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Abstract—In the last two decades, two related categories of prob-
lems have been studied independently in image restoration liter-
ature: super-resolution and demosaicing. A closer look at these
problems reveals the relation between them, and, as conventional
color digital cameras suffer from both low-spatial resolution and
color-filtering, it is reasonable to address them in a unified con-
text. In this paper, we propose a fast and robust hybrid method
of super-resolution and demosaicing, based on a maximum a pos-
teriori estimation technique by minimizing a multiterm cost func-
tion. The 1 norm is used for measuring the difference between
the projected estimate of the high-resolution image and each low-
resolution image, removing outliers in the data and errors due to
possibly inaccurate motion estimation. Bilateral regularization is
used for spatially regularizing the luminance component, resulting
in sharp edges and forcing interpolation along the edges and not
across them. Simultaneously, Tikhonov regularization is used to
smooth the chrominance components. Finally, an additional reg-
ularization term is used to force similar edge location and orien-
tation in different color channels. We show that the minimization
of the total cost function is relatively easy and fast. Experimental
results on synthetic and real data sets confirm the effectiveness of
our method.

Index Terms—Color enhancement, demosaicing, image restora-
tion, robust estimation, robust regularization, super-resolution.

I. INTRODUCTION

SEVERAL distorting processes affect the quality of images
acquired by commercial digital cameras. Some of the more

important distorting effects include warping, blurring, color-fil-
tering, and additive noise. A common image formation model
for such imaging systems is illustrated in Fig. 11. In this model,
a real-world scene is seen to be warped at the camera lens be-
cause of the relative motion between the scene and camera. The
imperfections of the optical lens results in the blurring of this
warped image which is then subsampled and color-filtered at
the CCD. The additive readout noise at the CCD will further
degrade the quality of captured images.
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Fig. 1. Block diagram representing the image formation model considered in
this paper, where X is the intensity distribution of the scene, V is the additive
noise, and Y is the resulting color-filtered low-quality image. The operators F ,
H ,D, and A are representatives of the warping, blurring, down-sampling, and
color-filtering processes, respectively.

There is a growing interest in the multiframe image recon-
struction algorithms that compensate for the shortcomings of the
imaging system. Such methods can achieve high-quality images
using less expensive imaging chips and optical components by
capturing multiple images and fusing them.
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In digital photography, two image reconstruction problems
have been studied and solved independently—super-resolution
(SR) and demosaicing. The former refers to the limited number
of pixels and the desire to go beyond this limit using several
exposures. The latter refers to the color-filtering applied on a
single CCD array of sensors on most cameras, that measures a
subset of red (R), green (G), and blue (B) values, instead of a
full RGB field.2 It is natural to consider these problems in a joint
setting because both refer to resolution limitations at the camera.
Also, since the measured images are mosaiced, solving the super-
resolution problem using preprocessed (demosaiced) images
is suboptimal and, hence, inferior to a single unifying solution
framework. In this paper, we propose a fast and robust method
for joint multiframe demosaicing and color super-resolution.

The organization of this paper is as follows. In Section II,
we review the super-resolution and demosaicing problems and
the inefficiency of independent solutions for them. In Sec-
tion III, we formulate and analyze a general model for imaging
systems applicable to various scenarios of multiframe image
reconstruction. We also formulate and review the basics of the
maximum a posteriori (MAP) estimator, robust data fusion,
and regularization methods. Armed with material developed
in earlier sections, in Section IV, we present and formulate
our joint multiframe demosaicing and color-super-resolution
method. In Section V, we review two related methods of mul-
tiframe demosaicing. Simulations on both synthetic and real
data sequences are given in Section VI, and concluding remarks
are drawn in Section VII.

II. OVERVIEW OF SUPER-RESOLUTION

AND DEMOSAICING PROBLEMS

In this section, we study and review some of the previous
work on super-resolution and demosaicing problems. We show
the inefficiency of independent solutions for these problems and
discuss the obstacles to designing a unified approach for ad-
dressing these two common shortcomings of digital cameras.

A. Super-Resolution

Digital cameras have a limited spatial resolution, dictated by
their utilized optical lens and CCD array. Surpassing this limit
can be achieved by acquiring and fusing several low-resolution
(LR) images of the same scene, producing high-resolution (HR)
images; this is the basic idea behind super-resolution techniques
[1]–[4].

In the last two decades, a variety of super-resolution methods
have been proposed for estimating the HR image from a set of
LR images. Early works on SR showed that the aliasing ef-
fects in the LR images enable the recovery of the HR-fused
image, provided that a relative subpixel motion exists between
the under-sampled input images [5]. However, in contrast to the
clean and practically naive frequency domain description of SR
in that early work, in general, SR is a computationally complex
and numerically ill-behaved problem in many instances [6]. In
recent years, more sophisticated SR methods were developed
(see [3] and [6]–[10] as representative works).

2Three CCD cameras which measure each color field independently tend
to be relatively more expensive.

Note that almost all super-resolution methods to date have
been designed to increase the resolution of a single channel
(monochromatic) image. A related problem, color SR, addresses
fusing a set of previously demosaiced color LR frames to en-
hance their spatial resolution. To date, there is very little work
addressing the problem of color SR. The typical solution in-
volves applying monochromatic SR algorithms to each of the
color channels independently [11], [12], while using the color
information to improve the accuracy of motion estimation. An-
other approach is transforming the problem to a different color
space, where chrominance layers are separated from luminance,
and SR is applied only to the luminance channel [7]. Both of
these methods are suboptimal as they do not fully exploit the
correlation across the color bands.

In Section VI, we show that ignoring the relation between dif-
ferent color channels will result in color artifacts in the super-re-
solved images. Moreover, as we will advocate later in this paper,
even a proper treatment of the relation between the color layers
is not sufficient for removing color artifacts if the measured im-
ages are mosaiced. This brings us to the description of the de-
mosaicing problem.

