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Abstract

Given a signal S 2 RN and a full-rank matrix D 2 RN�L with NoL, we define the signal’s over-complete

representation as a 2 RL satisfying S ¼ Da. Among the infinitely many solutions of this under-determined linear system

of equations, we have special interest in the sparsest representation, i.e., the one minimizing kak0. This problem has a

combinatorial flavor to it, and its direct solution is impossible even for moderate L. Approximation algorithms are thus

required, and one such appealing technique is the basis pursuit (BP) algorithm. This algorithm has been the focus of

recent theoretical research effort. It was found that if indeed the representation is sparse enough, BP finds it

accurately.

When an error is permitted in the composition of the signal, we no longer require exact equality S ¼ Da. The BP has

been extended to treat this case, leading to a denoizing algorithm. The natural question to pose is how the above-

mentioned theoretical results generalize to this more practical mode of operation. In this paper we propose such a

generalization. The behavior of the basis pursuit in the presence of noise has been the subject of two independent very

wide contributions released for publication very recently. This paper is another contribution in this direction, but as

opposed to the others mentioned, this paper aims to present a somewhat simplified picture of the topic, and thus could

be referred to as a primer to this field. Specifically, we establish here the stability of the BP in the presence of noise for

sparse enough representations. We study both the case of a general dictionary D, and a special case where D is built as a

union of orthonormal bases. This work is a direct generalization of noiseless BP study, and indeed, when the noise

power is reduced to zero, we obtain the known results of the noiseless BP.
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1. Introduction

1.1. General– Sparse representations

In signal processing, we are often interested in a replacement of the representation, seeking some
simplification for an obvious gain. This is the rational behind the so many transforms proposed over the
past several centuries, such as the Fourier, Cosine, Wavelets, and many others. The basic idea is to ‘‘change
language’’, and describe the signal differently, in the hope that the new description is better for the
application in mind. A natural justification for the use of a transform is that signals already use an imposed
representation when described as samples as a function of time/space. Generally, there is no reason to
believe that this representation is the most appropriate one for our needs.

The ease with which linear transforms are operated and analyzed keeps those as the first priority
candidates in defining alternative representations. It is therefore not surprising to find that linear
transforms are the more popular ones in theory and practice in signal processing. A linear transform is
defined through the use of a full-rank matrix D 2 RN�L, where LXN. Given the signal S 2 RN , its
representation is defined by

S ¼ Da; ð1Þ

where a 2 RL. For the case of L ¼ N (and a non-singular matrix D due to the full-rank property), the
above relationship implies a linear operation both for the forward transform (from S to a) and its inverse.
Many of the practical transforms are of this type, and many of them go further and simplify the matrix D to
be structured and unitary, so that its inverse is easier to operate and both directions can be computed with
nearly OðNÞ operations. Such is the case with the DFT, DCT, the Hadamard, orthonormal wavelet and
other transforms.

In this paper we are interested in the case of L4N, referred to as the over-complete transforms. When
L4N, the relationship in (1) poses an under-determined linear set of equations, and thus in general it leads
to an infinite number of possible solutions. Further information is therefore needed in order to uniquely
define the transform, and this is typically achieved by using regularization, defining the representation as
the solution of

ðPpÞ min
a
kakp subject to S ¼ Da. (2)

For p ¼ 2, it is easy to show that again we obtain linearity in both directions (forward and inverse
transforms). This case, typically referred to as ‘‘Frame Theory’’, has drawn a lot of attention because of this
obvious simplicity. However, it is clear that linearity poses a hard restriction on the space of possibilities,
and may cost in performance.

A different and far more complicated approach advocated strongly in recent years is to consider p ¼ 0.
The ‘0 notation is an abused ‘p-norm with p! 0, effectively counting the number of non-zeros in the
vector a. In such an approach we seek among all feasible representations (satisfying the constraint in (1))
the one with the fewest non-zero entries, this way achieving an ultimate simplicity in representation.
Referring to the matrix D as a dictionary of signal–prototypes as its columns, we build S as a linear
combination of only few of these columns, typically referred to as atoms. Thus, we can think of our signal
as a molecule, and the forward transform decomposes it to its building atoms, where we try to use the
fewest in this construction [1].

