3) that stands as the basis for the separation
process. This equation could also be written differently as

subject to (AII1)

From [14], we recall the definition of the Spark.
Definition 1: Given a matrix , its Spark (

) is defined as the minimal number of columns
from the matrix that form a linearly dependent set.

Based on this we have the following result in [14] that gives
a guarantee for global optimum of (AII1) based on a sparsity
condition.

Theorem 1: If a candidate representation satisfies
, then this solution is necessarily the

global minimum of (AII1).
Based on this result it is clear that the higher the value of the

Spark, the stronger this result is. Immediate implication from
the above is the following observation, referring to the success
of the separation process.

Corollary 1: If the image is built such
that and , and

is true, then the global minimum of (AII1) is
necessarily the desired separation.
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Proof: The proof is simple deduction from Theorem 1.
Actually, a stronger claim could be given if we assume a suc-

cessful choice of dictionaries and . Let us define a varia-
tion of the Spark that refers to the interface between atoms from
two dictionaries.

Definition 2: Given two matrices and with the same
number of rows, their Inter-Spark ( )
is defined as the minimal number of columns from the concate-
nated matrix that form a linearly dependent set, and such
that columns from both matrices participate in this combination.

An important feature of our problem is that the goal is the
successful separation of content of an incoming image and not
finding the true sparse representation per each part. Thus, a
stronger claim can be made.

Corollary 2: Suppose the image is
built such that and . If

and (i.e., there is
a mixture of the two), then if the global minimum of (AII1)
satisfies , it is necessarily the successful
separation.

Proof: Given a mixture of columns from the two dictio-
naries, by the definition of the Inter-Spark it is clear that if there
are fewer than nonzeros in such combination, it must
be the unique sparsest solution. The new bound is higher than

, and, therefore, this result is stronger.
So far, we concentrated on (AII1) which stands as the ideal

(but impossible) tool for the separation. An interesting question
is why should the replacement succeed in the separation as
well. In order to answer this question we have to define first the
Mutual Incoherence.

Definition 3: Given a matrix , its
is defined as the maximal

off-diagonal entry in the absolute Gram matrix .
The mutual incoherence is closely related to the Spark, and,

thus, one can similarly define a similar notion of inter– . We
have the following result in [14].

Theorem 2: If the solution of (AII1) satisfies
, then the minimization alternative is guar-

anteed to find it.
For the separation task, this Theorem implies that the sep-

aration via (4) is successful if it is based on sparse enough
ingredients.

Corollary 3: If the image is built such
that and , and

is true, then the solution of (4) leads to the
global minimum of (AII1) and this is necessarily the desired
separation.

Proof: The proof is simple deduction from Theorem 2.
We should note that the bounds given here are quite restric-

tive and does not reflect truly the much better empirical results.
The above analysis is coming form a worst-case point of view
(e.g., see the definition of the Spark), as opposed to the av-
erage case we expect to encounter empirically. Nevertheless,
the ability to prove perfect separation in a stylized application
without noise and with restricted success is of great benefit as a
proof of concept.

Fig. 9. Empirical probability of success of the BP algorithm for separation of
sources. Per every sparsity combination, 100 experiments are performed and the
success rate is computed. Theoretical bounds are also drawn for comparison.

In order to demonstrate the gap between theoretical results
and empirical evidence in BP separation performance, Fig. 9
presents a simulation of the separation task for the case of signal

of length 64, a dictionary built as the combination of the
Hadamard unitary matrix (assumed to be ) and the identity
matrix (assumed to be ). We randomly generate sparse rep-
resentations with varying number of nonzeros in the two parts of
the representation vector (of length 128), and present the empir-
ical probability (based on averaging 100 experiments) to recover
correctly the separation.

For this case, Corollary 3 suggests that the number of nonzero
in the two parts should be smaller than

. Actually a better result exists for this
case in [15] due to the construction of the overall dictionary as
a combination of two unitary matrices. Thus, the better bound
is . Both these bounds are overlayed on
the empirical results in the figure, and as can be seen, BP suc-
ceeds well beyond the bound. Moreover, this trend is expected
to strengthen as the signal size grows, since than the worst-case
scenarios (for which the bounds refer to) become of smaller
probability and of less affect on the average result.

It is interesting to note that very recent attempts by several
research groups managed to quantify the average behavior of
the BP in probabilistic terms. A pioneering work by Candes and
Romberg [38] established one such important result, and several
others follow, although none are published yet.
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