B. Demosaicing

A color image is typically represented by combining three
separate monochromatic images. Ideally, each pixel reflects
three data measurements; one for each of the color bands.3 In
practice, to reduce production cost, many digital cameras have
only one color measurement (red, green, or blue) per pixel.4

The detector array is a grid of CCDs, each made sensitive to
one color by placing a color-filter array (CFA) in front of the
CCD. The Bayer pattern shown on the left hand side of Fig. 3 is
a very common example of such a color-filter. The values of the
missing color bands at every pixel are often synthesized using
some form of interpolation from neighboring pixel values. This
process is known as color demosaicing.

Numerous demosaicing methods have been proposed through
the years to solve this under-determined problem, and, in this
section, we review some of the more popular ones. Of course,
one can estimate the unknown pixel values by linear interpola-
tion of the known ones in each color band independently. This
approach will ignore some important information about the cor-
relation between the color bands and will result in serious color
artifacts. Note that the red and blue channels are down-sam-
pled two times more than the green channel. It is reasonable
to assume that the independent interpolation of the green band
will result in a more reliable reconstruction than the red or blue
bands. This property, combined with the assumption that the
red/green and blue/green ratios are similar for the neighboring
pixels, make the basics of the smooth hue transition method first
discussed in [13].

Note that there is a negligible correlation between the values
of neighboring pixels located on the different sides of an edge.
Therefore, although the smooth hue transition assumption is
logical for smooth regions of the reconstructed image, it is not
successful in the high-frequency (edge) areas. Considering this

3This is the scenario for the more expensive 3-CCD cameras.
4This is the scenario for cheaper 1-CCD cameras.
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fact, gradient-based methods, first addressed in [14], do not per-
form interpolation across the edges of an image. This nonitera-
tive method uses the second derivative of the red and blue chan-
nels to estimate the edge direction in the green channel. Later,
the green channel is used to compute the missing values in the
red and blue channels.

A variation of this method was later proposed in [15],
where the second derivative of the green channel and the first
derivative of the red (or blue) channels are used to estimate
the edge direction in the green channel. The smooth hue and
gradient-based methods were later combined in [16]. In this
iterative method, the smooth hue interpolation is done with
respect to the local gradients computed in eight directions about
a pixel of interest. A second stage using anisotropic inverse
diffusion will further enhance the quality of the reconstructed
image. This two-step approach of interpolation followed by an
enhancement step has been used in many other publications.
In [17], spatial and spectral correlations among neighboring
pixels are exploited to define the interpolation step, while
adaptive median filtering is used as the enhancement step.
A different iterative implementation of the median filters is
used as the enhancement step of the method described in
[18] that take advantage of a homogeneity assumption in the
neighboring pixels.

Iterative MAP methods form another important category of
demosaicing methods. A MAP algorithm with a smooth chromi-
nance prior is discussed in [19]. The smooth chrominance prior
is also used in [20], where the original image is transformed
to YIQ representation. The chrominance interpolation is pre-
formed using isotropic smoothing. The luminance interpolation
is done using edge directions computed in a steerable wavelet
pyramidal structure.

Other examples of popular demosaicing methods available in
published literature are [21]–[27]. Almost all of the proposed
demosaicing methods are based on one or more of these fol-
lowing assumptions.

1) In the constructed image with the mosaicing pattern, there
are more green sensors with regular pattern of distribution
than blue or red ones (in the case of Bayer CFA, there are
twice as many greens than red or blue pixels and each is
surrounded by four green pixels).

2) Most algorithms assume a Bayer CFA pattern, for which
each red, green, and blue pixel is a neighbor to pixels of
different color bands.

3) For each pixel, one, and only one, color band value is
available.

4) The pattern of pixels does not change through the image.
5) The human eye is more sensitive to the details in the lumi-

nance component of the image than the details in chromi-
nance component [20].

6) The human eye is more sensitive to chromatic changes
in the low spatial frequency region than the luminance
change [24].

7) Interpolation should be preformed along and not across
the edges.

8) Different color bands are correlated with each other.
9) Edges should align between color channels.

Note that even the most popular and sophisticated demosaicing
methods will fail to produce satisfactory results when severe

aliasing is present in the color-filtered image. Such severe
aliasing happens in cheap commercial still or video digital
cameras, with small number of CCD pixels. The color artifacts
worsen as the number of CCD pixels decreases. The following
example shows this effect.

Fig. 2(a) shows a HR image captured by a 3-CCD camera. If
for capturing this image, instead of a 3-CCD camera a 1-CCD
camera with the same number of CCD pixels was used, the in-
evitable mosaicing process will result in color artifacts. Fig. 2(d)
shows the result of applying demosaicing method of [16] with
some negligible color-artifacts on the edges.

Note that many commercial digital video cameras can only
be used in lower spatial resolution modes while working in
higher frame rates. Fig. 2(b) shows a same scene from a 3-CCD
camera with a down-sampling factor of 4 and Fig. 2(e) shows
the demosaiced image of it after color-filtering. Note that
the color artifacts in this image are much more evident than
Fig. 2(d). These color artifacts may be reduced by low-pass
filtering the input data before color-filtering. Fig. 2(c) shows
a factor of four down-sampled version of Fig. 2(a), which is
blurred with a symmetric Gaussian low-pass filter of size 4
4 with standard deviation equal to one, before down-sampling.
The demosaiced image shown in Fig. 2(f) has less color artifacts
than Fig. 2(e); however, it has lost some high-frequency details.

The poor quality of single-frame demosaiced images stimu-
lates us to search for multiframe demosaicing methods, where
the information of several low-quality images are fused together
to produce high-quality demosaiced images.

C. Merging Super-Resolution and Demosaicing Into One
Process

Referring to the mosaic effects, the geometry of the single-
frame and multiframe demosaicing problems are fundamentally
different, making it impossible to simply cross apply traditional
demosaicing algorithms to the multiframe situation. To better
understand the multiframe demosaicing problem, we offer an
example for the case of translational motion. Suppose that a set
of color-filtered LR images is available (images on the left in
Fig. 3). We use the two-step process explained in Section IV
to fuse these images. The shift-and-add image on the right side
of Fig. 3 illustrates the pattern of sensor measurements in the
HR image grid. In such situations, the sampling pattern is quite
arbitrary depending on the relative motion of the LR images.
This necessitates different demosaicing algorithms than those
designed for the original Bayer pattern.