From the numerical standpoint, the forward transform, defined as ðP0Þ, is a non-convex and highly non-
smooth optimization problem, with many possible local minimum points. Prior work has established that
this problem is an NP-hard one, implying that its complexity grows exponentially with the number of
columns in the dictionary [2,3]. Recent study of this problem and methods to approximate its solution give
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promising new results, indicating that even though complicated, means exist to solve it at least in some
cases using either greedy [4–13] or convex programming approaches [1,10,14–20].

The Basis Pursuit (BP) belongs to the second family of methods, using convexization of the original
problem in order to get a numerically traceable algorithm. Instead of the original problem

ðP0Þ min
a
kak0 subject to S ¼ Da, (3)

the BP proposes the solution of

ðP1Þ min
a
kak1 subject to S ¼ Da. (4)

This constrained optimization problem has a linear programming (LP) structure, for which there are stable
and reliable numerical solvers. In the original work that introduced this option [1], it was observed
empirically that this algorithm performs very well, implying that if indeed a sparse solution exists, the
solution of ðP1Þ leads to it. Several very recent works studied theoretically this phenomenon and found that
indeed under some conditions ðP1Þ and ðP0Þ lead to the same solution. In the following we briefly describe
these results.

1.2. Known results on BP

In this section we briefly mention several results related to the performance of the BP. The main reason
for mentioning these results is the desire to show later that the noisy case results converge to the noiseless
ones mentioned here, when the noise power is set to zero.

One common theme to all the works that analyze the approximating algorithms is their use of the Mutual

Incoherence as a way to characterize the dictionary D. We start by assuming that the columns of D are all
normalized, i.e. kdkk2 ¼ 1. The mutual incoherence, denoted as M, is defined as the maximal inner product
between the dictionary columns assumed to be normalized,

M ¼ max
1pk;jpL; kaj

jdTkdjj.

For a square and unitary matrix D the mutual incoherence is zero, indicating a total independence between
the dictionary’s atoms. For general over-complete dictionaries with L4N, M is necessarily non-zero, and
we desire the smallest possible value so as to get close to the ideal independence exhibited in the unitary
setup. In [21] it has been shown that for full-rank dictionaries of size N � L we have

MX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�N

NðL� 1Þ

s
,

and equality is obtained for a family of dictionaries named Grassmanian Frames.
We now turn to describe the known results for the BP, starting with the general dictionary case:

Theorem 1. (see Donoho and Elad [18]; Gribonval and Nielson [19]; Fuchs [20]).If the solution of ðP0Þ

satisfies

kâk0o
1þM

2M
, (5)

then the solution of ðP1Þ coincides with it exactly, implying the success of the BP.

This result suggests that for a class of signals having a sparse enough representation, solving ðP1Þ

is just as solving ðP0Þ, and this way we obtain the solution of an NP-hard problem using an LP
solver.
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The next result refers to a special case of interest when the dictionary has a specific structure. We assume
that L ¼ JN, and the dictionary is a union of J orthonormal matrices

D ¼ ½B1;B2; . . . ;BJ � where 8 1pkpJ; BT
kBk ¼ I.

Theorem 2. (see Elad and Bruckstein [17]; Gribonval and Nielsen [19]) If the solution of ðP0Þ satisfies

kâk0o
ffiffiffi
2
p
� 1þ

1

2ðJ � 1Þ

� �
1

M
, (6)

then the solution of ðP1Þ coincides with it exactly, implying the success of the BP.

