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Abstract. Retinex theory deals with the removal of unfavorable illu-
mination effects from images. This ill-posed inverse problem is typically
regularized by forcing spatial smoothness on the recoverable illumina-
tion. Recent work in this field suggested exploiting the knowledge that
the illumination image bounds the image from above, and the fact that
the reflectance is also expected to be smooth. In this paper we show how
the above model can be improved to provide a non-iterative retinex algo-
rithm that handles better edges in the illumination, and suppresses noise
in dark areas. This algorithm uses two specially tailored bilateral filters
– the first evaluates the illumination and the other is used for the com-
putation of the reflectance. This result stands as a theoretic justification
and refinement for the recently proposed heuristic use of the bilateral
filter for retinex by Durand and Dorsey. In line with their appealing way
of speeding up the bilateral filter, we show that similar speedup methods
apply to our algorithm.

1 Introduction

Retinex theory deals with the removal of unfavorable illumination effects from a
given image. A commonly assumed model suggests that any given image S is the
pixel-wise multiplication of two images, the reflectance R and the illumination
L, i.e., S = R ·L. A look-up-table log operation transfers this multiplication into
an addition, resulting with s = log(S) = log(L) + log(R) = ` + r. Clearly, the
recovery of ` from s is an ill-posed inverse problem. Solving it is typically done by
introducing a regularization that forces a spatial smoothness on the recoverable
illumination. Thus, early heuristic and successful retinex methods, such as the
homomorphic filtering algorithm [1] and many others (e.g., [2–5]), proposed a
low-pass filter on s, or an algorithm that amounts to this effect, to obtain a
rough estimate of `. In this paper we refrain from reviewing this literature, and
limit our approach to this topic by building upon a recent study presented in
[6].

The work in [6] describes several improvements to the classical retinex mod-
els. One improvement refers to the passivity of the reflectance, assumed to satisfy
0 ≤ R ≤ 1. As a direct consequence we have that L ≥ S, implying that the il-
lumination image should be an envelope image bounding S from above. Due to
the monotonicity of the log operation we have ` ≥ s. Merging the above with the
desire to get spatially smooth ` may lead to the trivial and meaningless result of
a constant image, ` = max(s). The remedy, as proposed in [6], is to assume that



2 Michael Elad

‖` − s‖2 should be small, implying that ` should upper envelope s while being
close to it. Based on these modifications, the reconstruction of the illumination
can be posed as the following quadratic programming (QP) problem

min
`≥s

λ ‖`− s‖22 +
{
‖Dx`‖22 + ‖Dy`‖22

}
. (1)

The operators Dx and Dy represent horizontal and vertical discrete derivatives,
forcing this way spatial smoothness.

A second ingredient introduced in [6, 7] is a smoothness penalty forced also
on the reflectance image r = s− `. This added to (1) gives

min
`≥s

λ ‖`− s‖22 +
{
‖Dx`‖22 + ‖Dy`‖22

}
+ α

{
‖Dx(s− `)‖22 + ‖Dy(s− `)‖22

}
.(2)

Note that, since s = `+ r is enforced, the new term contradicts the illumination
smoothness, as r and ` cannot be jointly smooth. Thus, the effect is to gain some
smoothness in r at the expense of losing some of it in `. The justification for this
is the desire to lead r to be “nice-looking”, as natural images should be.

Based on the above model, an efficient multi-scale algorithm has been pro-
posed in [6] to estimate ` and thus r. The work in [7] used the same model
to propose a simplified estimate solvers based on known implementation con-
straints. More recently, [8] further simplified the computation of ` by introducing
a spatial recursive smoothing filter.