Fig. 3 shows that treating the green channel differently than
the red or blue channels, as done in many single-frame demo-
saicing methods before, is not useful for the multiframe case.
While, globally, there are more green pixels than blue or red
pixels, locally, any pixel may be surrounded by only red or blue
colors. So, there is no general preference for one color band over
the others (the first and second assumptions in Section II-B are
not true for the multiframe case).

Another assumption, the availability of one and only one
color band value for each pixel, is also not correct in the
multiframe case. In the under-determined cases,5 there are

5Where the number of nonredundant LR frames is smaller than the square of
resolution enhancement factor; a resolution enhancement factor of r means that
LR images of dimensionM�M produce a HR output of dimension rM�rM .
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Fig. 2. HR image (a) captured by a 3-CCD camera is (b) down-sampled by a factor of four. In (c), the image in (a) is blurred by a Gaussian kernel before
down-sampling by a factor of 4. The images in (a)–(c) are color-filtered and then demosaiced by the method of [16]. The results are shown in (d)–(f), respectively.
(a) Original. (b) Down-sampled. (c) Blurred and down-sampled. (d) Demosaiced (a). (e) Demosaiced (b). (f) Demosaiced (c).

not enough measurements to fill the HR grid. The symbol
“?” in Fig. 3 represents such pixels. On the other hand, in the
over-determined cases,6 for some pixels, there may in fact be
more than one color value available.

The fourth assumption in the existing demosaicing literature
described earlier is not true because the field of view (FOV) of
real world LR images changes from one frame to the other, so
the center and the border patterns of red, green, and blue pixels
differ in the resulting HR image.

III. MATHEMATICAL MODEL AND SOLUTION OUTLINE

A. Mathematical Model of the Imaging System

Fig. 1 illustrates the image degradation model that we con-
sider. We represent this approximated forward model by the fol-
lowing equation:

(1)

6Where the number of nonredundant LR frames is larger than the square of
resolution enhancement factor.

Fig. 3. Fusion of seven Bayer pattern LR images with relative translational
motion (the figures in the left side of the accolade) results in a HR image (Z)
that does not follow Bayer pattern (the figure in the right side of the accolade).
The symbol “?” represents the HR pixel values that were undetermined (as a
result of insufficient LR frames) after the shift-and-add step (the shift-and-add
method is extensively discussed in [3], and briefly reviewed in Section III-F).
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which can be also expressed as

...
...

...

(2)

The vectors and are representing the band (R,
G, or B) of the HR color frame and the LR frame after
lexicographic ordering, respectively. Matrix is the geo-
metric motion operator between the HR and LR frames. The
camera’s point spread function (PSF) is modeled by the blur ma-
trix . The matrix represents the down-sampling op-
erator, which includes both the color-filtering and CCD down-
sampling operations.7 Geometric motion, blur, and down-sam-
pling operators are covered by the operator , which we call
the system matrix. The vector is the system noise and
is the number of available LR frames.

The HR color image is of size ), where
is the resolution enhancement factor. The size of the vectors

and is and vectors , ,
, and are of size . The geometric motion

and blur matrices are of size . The down-
sampling and system matrices are of size for
the green band and of size for the red and blue
bands.8

Considered separately, super-resolution and demosaicing
models are special cases of the general model presented above.
In particular, in the super-resolution literature the effect of
color-filtering is usually ignored [3], [9], [10] and, therefore,
the model is simplified to

(3)

In this model, the LR images and the HR image are
assumed to be monochromatic. On the other hand, in the de-
mosaicing literature only single frame reconstruction of color
images is considered, resulting in a simplified model

(4)

As such, the classical approach to the multiframe reconstruc-
tion of color images has been a two-step process. The first step

7It is convenient to think of D (k) = A (k)D(k), where D(k) models the
incoherent down-sampling effect of the CCD andA (k) models the color-filter
effect [28].

8Note that color super resolution by itself is a special case of this model,
where vectors V (k) and Y (k) are of size [4M �1] and matrices T (k) and
D (k) are of size [4M � 4r M ] for any color band.

is to solve (4) for each image (demosaicing step) and the second
step is to use the model in (3) to fuse the LR images resulting
from the first step, reconstructing the color HR image (usually
each R, G, or B bands is processed individually). Of course, this
two-step method is a suboptimal approach to solving the overall
problem. In Section IV, we propose a MAP estimation approach
to directly solve (1).

B. MAP Approach to MultiFrame Image Reconstruction

Following the forward model of (1), the problem of interest
is an inverse problem, wherein the source of information (HR
image) is estimated from the observed data (LR images). An
inherent difficulty with inverse problems is the challenge of in-
verting the forward model without amplifying the effect of noise
in the measured data. In many real scenarios, the problem is
worsened by the fact that the system matrix is singular or
ill-conditioned. Thus, for the problem of super-resolution, some
form of regularization must be included in the cost function to
stabilize the problem or constrain the space of solutions.

From a statistical perspective, regularization is incorporated
as a priori knowledge about the solution. Thus, using the MAP
estimator, a rich class of regularization functions emerges, en-
abling us to capture the specifics of a particular application. This
can be accomplished by way of Lagrangian type penalty terms
as in

(5)

where , the data fidelity term, measures the “distance” between
the model and measurements, and is the regularization cost
function, which imposes a penalty on the unknown X to direct
it to a better formed solution. The regularization parameter
is a scalar for properly weighting the first term (data fidelity
cost) against the second term (regularization cost). Generally
speaking, choosing could be either done manually, using vi-
sual inspection, or automatically using methods like generalized
cross-validation [29], [30], L-curve [31], or other techniques.
How to choose such regularization parameters is in itself a vast
topic, which we will not treat in the present paper.