For J ¼ 2 it is easy to see that the last result is stronger than the more general one, as expected. It is less
obvious (but possible) to see the gain for J42—we refer the reader to a discussion on this matter in [19].
1.3. Presence of noise and stability

The above two Theorems assume that a signal has been composed by S0 ¼ Da0, where ka0k0 is known to
be sufficiently small. Then, the BP is required to recover this original representation successfully based on
the knowledge of S0. We now generalize this scenario and assume that the signal S is given to us corrupted
by additive noise

S ¼ S0 þ Z ¼ Da0 þ Z, (7)

where jZjp1 � �. This assumption implies that the deviation in each of the entries of the signal are in the
range ½��; ��. The notation 1 stands for a vector of ones. A different noise description such as kZk2p� could
have been posed. However, as we shall see later, the entry-wise description better fits the analysis method
adopted in our proof.

Can we still expect the BP to succeed in finding a0? Before answering this we should address a more
fundamental question of how to operate the BP now that we know that the signal is noisy. Solving (4)
disregarding the noise is possible, although we can do far better by solving instead:

ðP1ð�ÞÞ min
a
kak1 subject to jS�Dajp1 � �. (8)

One may argue that � is not known, and then we should solve ðP1ðdÞÞ for an arbitrarily chosen d. We will
refer to this option as BP as well in-spite the evident change in formulation.

As we shall see, since the BP is fed with a corrupted signal, we cannot expect such exact recovery.
However, we show that the BP result is very close to a0 if this representation is sparse enough. Such a result
implies that BP is globally stable and robust to the noise. Our study essentially leads to a bound on the
deviation between a0 and the BP outcome. We show that this bound is proportional to �, and thus when
� ¼ 0 we obtain an exact recovery.
1.4. This paper’s structure

In the next section we show the main result of this work, building the stability result for the general
dictionary case. In Section 3 we address the same question, but this time refer to a specific choice of
dictionary, built as an amalgam of several orthonormal matrices. Due to the specific structure imposed the
results are tighter. In Section 4 we refer to two very recent works that also studied the noisy BP case. We
will briefly mention these works’ contributions and relate them to our results. We summarize and conclude
in Section 5.
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2. New stability result

We start by stating the Theorem that we will later prove in detail.

Theorem 3. We assume a signal S ¼ Da0 þ Z constructed as a sparse combination of columns of the

dictionary D of size N � L with mutual incoherence M. We assume a bounded noise, jZjp1 � �. Then, if a0 is

sparse enough, satisfying

ka0k0o
1þM

2M þ 2
ffiffiffiffiffi
N
p
ð�þ dÞ=T

, (9)

then the solution â of

ðP1ðdÞÞ min
a
kak1 subject to jS�Dajp1 � d (10)

with dX� exhibits stability

kâ� a0k1pT . (11)

Before turning to prove this result, let us first discuss its meaning. Starting with the case of � ¼ d ¼ 0, this
Theorem suggests that if

ka0k0o
1þM

2M
, (12)

then â and a0 can be arbitrarily close, since any T—even zero—can be used here. In effect, this is exactly the
result stated in Theorem 1.

When there is either noise in the signal (i.e. �40) and/or noise is assumed in the BP solver (i.e. d4� ¼ 0)
we obtain that guaranteed exact recovery of the original representation, â ¼ a0, is impossible for any
cardinality of a0. Still, if we are willing to absorb a slight deviation in the outcome, then guaranteed
performance can be claimed. We measure here the deviation between the original and the computed
representations using ‘1 norm—the reason for this choice will become evident as we will turn to the proof of
this result. If we allow a deviation of size T, then for sparse enough representations, the theorem guarantees
success of the BP.

It is interesting to see that the critical cardinality to allow these results is a function of the signal-to-noise-
ratio (SNR), T=ð�þ dÞ. The smaller this value is, the stronger the effects of the noise, and then the
requirement on the cardinality become more strict. As the SNR increases, we get near the noiseless case
result.

Although not said explicitly, there is a hard restriction on the cardinality that may lead to successful BP
behavior. The cardinality of the original representation, ka0k0, must be always smaller than ð1þMÞ=2M,
no matter what the noise power is. This is an immediate outcome of the inequality presented in (9).