While the above model is general enough and covers the correct forces to be
used in the solution of the retinex problem, it has several flaws:

– Hallows: A commonly encountered artifact with retinex algorithms is the
existence of hallows. This is a direct consequence of the smoothness assump-
tion discussed above. When passing from a strongly illuminated region to a
dark zone (e.g., on a border of a shadowed area), the smoothness forces the
illumination to remain high in the dark region near this edge and smoothly
descend to grasp the illumination within the dark region. Thus, when re-
moved, the dark regions near such edges remain dark, resulting with these
hallow effects. Such effects can be also obtained in the bright areas near such
illumination edges, if the constraint ` ≥ s is not practiced. Then those bright
areas become further brighter.

– Noise: In dark regions of the image these retinex algorithms are expected
to yield a contrast stretching, very much similar to the effect caused by
standard Gamma correction. The stretching causes a magnification of the
noise, and this becomes evident especially in low-quality images, or ones
with noticeable compression. The constraint s = ` + r implies that the noise
migrates as a whole to the two ingredients, rather than being suppressed.

– Iterative Solution: The above model formulation leads naturally to the
need for an iterative solver. The work in [7] and [8] bypassed this limitation,
but with a price on the final outcome’s quality.

In this paper we propose an alternative model for retinex, and a numerical
algorithm that builds on it. The new model is similar to the one in (2), in the
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sense that all the presented forces are included. However, this new model is
enhanced to solve the above mentioned shortcomings.

More specifically, smoothness of the illumination and the reflectance are
forced using a robust statistics method, and hallows are avoided. The smooth-
ness terms used are very much in the spirit of the bilateral filter [9, 10], having a
wide stencil effect that enables avoiding the need for an iterative or multi-scale
solver. We use different smoothing formulation for the reflectance and the illu-
mination to handle them differently, and absorb the constraint ` ≥ s in a natural
way. This leads to a two-stage algorithm that applies two variations of the bilat-
eral filter, first estimating the illumination, and then the reflectance. The new
model suppresses noise by allowing ` + r to deviate from s, implying that the
residual should be the additive noise we want to discard of. The new model and
accompanying algorithm stand as a theoretic justification and refinement for the
recently proposed heuristic use of the bilateral filter for retinex as appeared in
[11]. In line with their appealing way of speeding up the bilateral filter, we show
similar speedup methods for our two bilateral filter variations.

This paper is organized as follows: Section 2 presents the bilateral filter that
this work is building on. Section 3 then turn to describe the new model for
retinex, and the algorithm that emerges from it. Speedup methods are discussed
in Section 4. Section 5 presents some results, and Section 6 concludes this paper.

2 Denoising by the Bilateral Filter

In this Section we present the bilateral filter, designed for the removal of additive
noise from images [9]. We also discuss its origins as described in [10–13]. These
will serve us as we turn later to consider the retinex problem.

Consider an image s contaminated by additive noise. Our goal is to develop
an edge-preserving smoothing algorithm that effectively removes most of the
noise while preserving the image details. A maximum a-posteriori probability
(MAP) formulation of this problem as presented in [10] yields

min
ŝ

λ ‖ŝ− s‖22 +
P∑

m=−P

P∑

n=−P

(Cm,nŝ− ŝ)T W[m,n](s) (Cm,nŝ− ŝ) . (3)

The operators Cm,n are shift operators, moving the image ŝ by m pixels hori-
zontally and n pixels vertically. The matrices W[m,n] are diagonal matrices that
down-weight large edge entries in s so as not to smooth over edges of the image.
The choice W[m,n](s) = I ∀ m,n leads to the non-robust option that makes the
overall problem QP as in (2). Choosing these weights to be inversely propor-
tional to |Cm,ns− s| leads to the ability to handle edges in the image better.
Note that using weighting here parallels the use of robust statistics - more on
this relationship and can be found in [10, 12].