C. Monochromatic Spatial Regularization

Tikhonov regularization, of the form , is a
widely employed form of regularization [6], [9], where is a
matrix capturing some aspects of the image such as its gen-
eral smoothness. Tikhonov regularization penalizes energy in
the higher frequencies of the solution, opting for a smooth and,
hence, blurry image.

To achieve reconstructed images with sharper edges, in the
spirit of the total variation criterion [32], [33] and a related
method called the bilateral filter9 [34], [35], a robust regularizer
called bilateral-TV (B-TV) was introduced in [3]. The B-TV
regularizing function looks like

(6)

9Note that by adopting a different realization of the bilateral filter, [27] has
proposed a successful single frame demosaicing method.
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where and are the operators corresponding to shifting the
image represented by by pixels in horizontal direction and

pixels in vertical direction, respectively. This cost function in
effect computes derivatives across multiple scales of resolution
(as determined by the parameter ). The scalar weight

is applied to give a spatially decaying effect to the summation
of the regularization term. The parameter “P” defines the size of
the corresponding bilateral filter kernel. The bilateral filter and
its parameters are extensively discussed in [3], [34], and [35].

The performance of B-TV and Tikhonov priors are thor-
oughly studied in [3]. The B-TV regularization is used in
Section IV to help reconstruct the luminance component of the
demosaiced images. Note that these two regularization terms in
the presented form do not consider the correlation of different
color bands.

D. Color Regularization

To reduce color artifacts, a few MAP-based demosaicing al-
gorithms have adapted regularization terms for color channels.
Typically, the color regularization priors are either applied on
the chrominance component of an image (after transforming to a
suitable color space such as YIQ representation [20]), or directly
on the RGB bands [19]. While the former can be easily imple-
mented by some isotropic smoothing priors such as Tikhonov
regularization, the latter is computationally more complicated.

Note that, although different bands may have larger or smaller
gradient magnitudes at a particular edge, it is reasonable to as-
sume the same edge orientation and location for all color chan-
nels. That is to say, if an edge appears in the red band at a par-
ticular location and orientation, then an edge with the same lo-
cation and orientation should appear in the other color bands.
Therefore, a cost function that penalizes the difference in edge
location and/or orientation of different color bands incorporates
the correlation between different color bands prior. We will em-
ploy such a cost function in Section IV to remove color artifacts.

Following [19], minimizing the vector product norm of any
two adjacent color pixels forces different bands to have similar
edge location and orientation. The vector (outer) product of

and , which represent the color
values of two adjacent pixels, is defined as

where is the angle between these two vectors. As the data
fidelity penalty term will restrict the values of and ,
minimization of will minimize , and, con-
sequently, the itself, where a small value of is an indicator
of similar orientation.

E. Data Fidelity

One of the most common cost functions to measure the close-
ness of the final solution to the measured data is the least-squares

(LS) cost function, which minimizes the norm of the residual
vector

(7)

(see [9], [10], and [36] as representative works). For the case
where the noise is additive white, zero mean Gaussian, this
approach has the interpretation of providing the maximum like-
lihood (ML) estimate of [9]. However, a statistical study of
the noise properties found in many real image sequences used
for multiframe image fusion techniques, suggests that heavy-
tailed noise distributions such as Laplacian are more appropriate
models (especially in the presence of the inevitable motion es-
timation error) [37]. In [3], an alternate data fidelity term based
on the norm is recently used, which has been shown to be
very robust to data outliers

(8)

Note that the norm is the ML estimate of data in the presence
of Laplacian noise. The performance of the and norms
is compared and discussed in [3]. The performance of the
and norms is compared and discussed in [3]. In this paper
(Section IV), we have adopted the norm (which is known to
be more robust than ) as the data fidelity measure.

F. Speedups for the Special Case of Translation Motion and
Common Space-Invariant Blur

Considering translational motion model and common10

space-invariant PSF, the operators and are commuta-
tive . We can rewrite (1) as

(9)

By substituting , the inverse problem may be separated
into the much simpler subtasks of:

1) fusing the available images and estimating a blurred HR
image from the LR measurements (we call this result );

2) estimating the deblurred image from .

The optimality of this method is extensively discussed in
[3], where it is shown that is the weighted mean (mean
or median operators, for the cases of norm and norm,
respectively) of all measurements at a given pixel, after proper
zero filling and motion compensation. We call this operation
shift-and-add, which greatly speeds up the task of multiframe
image fusion under the assumptions made. To compute the
shift-and-add image, first the relative motion between all LR
frames is computed. Then, a set of HR images is constructed
by up-sampling each LR frame by zero filling. Then, these
HR frames are registered with respect to the relative motion of
the corresponding LR frames. A pixel-wise mean or median
operation on the nonzero values of these HR frames will result
in the shift-and-add image.

108k H(k) = H , which is true when all images are acquired with the same
camera.
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In the next section, we use the penalty terms described in
this section to formulate our proposed method of multiframe
demosaicing and color super-resolution.

IV. MULTIFRAME DEMOSAICING

In Section II-C we indicated how the multiframe demosaicing
is fundamentally different than single-frame demosaicing. In
this section, we propose a computationally efficient MAP esti-
mation method to fuse and demosaic a set of LR frames (which
may have been color-filtered by any CFA) resulting in a color
image with higher spatial resolution and reduced color artifacts.
Our MAP-based cost function consists of the following terms,
briefly motivated in the previous section:

1) a penalty term to enforce similarities between the raw
data and the HR estimate (data fidelity penalty term);

2) a penalty term to encourage sharp edges in the luminance
component of the HR image (spatial luminance penalty
term);

3) a penalty term to encourage smoothness in the chromi-
nance component of the HR image (spatial chrominance
penalty term);

4) a penalty term to encourage homogeneity of the edge lo-
cation and orientation in different color bands (intercolor
dependencies penalty term).

Each of these penalty terms will be discussed in more detail in
the following sections.