The above theorem could be given a different interpretation if we warp the inequality in (9) to be

T4
2
ffiffiffiffiffi
N
p
ð�þ dÞka0k0

1þM � 2Mka0k0
.

This inequality suggests that if the cardinality of the representation is known, we can conclude the amount
of deviation between the original representation and the BP’s result.

As a final comment in this discussion we draw attention to the following limitation in the above result. At
this stage we can claim stability only if �pd, meaning that the noise assumed in the BP should be at least as
big as the actual noise contaminating the signal.

We now turn to prove this Theorem, and the proof is a direct extension of the methodology used in [17]
and later in [18] to study the noiseless case.
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Proof. Consider a candidate solution of (10), b. Since it is indeed a candidate solution, it must satisfy the
constraint jS�Dbjp1 � d. We compare this possible outcome with the desired outcome being a0. Since we
have assumed that �pd, a0 is also satisfying the constraint jS�Dajp1 � �p1 � d. In order for the BP as in
(10) to favor a0 as its solution, we should require

kbk1 � ka0k140.

This should hold true for any candidate solution b. We can pose this requirement as a constrained
optimization problem of the form

min
b
kbk1 � ka0k1 subject to jS�Dbjp1 � d and jS�Da0j p1 � �p1 � d.

If the minimum of this problem is negative, then BP can fail and produce a representation being different
from the desired one.

The strategy employed to solve this problem and see whether it can get negative is to replace the
penalty with lower bounds on it, and replace the constraints with wider ones. Both changes give more
freedom to the problem to cross the zero towards negative values, and this way we study the worst-case
behavior.

We start with the penalty and replace it with a lower bound. This bound was originally proposed in [15]
and later used in [17–19]. The bound replaces the use of b by b ¼ a0 þ X. Defining S as the indices in the
support of a0, we have

kbk1 � ka0k1 ¼ ka0 þ Xk1 � ka0k1XkXk1 � 2
X
k2S

jxkj. (13)

Turning to the constraints, using our defined vector X we have

�d � 1pDb� S ¼ DXþDa0 � Spd � 1.

Since �� � 1pDa0 � Sp� � 1, the above relation can be brought to

�ðdþ �Þ � 1p� d � 1� ðDa0 � SÞpDXpd � 1� ðDa0 � SÞpðdþ �Þ � 1.

Thus, we obtain an alternative, wider, constraint on the difference between the two representations, of
the form

jDXjpðdþ �Þ � 1. (14)

Combining the new penalty term in (13) with the new constraint in (14) we obtain the following
alternative simpler optimization task

min
X
kXk1 � 2

X
k2S

jxkj subject to jDXjpðdþ �Þ � 1. (15)

If a solution X can be found such that the penalty value is negative, this indicates the BP’s failure to choose
the original representation. Unfortunately, though, this problem is hard to solve since it is posed both in
terms of the entries of X and their absolute values. Thus, we further relax the constraint by using the mutual
incoherence.

Defining V ¼ DX we know that this vector has bounded entries, jvkjpðdþ �Þ. Multiplying this vector by
DT we get that the outcome is also bounded entry-wise by

jDTVj ¼ jDTDXjpðdþ �Þ
ffiffiffiffiffi
N
p
� 1. (16)

Here we have exploited that fact that the dictionary columns are all ‘2-normalized. On the other hand, we
have the trivial relation

DTDX ¼ Xþ ðDTD� IÞX. (17)



ARTICLE IN PRESS

D.L. Donoho, M. Elad / Signal Processing 86 (2006) 511–532 517
The matrix ðDTD� IÞ contains exact zeros on its main diagonal, and all of its off-diagonal entries are
smaller or equal to M in magnitude, being inner products of pairs of columns from D. Combining (16) and
(17) we have

jXj ¼ jDTDX� ðDTD� IÞXj

pjDTDXj þ jðDTD� IÞXj

pðdþ �Þ
ffiffiffiffiffi
N
p
� 1þ jðDTD� IÞj � jXj

pðdþ �Þ
ffiffiffiffiffi
N
p
� 1þMð1� IÞ � jXj

¼ ðdþ �Þ
ffiffiffiffiffi
N
p
� 1þMkXk1 � 1�MjXj.