The fact that smoothness is forced in a wide neighborhood implies that even
a simple iteration to minimize this functional will be very effective. Indeed,
the work in [10] established that the bilateral filter as presented by [9] is an
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approximate solver of this programming task. More specifically, it was shown
that the bilateral filter amounts to a single Jacobi iteration over this penalty
term. Here we briefly show this property and its meaning. The Jacobi step is
constructed using the gradient and the diagonal of the Hessian of the penalty
function in (3). The gradient is given by

∂F{ŝ}
∂ŝ

= 2λ(ŝ− s) + 2
P∑

m=−P

P∑

n=−P

(Cm,n − I)T W[m,n](s) (Cm,n − I) ŝ. (4)

The Hessian of F is given by

∂2F{ŝ}
∂ŝ2

= 2λI + 2
P∑

m=−P

P∑

n=−P

(Cm,n − I)T W[m,n](s) (Cm,n − I) . (5)

Denoting the main diagonal of the Hessian as the matrix 0.5M(s)1, and assuming
an initialization ŝ = s, the first Jacobi iteration to minimize F gives

ŝ1 = ŝ0 − diag

{
∂2F{ŝ}

∂ŝ2

∣∣∣∣
ŝ0=s

}−1

· ∂F{ŝ}
∂ŝ

∣∣∣∣
ŝ=s

(6)

=

[
I−M(s)−1 ·

P∑

m=−P

P∑

n=−P

(Cm,n − I)T W[m,n](s) (Cm,n − I)

]
s.

The above represents an operator that multiplies the image s. This operator
applies a weighted sum of the input pixels in a stencil of (2P + 1)-by-(2P + 1)
pixels to compute the output, and these weights are dependent on W[m,n](s)
and the local differences between the center pixel s[k, j] and its neighbors s[k −
m, j−n]. Thus, this is a spatially adaptive FIR filter of some sort. In [10] it was
shown that if the [m,n] weight at the pixel [k, j] is chosen as

W[m,n](k, j) =
ρ′ {s[k, j]− s[k −m, j − n]}

s[k, j]− s[k −m, j − n]
· V [m,n], (7)

then we obtain the very filter that Tomasi and Manduchi proposed in [9]. For this
equivalence we have to choose λ = 1, ρ(x) = 1−exp(−x2/2σ2), and V [m,n] being
a Gaussian kernel. Still, we can consider many other robust functions and weights
V [m,n] that give a filter very much in line with the spirit of the bilateral filter.
Interestingly, this filter is a discrete version of the short-time effective kernel of
the Beltrami flow as discussed in [14, 15]. This implies that this algorithm has
deep roots in the geometric understanding of images as manifolds.

While the above analysis is helpful in understanding the origins of the bilat-
eral filter, it is hard to understand how it is applied in practice. As shown in [9],
the effective filter computes every output pixel ŝ1[k, j] by

ŝ1[k, j] =
P∑

m=−P

P∑

n=−P

a[m,n, k, j]s[k −m, j − n], (8)

1 The additional 0.5 comes to null the factor 2 in the gradient term.
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where a[m,n, k, j] =
exp

(
−m2+n2

2σ2
s

− (s[k,j]−s[k−m,j−n])2

2σ2
r

)

Z[k, j]
. (9)

The term Z[k, j] normalizes these weights to sum to one. This filter assigns per
every neighbor a weight inversely proportional to its Euclidean distance (m2+n2)
and inversely proportional to its distance in gray-value from the center pixel. The
parameters σr and σs governs the behavior of the filters - more on those can be
found in [9, 10].

3 Retinex by Two Bilateral Filters

In this section we present the new model for the retinex problem that uses the
bilateral smoothness term. We use this model to develop the two bilateral filters
that compose our novel retinex algorithm.