A. Data Fidelity Penalty Term

This term measures the similarity between the resulting HR
image and the original LR images. As it is explained in Sec-
tion III-E and [3], norm minimization of the error term re-
sults in robust reconstruction of the HR image in the presence
of uncertainties such as motion error. Considering the general
motion and blur model of (1), the data fidelity penalty term is
defined as

(10)
Note that the above penalty function is applicable for general

models of data, blur, and motion. However, in this paper, we
only treat the simpler case of common space invariant PSF and
translational motion. This could, for example, correspond to a
vibrating camera acquiring a sequence of images from a static
scene.

For this purpose, we use the two-step method of Section III-F
to represent the data fidelity penalty term, which is easier to in-
terpret and has a faster implementation potential [3]. This sim-
plified data fidelity penalty term is defined as

(11)

where , , and are the three color channels of the color
shift-and-add image . The matrix , is a diag-
onal matrix with diagonal values equal to the square root of the

number of measurements that contributed to make each element
of (in the square case is the identity matrix). So, the unde-
fined pixels of have no effect on the HR estimate. On the
other hand, those pixels of which have been produced from
numerous measurements, have a stronger effect in the estima-
tion of the HR frame. The matrices for the multi-
frame demosaicing problem are sparser than the corresponding
matrices in the color SR case. The vectors , , and
are the three color components of the reconstructed HR image

.

B. Spatial Luminance Penalty Term

The human eye is more sensitive to the details in the lumi-
nance component of an image than the details in the chromi-
nance components [20]. Therefore, it is important that the edges
in the luminance component of the reconstructed HR image look
sharp. As explained in Section III-C, applying B-TV regulariza-
tion to the luminance component will result in this desired prop-
erty [3]. The luminance image can be calculated as the weighted
sum as explained in
[38]. The luminance regularization term is then defined as

(12)

C. Spatial Chrominance Penalty Term

Spatial regularization is required also for the chrominance
layers. However, since the HVS is less sensitive to the resolution
of these bands, we can use a simpler regularization, based on the

norm [3]

(13)

where the images and are the I and Q layers in the
YIQ color representation.11

D. Intercolor Dependencies Penalty Term

This term penalizes the mismatch between locations or ori-
entations of edges across the color bands. As described in Sec-
tion III-D, the authors of [19] suggest a pixelwise intercolor de-
pendencies cost function to be minimized. This term has the
vector outer product norm of all pairs of neighboring pixels,
which is solved by the finite element method. With some modi-
fications to what was proposed in [19], our intercolor dependen-
cies penalty term is a differentiable cost function

(14)

where is the element by element multiplication operator.

11The Y layer (X ) is treated in (12).
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Fig. 4. HR image (a) is passed through our model of camera to produce a set of LR images. (b) One of these LR images is demosaiced by the method in [14].
(c) The same image is demosaiced by the method in [16]. Shift-and-add on the ten input LR images is shown in (d).

E. Overall Cost Function

The overall cost function is the summation of the cost func-
tions described in the previous sections

(15)

Steepest descent optimization may be applied to minimize this
cost function. In the first step, the derivative of (15) with respect
to one of the color bands is calculated, assuming the other two
color bands are fixed. In the next steps, the derivative will be
computed with respect to the other color channels. For example,
the derivative with respect to the green band is calculated

as in (16), shown at the bottom of the next page, where and
define the transposes of matrices and , respectively,

and have a shifting effect in the opposite directions of and
. The notation and stands for the diagonal matrix

representations of the red and blue bands and and are
the diagonal representations of these matrices shifted by and

pixels in the horizontal and vertical directions, respectively.
The calculation of the intercolor dependencies term derivative
is explained in the Appendix I.

Matrices , , , , , and , and their transposes
can be exactly interpreted as direct image operators such as
blur, high-pass filtering, masking, down-sampling, and shift.
Noting and implementing the effects of these matrices as a
sequence of operators on the images directly spares us from
explicitly constructing them as matrices. This property helps
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Fig. 5. Multiframe demosaicing of this set of LR frames with the help of only luminance, intercolor dependencies, or chrominance regularization terms is shown
in (a)–(c), respectively. The result of applying the super-resolution method of [3] on the LR frames each demosaiced by the method [16] is shown in (d).

our method to be implemented in a fast and memory efficient
way.

The gradient of the other channels will be computed in the
same way, and the following steepest (coordinate) descent iter-

(16)
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Fig. 6. Result of super-resolving each color band (raw data before demosaicing) separately considering only bilateral regularization [3] is shown in (a). Multiframe
demosaicing of this set of LR frames with the help of only intercolor dependencies-luminance, intercolor dependencies-chrominance, and luminance-chrominance
regularization terms is shown in (b)–(d), respectively.

ations will be set up to calculate the HR image estimate itera-
tively

(17)

where the scalar is the step size.

V. RELATED METHODS

As mentioned earlier, there has been very little work on the
problem we have posed here. One related paper is the work
of Zomet and Peleg [39], who have recently proposed a novel
method for combining the information from multiple sensors,
which can also be used for demosaicing purposes. Although

their method has produced successful results for the single
frame demosaicing problem, it is not specifically posed or
directed toward solving the multiframe demosaicing problem,
and no multiframe demosaicing case experiment is given.

The method of [39] is based on the assumption of affine rela-
tion between the intensities of different sensors in a local neigh-
borhood. To estimate the red channel, first, affine relations that
project green and blue channels to the red channel are com-
puted. In the second stage, a super-resolution algorithm (e.g.,
the method of [7]) is applied on the available LR images in the
red channel (i.e., the original CFA data of the red channel plus
the projected green and blue channels) to estimate the HR red
channel image. A similar procedure estimates the HR green and
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TABLE I
QUANTITATIVE COMPARISON OF THE PERFORMANCE OF DIFFERENT DEMOSAICING METHODS ON THE LIGHTHOUSE

SEQUENCE. THE PROPOSED METHOD HAS THE LOWEST S-CIELAB ERROR AND THE HIGHEST PSNR VALUE

blue channel images. As affine model is not always valid for all
sensors or image sets, so an affine model validity test is utilized
in [39]. In the case that the affine model is not valid for some
pixels, those projected pixels are simply ignored.