In the above we have used the fact that the off-diagonal entries of the Gram matrix DTD are bounded by M

in absolute value. The notation 1 stands for a matrix with all entries being ‘1’-es. The above leads to a
different constraint resulting with the following optimization problem

min
X

kXk1 � 2
X
k2S

jxkj

subject to jXjp
ðdþ �Þ

ffiffiffiffiffi
N
p

1þM
þ

M

1þM
kXk1

� �
� 1.

Since this problem is formulated in terms of the absolute entries of X we can simplify its description by
defining Y ¼ jXj. Furthermore, in its current formulation, the location of the non-zeros in S play no role.
Thus, we simplify the problem by assuming that the first jSj entries in a0 are non-zeros. These changes lead
to the problem

min
Y

ð1� 2 � 1jSjÞ
TY

subject to I�
M

1þM
1

� �
Yp
ðdþ �Þ

ffiffiffiffiffi
N
p

1þM
� 1 and YX0. ð18Þ

The vector 1jSj has jSj ‘1’-es as its first entries and zeros elsewhere.
Instead of solving this LP problem, we turn to its dual. This idea, used successfully in [17] and later in

[19], exploits the zero duality gap between the primal and the dual in feasible LP problems [22]. Thus, the
sign of the penalty at the extreme (minimum or maximum, depending on the problem) is the same. Thus, if
the dual problem is easier to solve, we can use this to draw a conclusion on the primal outcome.

For the primal problem defined in (18), the dual form is given by

max
U

�
ðdþ �Þ

ffiffiffiffiffi
N
p

1þM
� 1TU

subject to � I�
M

1þM
1

� �
Up1� 2 � 1jSj and UX0. ð19Þ

It is trivial to see that no matter what jSj; d; �;M, and N are, the result of this problem is always non-
positive and zero at its best. Thus, we conclude that finding a0 as the recovered representation is impossible.
This, however, refers to the case where we desire a perfect recovery. We now impose an additional
constraint in (18), restricting Y to satisfy

1TY ¼ kXk1 ¼ kb� a0k1XT .

This constraint focus the search for the competitive solution outside a T ball (in ‘1 for convenience) of the
desired solution a0. The basic rational here is that if a candidate better solution is indeed found but in a
proximity to a0, we consider this as a success as well. Adding this constraint to (18), the new problem
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become

min
Y

1� 2 � 1jSj
� �T

Y

subject to I�
M

1þM
1

� �
Yp
ðdþ �Þ

ffiffiffiffiffi
N
p

1þM
� 1; 1TY XT and YX0. ð20Þ

Note that if we have used ‘2-norm to measure proximity between solutions we would have lost the
convexity. In the chosen format we stay convex and even preserve the LP structure. Thus, as before we turn
to the dual and obtain

max
U

�
ðdþ �Þ

ffiffiffiffiffi
N
p

1þM
� 1TUþ T � u0

subject to 1 � u0 � I�
M

1þM
1

� �
Up1� 2 � 1jSj and UX0; u0X0. ð21Þ

The additional constraint in the primal problem brought an additional scalar unknown to the dual one, u0.
We are interested in a symbolic solution of the primal (or dual—the outcome should be the same)

problem in order to find the relation between the various parameters involved and the condition they must
satisfy in order to get a positive penalty value. Such solution is hard to obtain, and thus we have turned to
the dual problem. By wisely guessing a solution for it, if this solution leads to a positive penalty, it must
imply a positive maximum value for the dual and necessarily a positive value for the primal as well, leading
to a guaranteed success of the BP. This is the rational also exercised in [17,19].