Hallows in the retinex result could be avoided by allowing ` to be piece-wise
smooth. This could be easily accomplished by replacing the terms ‖Dx`‖22 +
‖Dy`‖22 with ‖Dx`‖1 + ‖Dy`‖1, TV [16], or any other robust statistics based
penalty, and there are numerous options of the like. However, adopting such
local terms implies a need for many iterations in the numerical solution. Thus,
we consider instead the bilateral smoothness. For brevity of notations, we denote
hereafter

BW,P {x} =
P∑

m=−P

P∑

n=−P

(Cm,nx− x)T W[m,n](s) (Cm,nx− x) . (10)

Starting from the quadratic programming problem posed in (2), we propose
the following alternative model for retinex

min
`, r: `≥s

{
λ` ‖`− s‖22 + BW`,P`

{`}
}

+ α
{

λr ‖r − s + `‖22 + BWr,Pr {r}
}

.(11)

The first part handles the smoothness of the illumination ` and its proximity to
s, while bounding it from above. The second part introduces the smoothness of
the reflectance r, and requires it to be close to the residual image s − `. Thus,
noise can be discarded by becoming the residual s − ` − r. Note also that our
notations hints to the fact that we will consider different weights and parameters
in the smoothness terms for ` and r. The formulation given in (11) leads to a
decomposition that seeks both ` and r as unknown, and one does not imply the
other as before.

Instead of optimizing with respect to both ` and r in parallel (which is an
option we have not explored in our work, but one that can certainly be addressed
based on the model we have posed), we adopt a two stage process, first estimating
`, based on the first part in (11), and then given `, we evaluate r.

Starting with the quest for `, let us attempt to evaluate it such that it
addresses only the first term in (11). Thus, we seek a solution to the problem

min
`: `≥s

λ` · ‖`− s‖22 + BW`,P`
{`} . (12)
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Clearly, without the constraint ` ≥ s, the above is equivalent to the problem
posed in (3), and as such, the bilateral filter is an excellent solver candidate.
Thus, the natural question we should pose here is how the constraint should be
accommodated, in a way that preserves the convenience of the bilateral filter. We
propose to introduce a special choice of weights W` that handle the constraint
implicitly. These new weights are based on Equation (7), but using a one-sided
robust function ρ,

ρ(x) =
{

1− exp(−x2/2σ2
r) x ≤ 0

∞ x > 0 . (13)

This alternative choice of weights introduces a simple modification to the bi-
lateral filter, where, among the (2P + 1)-by-(2P + 1) neighbors per each pixel,
we consider only those that satisfy s[k, j] ≤ s[k −m, j − n]. This way, the local
averaging is done with non-negative normalized weights, while combining only
pixels that have higher gray values than the center pixel, resulting with a final
outcome that must satisfy `1[k, j] ≥ s[k, j]. Thus, this new filter will necessarily
achieve both a satisfaction of the constraint (by virtue of the weights), while
reducing the newly defined penalty term that still considers smoothness as we
desire. We refer hereafter to this filter as the envelope-bilateral filter.

In practice, the above implies that the bilateral filter as presented in section
2 is slightly changed. Parallel to (8) and (9), in the envelope-bilateral filter every
output pixel `1[k, j] is evaluated by

`1[k, j] =
P∑

m=−P

P∑

n=−P

a[m, n, k, j]s[k −m, j − n], (14)

where

a[m,n, k, j] =
exp

(
−m2+n2

2σ2
s

− (s[k,j]−s[k−m,j−n])2

2σ2
r

)
· µ{s[k −m, j − n]− s[k, j]}

Z[k, j]
.

The notation µ{x} stands for the step-function, being 1 for non-negative x and
zero elsewhere. The term Z[k, j] normalizes these weights to sum to one, as
before. Note that from the above description it is clear that if s[k, j] is the peak
of its (2P + 1)2 neighborhood, then its filtering amounts to `1[k, j] = s[k, j],
since in this case all weights are zero and only a[0, 0, k, j] = 1.

Assuming that the above stage has been completed, we have an estimate of
` and we now turn to evaluate r. We consider the second term in (11), solving

min
r

λr · ‖r − (s− `)‖22 + BWr,Pr {r} . (15)

Since the image s− ` is given, this is the very bilateral filter formulation in (2).
Thus, an application of the bilateral filter on the image s− ` should lead to the
desired r. However, due to the transform to the log-domain, the noise that should
be discarded from the reflectance image resides mostly in the regions where s
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is low. Thus, we can better direct the above bilateral filter by using σr to be
inversely proportional to s to reflect this matter. A choice of the form σr[k, j] =
(C1 · s[k, j]p + C2)−1 could be used to this effect2. Nothing in the definition or
the implementation of the bilateral filter prevents having such spatially adaptive
parameter. This will ensure that r is hardly smoothed in regions where s is bright,
while it is being smoothed in darker regions.