The method of [39] is highly dependent on the validity of the
affine model, which is not confirmed for the multiframe case
with inaccurate registration artifacts. Besides, the original CFA
LR image of a channel and the less reliable projected LR images
of other channels are equally weighted to construct the missing
values, and this does not appear to be an optimal solution.

In contrast to their method, our proposed technique exploits
the correlation of the information in different channels explicitly
to guarantee similar edge position and orientation in different
color bands. Our proposed method also exploits the difference
in sensitivity of the human eye to the frequency content and
outliers in the luminance and chrominance components of the
image.

In parallel to our work, Gotoh and Okotumi [40] are
proposing another MAP estimation method for solving the
same joint demosaicing/super-resolution problem. While their
algorithm and ours share much in common, there are funda-
mental differences between our algorithm and theirs in the
robustness to model errors, and prior used. Model errors,
such as choice of blur or motion estimation errors, are treated
favorably by our algorithm due to the norm employed in the
likelihood fidelity term. By contrast, in [40], an -norm data
fusion term is used, which is not robust to such errors. In [3],
it is shown how this difference in norm can become crucial in
obtaining better results in the presence of model mismatches.

As to the choice of prior, ours is built of several pieces, giving
an overall edge preserved outcome, smoothed chrominance
layers, and forced edge and orientation alignment between color
layers. On the contrary, [40] utilizes an unisotropic Tikhonov
( norm) method of regularizing.

VI. EXPERIMENTS

Experiments on synthetic and real data sets are presented in
this section. In the first experiment, following the model of (1),
we created a sequence of LR frames from an original HR image
[Fig. 4(a)], which is a color image with full RGB values. First
we shifted this HR image by one pixel in the vertical direction.
Then to simulate the effect of camera PSF, each color band of
this shifted image was convolved with a symmetric Gaussian
low-pass filter of size 5 5 with standard deviation equal to

Fig. 7. Result of applying the proposed method (using all regularization terms)
to this data set is shown in (a).

one. The resulting image was subsampled by the factor of 4 in
each direction. The same process with different motion vectors
(shifts) in vertical and horizontal directions was used to produce
10 LR images from the original scene. The horizontal shift be-
tween the low resolution images was varied between 0 to .75
pixels in the LR grid (0 to 3 pixels in the HR grid). The vertical
shift between the low resolution images varied between 0 to .5
pixels in the LR grid (0 to 2 pixels in the HR grid). To simu-
late the errors in motion estimation, a bias equal to half a pixel
shift in the LR grid was intentionally added to the known mo-
tion vector of one of the LR frames. We added Gaussian noise to
the resulting LR frames to achieve a signal-to-noise ratio (SNR)
equal12 to 30 dB. Then each LR color image was subsampled by
the Bayer filter.

In order to show what one of those measured images looks
like, one of these Bayer filtered LR images is reconstructed by
the method in [14] and shown in Fig. 4(b). The above method is
implemented on Kodak DCS-200 digital cameras [41], so each
LR image may be thought of as one picture taken with this

12SNR is defined as 10 log (� =� ), where � , � are variance of a clean
frame and noise, respectively.
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Fig. 8. Multiframe color super-resolution implemented on a real data sequence. (a) One of the input LR images and (b) shift-and-add result increasing resolution
by a factor of 4 in each direction. (c) Result of the individual implementation of the super-resolution [3] on each color band. (d) Implementation of (15), which has
increased the spatial resolution, removed the compression artifacts, and also reduced the color artifacts. (e)–(h) are the zoomed images of the (a)–(d), respectively.

camera brand. Fig. 4(c). shows the result of using the more so-
phisticated demosaicing method13 of [16].

As the motion model for this experiment is translational and
the blur kernel is space invariant, we can use the fast model of
(16) to reconstruct the blurry image on the HR grid. The
shift-and-add result of the demosaiced LR frames after bilinear
interpolation,14 before deblurring and demosaicing is shown in
Fig. 4(d). We used the result of the shift-and-add method as the
initialization of the iterative multiframe demosaicing methods.
We used the original set of frames (raw data) to reconstruct a
HR image with reduced color artifacts. Fig. 5(a)–(c) shows the
effect of the individual implementation of each regularization
term (luminance, chrominance, and intercolor dependencies),
described in Section IV.

We applied the method of [16] to demosaic each of these ten
LR frames individually, and then applied the robust super-reso-
lution method of [3] on each resulting color channel. The result
of this method is shown in Fig. 5(d). We also applied the ro-
bust super-resolution method of [3] on the raw (Bayer filtered)
data (before demosaicing).15 The result of this method is shown
in Fig. 6(a). To study the effectiveness of each regularization
term, we paired (intercolor dependencies-luminance, intercolor

13We thank Prof. R. Kimmel of the Technion for providing us with the code
that implements the method in [16].

14Interpolation is needed as this experiment is an under-determined problem,
where some pixel values are missing.

15To apply the monochromatic SR method of [3] on this color-filtered se-
quence, we treated each color band separately. To consider the color-filtering
operation, we substituted matrix A in [3, (23)] with matrix � in (11).

dependencies-chrominance, and luminance-chrominance) regu-
larization terms for which the results are shown in Fig. 6(b)–(d),
respectively. Finally, Fig. 7(a) shows the result of the imple-
mentation of (15) with all terms. The parameters used for this
example are as follows:16 , , ,

, .
It is clear that the resulting image [Fig. 7(a)] has a better

quality than the LR input frames or other reconstruction
methods. Quantitative measurements confirm this visual
comparison. We used PSNR17 and S-CIELAB18 measures to
compare the performance of each of these methods. Table I
compares these values in which the proposed method has the
lowest S-CIELAB error and the highest PSNR values (and also
the best visual quality, especially in the red lifesaver section of
the image).