How shall we wisely choose a solution? While numerical solution of (21) cannot be used to obtain the
desired relation between the parameters, it can certainly shed light on the structure of the solution. Given
this structure we can pose it using few parameters, and solve for those parameters to guarantee positive
penalty outcome. We have done so (see Appendix A for the details) and based on the results we propose the
following structure for the solution of (21):

U ¼ A � 1jSj.

Naturally we must force A; u0X0. The other constraint translates into

1 � ðu0 � 1Þp I�
M

1þM
1

� �
A � 1jSj � 2 � 1jSj.

Using the fact that 11jSj ¼ 1 � jSj we obtain

u0 � 1þ
MjSjA

1þM

� �
1pðA� 2Þ � 1jSj.

We can take these L inequalities and replace them with canonic two, one referring to the on-support and
the other to the off-support in 1jSj. This leads to

on-support : u0 þ
MjSjA

1þM
pA� 1 ð22Þ

off-support : u0 þ
MjSjA

1þM
p1. ð23Þ

The off-support inequality is stronger than the on-support one if AX2. Let us suppose that this is the case,
and discard of the on-support inequality. For a complete solution we should return to this junction and try
the assumption Ap2 as well. Still, even without doing so, as long as we use the off-support constraint while
satisfying AX2, the solution obtained is sufficient for our needs, since we are not interested in maximization
of the dual problem.
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The penalty term to be maximized is supposed to be positive so as to guarantee the BP’s success. This
penalty is given by

0o�
ðdþ �Þ

ffiffiffiffiffi
N
p

1þM
� 1TUþ T � u0 ¼ �

ðdþ �Þ
ffiffiffiffiffi
N
p

AjSj

1þM
þ T � u0.

Plugging in the off-support constraint we obtain

0o�
ðdþ �Þ

ffiffiffiffiffi
N
p

AjSj

1þM
þ T � u0p�

ðdþ �Þ
ffiffiffiffiffi
N
p

AjSj

1þM
þ T � 1�

MjSjA

1þM

� �

¼
Tð1þMÞ � A ðdþ �Þ

ffiffiffiffiffi
N
p
þMT

� �
jSj

1þM
.

The value of A in the permissible range (AX2 due to our assumption) that maximizes this value is A ¼ 2,
and this leads to the requirement

jSj ¼ ka0k0o
1þM

2M þ 2
ffiffiffiffiffi
N
p
ð�þ dÞ=T

,

as claimed by the theorem.
If we alternatively choose as active the on-support constraint in (22) one can easily verify that the analysis

leads to the same solution. This implies that under the structure assumed for the solution of the dual LP
problem, we have managed to locate the maximum value, thus getting tight result. &

What about the case of �4d? Can we prove stability here just as well? In this case a0 cannot be proposed
as a possible competing solution since it does not satisfy the constraint in (10). While jDa0 � Sjo1 � � is
true, it does not imply necessarily jDa0 � Sjo1 � d. Thus, an alternative solution should be proposed. One
option is to choose

â ¼ ma0 þ ð1� mÞDþS,

with 0pmp1. Put into the constraint we get

jDâ� Sj ¼ jmD a0 � mSjp1 � �m.

Thus, by choosing m ¼ d=� we bring the proposed solution to be a feasible solution to (10). Alternatively,
we can propose â to be the closest feasible solution to a0, defined as

â ¼ Arg min
a
ka� a0k1 subject to jDa� Sjpd � 1.

This LP problem defines our candidate solution and for it we can check the behavior of the BP. We will not
proceed with this issue here as it deviates from the main path we have undertaken. We leave this as an open
problem for future work.
3. Special case of interest: union of ortho-bases

3.1. Stability result

In this section we treat the same stability problem, but concentrate on a special case where the dictionary
is built as a union of J orthonormal matrices of size N �N each (thus, L ¼ JN),

D ¼ ½B1;B2; . . . ;BJ � where 8 1pkpJ; BT
kBk ¼ I. (24)
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The analysis here is very similar to the one presented in [19], and generalizes it for the noisy case. We start
by presenting the main result.