4 Speeding Up the Retinex Algorithm

In their paper, Durand and Dorsey proposed a wonderful speedup algorithm for
the bilateral filter, and this algorithm can be applied directly to both our two
bilateral filter versions. Here we outline the basic ideas of this speedup, starting
from Equation (14), although everything said applies just as well to the second
bilateral filter.

Referring to s[k, j] in these equations as a constant c, we can re-write these
equations as

`1[k, j] =
1

Z[k, j]
·

P∑

m=−P

P∑

n=−P

exp
(
−m2 + n2

2σ2
s

)
· (16)

·
[
exp

(
− (c− s[k −m, j − n])2

2σ2
r

)
· µ{s[k −m, j − n]− c}s[k −m, j − n]

]

=
1

Z[k, j]
·

P∑

m=−P

P∑

n=−P

exp
(
−m2 + n2

2σ2
s

)
· g[k −m, j − n].

This expression is a convolution between the image g[k, j], being

g[k, j] =
[
exp

{
− (c− s[k, j])2

2σ2
r

}
· µ{s[k, j]− c}s[k, j]

]
, (17)

and the Gaussian blur. Thus, we could apply a sequence of such convolutions,
scanning the values of s[k, j] in the range [0, loge 255], and then merging the
results, choosing the proper values from each output, based on the s[k, j] values.
Note that the value of Z[k, j] is given by a similar expression

Z[k, j] =
P∑

m=−P

P∑

n=−P

exp
(
−m2 + n2

2σ2
s

)
u[k −m, j − n], (18)

where

u[k, j] = exp
{
− (c− s[k, j])2

2σ2
r

}
· µ{s[k, j]− c}. (19)

2 Recall that S[k, j] ∈ [1, 255] as we shift by 1 to avoid singularities, and we have also
0 ≤ s[k, j] ≤ 5.54.
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Thus, its computation can also be done using a sequence of similar convolutions.
Durand and Dorsey proposed two ways to further speed-up the evaluation

of `1: (i) piece-wise linear approximation; and (ii) multi-scale implementation.
The first idea is to scan the values of s[k, j] in the range [0, loge 255] with jumps,
and interpolate in between. Practically speaking, using 30−50 equispaced jumps
in the range [0, loge 255] are found to induce almost no change to the outcome.
Since our weights include a step-function discontinuity, the interpolation should
be done as a one-sided operation, always preferring to adopt the larger c to avoid
a violation of the ` ≥ s constraint. This causes the interpolation to loose some of
of its accuracy, but our experiments show that this lose is mild and unnoticeable.

As to the multi-scale option, since images are convolved in the above expres-
sions with wide-range Gaussian smoothers, a pre down-scale and post up-scale
yield a substantial gain in run-time with almost no change in the outcome. The
gain is especially noticed for wide supports (P À 1, and σs À 1). On top of
these two ideas, note that the required convolutions required are all separable.
Furthermore, when σs is large enough, the effective convolving kernel is the
square step function. In such a case further speedup can be obtained using the
computation of the integral image [17].

5 Results

An interesting idea reported in [6] is to return some of the illumination to the
reflectance when presenting the final output image. Thus, the output image
is computed as Out = R[k, j] · L[k, j]1/γ = S[k, j] · L[k, j]1/γ−1. Reflectance
images are typically unrealistic looking, and with a modest and reduced effect
of illumination returned to it, the final image enjoys both the desired brightness
and the natural appearance. We have made use of this idea in the following
presented results. The illumination is returned to the original image by applying
Gamma-correction on it using γ = 3, and multiplying it back by the estimated
reflectance.