16The criteria for parameter selection in this example (and other examples
discussed in this paper) was to choose parameters which produce visually most
appealing results. Therefore, to ensure fairness, each experiment was repeated
several times with different parameters and the best result of each experiment
was chosen as the outcome of each method.

17The PSNR of two vectors X and X of size [4r M � 1] is defined as

PSNR(X;X) = 10 log
255 � 4r M

kX �Xk
:

18The S-CIELAB measure is a perceptual color fidelity measure that mea-
sures how accurate the reproduction of a color is to the original when viewed by
a human observer [42]. In our experiments, we used the code with default param-
eters used in the implementation of this measure available at http://white.stan-
ford.edu/~brian/scielab/scielab.html.
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Fig. 9. Multiframe color super-resolution implemented on a real data sequence. (a) One of the input LR images and (b) the shift-and-add result increasing
resolution by a factor of 4 in each direction. (c) Result of the individual implementation of the super-resolution [3] on each color band. (d) Implementation of (15)
which has increased the spatial resolution, removed the compression artifacts, and also reduced the color artifacts. These images are zoomed in Fig. 10.

In the second experiment, we used 30 compressed images
captured from a commercial webcam (PYRO-1394). Fig. 8(a)
shows one of these LR images [a selected region of this image
is zoomed in Fig. 8(e) for closer examination]. Note that the
compression and color artifacts are quite apparent in these im-
ages. This set of frames was already demosaiced, and no in-
formation was available about the original sensor values, which
makes the color enhancement task more difficult. This example
may be also considered as a multiframe color super-resolution
case. The (unknown) camera PSF was assumed to be a 4 4
Gaussian kernel with standard deviation equal to one. As the
relative motion between these images followed the translational
model, we only needed to estimate the motion between the lu-
minance components of these images [43]. We used the method
described in [44] to computed the motion vectors.

The shift-and-add result (resolution enhancement factor of 4)
is shown in Fig. 8(b) [zoomed in Fig. 8(f)]. In Fig. 8(c) [zoomed
in Fig. 8(g)], the method of [3] is used for increasing the reso-
lution by a factor of 4 in each color band, independently, and,
finally, the result of applying our method on this sequence is
shown in Fig. 8(d) [zoomed in Fig. 8(h)], where color artifacts
are significantly reduced. The parameters used for this example
are as follows: , , , ,

.

In the third experiment, we used 40 compressed images of
a test pattern from a surveillance camera, courtesy of Adyoron
Intelligent Systems Ltd., Tel Aviv, Israel. Fig. 9(a) shows one
of these LR images [a selected region of this image is zoomed
in Fig. 10(a) for closer examination]. Note that the compres-
sion and color artifacts are quite apparent in these images. This
set of frames was also already demosaiced, and no information
was available about the original sensor values, which makes the
color enhancement task more difficult. This example may be
also considered as a multiframe color super-resolution case. The
(unknown) camera PSF was assumed to be a 6 6 Gaussian
kernel with standard deviation equal to two.

We used the method described in [44] to compute the motion
vectors. The shift-and-add result (resolution enhancement factor
of 4) is shown in Fig. 9(b) [zoomed in Fig. 10(b)]. In Fig. 9(c)
[zoomed in Fig. 10(c)], the method of [3] is used for increasing
the resolution by a factor of 4 in each color band, independently,
and, finally, the result of applying the proposed method on this
sequence is shown in Fig. 9(d) [zoomed in Fig. 10(d)], where
color artifacts are significantly reduced. Moreover, compared to
Fig. 9(a)–(d), the compression errors have been removed more
effectively in Fig. 9(d). The parameters used for this example
are as follows: , , , ,

.
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Fig. 10. Multiframe color super-resolution implemented on a real data sequence. A selected section of Fig. 9(a)–(d) are zoomed in (a)–(d), respectively. In (d),
almost all color artifacts that are present on the edge areas of (a)–(c) are effectively removed. (a) LR. (b) Shift-and-add. (c) SR [3] on LR frames. (d) Proposed
method.

In the fourth, fifth, and sixth experiments (girl, bookcase, and
window sequences), we used 31 uncompressed, raw CFA im-
ages (30 frames for the window sequence) from a video camera
(based on Zoran 2MP CMOS sensors). We applied the method
of [14] to demosaic each of these LR frames, individually.
Fig. 11(a) [zoomed in Fig. 12(a)] shows one of these images
from the girl sequence [corresponding image of the bookcase
sequence is shown in Fig. 13(a), and the corresponding image
of the window sequence is shown in Fig. 15(a)]. The result
of the more sophisticated demosaicing method of [16] for
girl sequence is shown in Fig. 11(b) [zoomed in Fig. 12(b)].
Fig. 13(b) shows the corresponding image for the bookcase
sequence, and Fig. 15(b) shows the corresponding image for
the window sequence.

To increase the spatial resolution by a factor of three, we ap-
plied the proposed multiframe color super-resolution method on
the demosaiced images of these two sequences. Fig. 11(c) shows
the HR color super-resolution result from the LR color images
of girl sequence demosaiced by the method of [14] [zoomed
in Fig. 12(c)]. Fig. 13(c) shows the corresponding image for
the bookcase sequence, and Fig. 15(c) shows the corresponding
image for the window sequence. Similarly, Fig. 11(d) shows
the result of resolution enhancement of the LR color images
from girl sequence demosaiced by the method of [16] [zoomed
in Fig. 12(d)]. Fig. 13(d) shows the corresponding image for

the bookcase sequence, and Fig. 15(d) shows the corresponding
image for the window sequence.

Finally, we directly applied the proposed multiframe demo-
saicing method on the raw CFA data to increase the spatial
resolution by the same factor of three. Fig. 11(e) shows the HR
result of multiframe demosaicing of the LR raw CFA images
from the girl sequence without using the inter color dependence
term [zoomed in Fig. 12(e)]. Fig. 14(a) shows the
corresponding image for the bookcase sequence, and Fig. 15(e)
shows the corresponding image for the window sequence.
Fig. 11(f) shows the HR result of applying the multiframe
demosaicing method using all proposed terms in (15) on the LR
raw CFA images from the girl sequence [zoomed in Fig. 12(f)].
Fig. 14(b) shows the corresponding image for the bookcase
sequence and Fig. 15(f) shows the corresponding image for the
window sequence.