Theorem 4. We assume a signal S ¼ Da0 þ Z constructed as a sparse combination of columns of the

dictionary D of size N �NJ, where D is constructed as a union of J orthonormal bases with mutual

incoherence M. We assume a bounded noise, jZjp1 � �. Then, denoting the number of atoms taken from the

kth ortho-basis by jSkj, and assuming jS1jpjS2jp � � �pjSJ j, the solution â of

ðP1ðdÞÞ min
a
kak1 subject to jS�Dajp1 � d (25)

with dX� exhibits stability, namely

kâ� a0k1pT , (26)

where

T4
2ðdþ �Þ

ffiffiffiffiffi
N
p
ð1þMjS1jÞ

PJ
j¼1 jSjj=ð1þMjSjjÞ

1þ 2MjS1j � 2Mð1þMjS1jÞ
PJ

j¼1 jSjj=ð1þMjSjjÞ
. (27)

Furthermore, this result is true if the cardinalities jSkj satisfy

XJ

j¼1

jSjj

1þMjSjj
o

1þ 2MjS1j

2M 1þMjS1jð Þ
. (28)

Clearly, the requirements posed here are far more complicated and hard to interpret intuitively. Instead
of getting a clear requirement on the cardinality of ka0k0, the condition is with respect to the number of
non-zeros in each of the ortho-bases. Still, at the heart of this result lays the same concept of obtained
stability with the BP for sparse enough representations. We will prove first the result as presented here, and
then turn to create a weaker but simpler version of it.

Proof. In fact, large portions of this proof are identical to the proof presented in the previous section. The
general and the special dictionary cases both lead to the desire to solve (parallel to (15) in the previous
proof, with the additional error-permitting constraint) the problem

min
X

kXk1 � 2
X
k2S

jxkj subject to jDXjpðdþ �Þ � 1 and kXk1XT , ð29Þ

and obtain a positive value for the penalty, so as to guarantee BP’s success. The two proofs depart here
because of the different treatment we can now give to the constraint jDXjpðdþ �Þ � 1, exploiting the
structure of D to obtain a tighter inequality. The constraint can be written differently as

j½B1;B2; . . . ;BJ �Xj ¼ jB1 � ½I;B
T
1B2; . . . ;B

T
1BJ �Xjpðdþ �Þ � 1,

We use the property that for an orthonormal matrix B of size N �N

jBVjX
1ffiffiffiffiffi
N
p jVj.

Using this inequality and breaking the vector X into J parts that match the J blocks in the dictionary, we
obtain a weaker requirement of the form

j½I;BT
1B2; . . . ;B

T
1BJ �Xj ¼ X1 þ

XJ

k¼2

BT
1BkXk

�����
�����pðdþ �Þ

ffiffiffiffiffi
N
p
� 1.
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This leads to the inequality

jX1jpðdþ �Þ
ffiffiffiffiffi
N
p
� 1þ

XJ

k¼2

jBT
1Bkj � jXkjp ðdþ �Þ

ffiffiffiffiffi
N
p
þM

XJ

k¼2

kXkk1

 !
� 1.

This inequality should be posed J times, for each of the J parts of the vector X. For convenience we denote

P ¼

I �M � 1 �M � 1 � � � �M � 1

�M � 1 I �M � 1 � � � �M � 1

�M � 1 �M � 1 I � � � �M � 1

..

. ..
. ..

. . .
. ..

.

�M � 1 �M � 1 �M � 1 . . . I

2
6666664

3
7777775
. (30)

Using this matrix and putting the new constraint to the problem in (29) we get

min
Y

ð1� 2 � 1jSjÞ
TY

subject to PYpðdþ �Þ
ffiffiffiffiffi
N
p
� 1 and � 1TYp� T . ð31Þ

This problem is similar to the problem posed in (20) with two major difference: First, the matrix
ðI� ðM=ð1þMÞÞ1Þ in the old-version constraint is replaced with P. This change exploits the knowledge
about some of the entries in the Gram matrix being identically zero. The second difference is the lack of
division by M þ 1 in the constraint. Both differences eventually imply that the feasible set of Y is smaller
than before, and thus we expect to get weaker requirements for the BP success.