Figures 1-2 present two pairs of original images3 and their retinex results. In
these two cases, the use of spatially varying σr has very little effect because the
images are of high quality, and thus we do not show it. Figure 3 presents results
for a third image, where the dark region is noisy, and thus the two versions
are shown side-by-side for comparison (with parameters p = 8, C1 = 5e −
3, C2 = 0.3). We should note that in processing color images we apply the retinex
algorithm to the luminance (V) layer in the HSV color representation, and leave
the chromatic layers unchanged. In all three cases we used the following setup
parameters: the envelope bilateral filter parameters used are P` = 15, σr = 0.3,
and σs = 100. The second bilateral filter used Pr = 4, σr = 0.3 or an adaptive
method as described earlier, and σs = 100. The speedup algorithm was used
with scale down factor of 2 : 1, and grey-value steps of 0.1.

Figures 4 and 5 return to the first example, presenting several accompanying
results. Figure 4 shows the obtained reflectance and illumination results (gray-
3 These images and the one in Figure 3 are from the NASA retinex web-page.
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Fig. 1. Example 1 - An original image (left) and its retinex result (right).

Fig. 2. Example 2 - An original image (left) and its retinex result (right).

Fig. 3. Example 3 - An original image (left) and its retinex results using a regular
bilateral filter for computing r (middle) and using the spatially adaptive σr (right).
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value images referring to the V-layer). As can be seen, what we call ‘reflectance’
is far from being satisfactory to describe the image, and indeed there is room
to return of illumination. This Figure indicates that our separation is not per-
fect and there is a leakage between r and `. In fact, our ` are r stand for large
scale intensity components and small scale corrections, respectively, both esti-
mated with preservation of discontinuities. Still, the final outcome is satisfactory
because of the illumination return.

Figure 5 describes the Out-to-In correspondence of the overall retinex algo-
rithm, showing that while the retinex process generally resembles a Gamma-
correction effect, is has a different effect of varying Gamma. This idea is further
expanded, showing in Figure 5 the image γeffective = log In/ log Out as a func-
tion of the location. This gives the effective Gamma correction that should be
applied in every pixel to reproduce the obtained result.

Fig. 4. The reflectance and the illumination images in Example 1.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fig. 5. Example 1 - Right: The Input-Output mapping, and overlayed on it is the
Gamma-correction that corresponds to γ = 3; Left: The effective Gamma correction
value per pixel.

The overall improvement in speed introduced by the speedup algorithm de-
pends on many of the parameters that are mentioned above, and on implemen-
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tation issues. We compared two efficient implementations of the bilateral filter
- both implemented with Matlab. The first sweeps through the support of the
filter, applying operations on complete images, and the other being the speedup
algorithm mentioned above. For the parameters used here we obtained a factor
of 5− 10 shorter run time with the speedup algorithm.

Figure 6 presents a comparison between the new algorithm and the one re-
ported in [6] on a severely degraded image4. For this comparison we changed the
color space to YCbCr, and choose γ = 2.3 in the illumination return, both done
to match with the alternative algorithm. The results show strong hallows in the
previous method, while those are fully suppressed by our algorithm.

Fig. 6. An original image (top), the new retinex algorithm (bottom left), and the one
reported in[6] (bottom right).

6 Conclusion

In this paper we have presented a new model for the retinex problem – removal
of undesired illumination effects from an image. The new model enables a better
handling of edges in the illumination that causes hallow effects, and it enables the
4 Curtesy of Eyal Gordon, The CS department - The Technion.
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suppression of noise in dark areas. An algorithm based on this model has been
developed, leading to two specially tailored bilateral filters, the first evaluates the
illumination and the second is used for the computation of the reflectance. Our
work stands as a theoretic justification and refinement for the recently proposed
heuristic use of the bilateral filter for retinex by Durand and Dorsey. We have
used their way of speeding up the bilateral to propose a similar speedup methods
for our filters.
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