These experiments show that single frame demosaicing
methods such as [16] (which in effect implement anti-aliasing
filters) remove color artifacts at the expense of making the
images more blurry. The proposed color super-resolution algo-
rithm can retrieve some high frequency information and further
remove the color artifacts. However, applying the proposed
multiframe demosaicing method directly on raw CFA data
produces the sharpest results and effectively removes color
artifacts. These experiments also show the importance of the in-
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Fig. 11. Multiframe color super-resolution implemented on a real data sequence. (a) One of the input LR images demosaiced by [14] and (b) one of the input LR
images demosaiced by the more sophisticated [16]. (c) Result of applying the proposed color-super-resolution method on 31 LR images each demosaiced by [14]
method. (d) Result of applying the proposed color-super-resolution method on 31 LR images each demosaiced by [16] method. The result of applying our method
on the original un-demosaiced raw LR images (without using the inter color dependence term) is shown in (e). (f) Result of applying our method on the original
un-demosaiced raw LR images.

tercolor dependence term which further removes color artifacts.
The parameters used for the experiments on girl, bookcase,
and window sequences are as follows: , ,

, , . The (unknown) camera PSF
was assumed to be a tapered 5 5 disk PSF.19

VII. DISCUSSION AND FUTURE WORK

In this paper, based on the MAP estimation framework, we
proposed a unified method of demosaicing and super-resolution,
which increases the spatial resolution and reduces the color arti-
facts of a set of low-quality color images. Using the norm for
the data error term makes our method robust to errors in data and

19MATLAB command fspecial(’disk’, 2) creates such blurring kernel.

modeling. Bilateral regularization of the luminance term results
in sharp reconstruction of edges, and the chrominance and in-
tercolor dependencies cost functions remove the color artifacts
from the HR estimate. All matrix-vector operations in the pro-
posed method are implemented as simple image operators. As
these operations are locally performed on pixel values on the
HR grid, parallel processing may also be used to further increase
the computational efficiency. The computational complexity of
this method is on the order of the computational complexity of
the popular iterative super-resolution algorithms, such as [9].
Namely, it is linear in the number of pixels.

The intercolor dependencies term (14) results in the noncon-
vexity of the overall penalty function. Therefore, the steepest
decent optimization of (15) may reach a local rather than the
global minimum of the overall function. The nonconvexity does
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Fig. 12. Multiframe color super-resolution implemented on a real data sequence (zoomed). (a) One of the input LR images demosaiced by [14] and (b) one of the
input LR images demosaiced by the more sophisticated [16]. (c) Result of applying the proposed color-super-resolution method on 31 LR images each demosaiced
by [14] method. (d) Result of applying the proposed color-super-resolution method on 31 LR images each demosaiced by [16] method. The result of applying our
method on the original un-demosaiced raw LR images (without using the inter color dependence term) is shown in (e). (f) Result of applying our method on the
original un-demosaiced raw LR images.

not impose a serious problem if a reasonable initial guess is used
for the steepest decent method, as many experiments showed ef-
fective multiframe demosaicing results. In our experiments, we
noticed that a good initial guess is the shift-and-add result of the
individually demosaiced LR images.

Accurate subpixel motion estimation is an essential part of any
image fusion process such as multiframe super-resolution or de-
mosaicing. To the best of our knowledge, no paper has addressed
the problem of estimating motion between Bayer filtered images.
However, a few papers have addressed related issues. Reference
[43] hasaddressed the problemofcolor motionestimation,where
information from different color channels are incorporated by
simply using alternative color representations such as HSV or
normalized RGB. More work remains to be done to fully ana-
lyze subpixel motion estimation from colored filtered images.

APPENDIX I
DERIVATION OF THE INTERCOLOR DEPENDENCIES

PENALTY TERM

In this appendix, we illustrate the differentiation of the first
term in (14), which we call , with respect to . From (14),
we have

We can substitute the element by element multiplication operator
“ ,” with the differentiable dot product by rearranging as
the diagonal matrix20 and as , which is the
diagonal form of shifted by , pixels in horizontal and
vertical directions

(18)

Using the identity

and noting that and are symmetric matrices, the dif-
ferentiation with respect to green band will be computed as fol-
lows:

20We are simply denoting a vector Q to its diagonal matrix representationQ
such that

q

q

...

q

�!

q 0 � � � 0

0 q � � � 0

...
...

. . .
...

0 0 � � � q

:
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Fig. 13. Multiframe color super-resolution implemented on a real data sequence. (a) One of the input LR images demosaiced by [14] and (b) one of the input LR
images demosaiced by the more sophisticated [16]. (c) Result of applying the proposed color-super-resolution method on 31 LR images each demosaiced by [14]
method. (d) Result of applying the proposed color-super-resolution method on 31 LR images each demosaiced by [16] method.

Fig. 14. Multiframe color super-resolution implemented on a real data sequence. The result of applying our method on the original un-demosaiced raw LR images
(without using the inter color dependence term) is shown in (a). (b) Result of applying our method on the original un-demosaiced raw LR images.

Differentiation of the second term in (14), and also differen-
tiation with respect to the other color bands follow the same
technique.
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Fig. 15. Multiframe color super-resolution implemented on a real data sequence. (a) One of the input LR images demosaiced by [14] and (b) one of the input LR
images demosaiced by the more sophisticated [16]. (c) Result of applying the proposed color-super-resolution method on 30 LR images each demosaiced by [14]
method. (d) Result of applying the proposed color-super-resolution method on 30 LR images each demosaiced by [16] method. The result of applying our method
on the original un-demosaiced raw LR images (without using the inter color dependence term) is shown in (e). (f) Result of applying our method on the original
un-demosaiced raw LR images.
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