As before we turn to the dual LP problem and choose a parametric solution. The dual problem is
given by

max
U

� ðdþ �Þ
ffiffiffiffiffi
N
p
� 1TUþ T � u0

subject to 1 � u0 � PUp1� 2 � 1jSj

and UX0; u0X0. ð32Þ

We break the vector U into J ¼ L=N equal parts, each referring to a different orthonormal matrix in our
dictionary. Then we propose the solution (see the Appendix for an explanation for this choice of solution)

k ¼ 1; 2; . . . ; J; Uk ¼ Ak � 1jSkj. (33)

Here we use the notation jSkj to designate the number of non-zero entries referring to the kth
ortho-basis. The positivity constraint implies 8k; AkX0. Plugging this solution into the main constraint
we obtain

u0 � 1�MAkjSkj þM
XJ

j¼1

AjjSjj

 !
1pðAk � 2Þ1jSk j; k ¼ 1; 2; 3; . . . ; J.

As before, these inequalities encompass two scalar relations, referring to the on-and the off-support of
1jSk j, being

on-support: u0 þM
XJ

j¼1

AjjSjj pAk 1þMjSkjð Þ � 1; k ¼ 1; 2; 3; . . . ; J,

off-support: u0 þM
XJ

j¼1

AjjSjjp1þMAkjSkj; k ¼ 1; 2; 3; . . . ; J.
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As in the previous section, we can choose one type of constraint to be stronger than the other and work
with it, while being consistent (verifying that this assumption is necessarily true). Based on the numerical
results (see Appendix) we assume hereafter that the on-support constraints are stronger. This assumption is
true if

8k ¼ 1; 2; 3; . . . ; J; Akp2.

Thus, we must enforce these inequalities as part of our solution. We further assume that all the on-support
inequalities are met with exact equality, implying that all are active constraint. Thus

A1ð1þMjS1jÞ ¼ A2ð1þMjS2jÞ ¼ � � � ¼ AJ ð1þMjSJ jÞ ¼ C (34)

and also

u0 ¼ C � 1�M
XJ

j¼1

AjjSjj. (35)

Returning to the dual LP penalty term, we should enforce 0o� ðdþ �Þ
ffiffiffiffiffi
N
p
� 1TUþ T � u0. Plugging the

relations in (34) and (35) we obtain

0o� ðdþ �Þ
ffiffiffiffiffi
N
p
�
XJ

j¼1

AjjSjj þ T � u0

¼ � ðdþ �Þ
ffiffiffiffiffi
N
p
�
XJ

j¼1

AjjSjj þ T � C � 1�M
XJ

j¼1

AjjSjj

 !

¼ TC � T �
XJ

j¼1

jSjjC

1þMjSjj

 !
� ððdþ �Þ

ffiffiffiffiffi
N
p
þMTÞ.

In order to maximize this expression, we should choose the maximal possible value for C. Assuming an
ordered sequence jS1jpjS2jp � � �pjSJ j, we can choose A1 ¼ 2, and all other values being Ajp2 while
satisfying (34), and maximizing C, leading to C ¼ 2ð1þMjS1jÞ. This leads to the requirement

0o2T 1þMjS1jð Þ � T � 2
XJ

j¼1

jSjjð1þMjS1jÞ

1þMjSjj

 !
� ððdþ �Þ

ffiffiffiffiffi
N
p
þMTÞ.

Written differently as a requirement on the ball radius around the true representation, T, we write

T4
2ðdþ �Þ

ffiffiffiffiffi
N
p
ð1þMjS1jÞ

PJ
j¼1 jSjj=ð1þMjSjjÞ

1þ 2MjS1j � 2Mð1þMjS1jÞ
PJ

j¼1 jSjj=ð1þMjSjjÞ
(36)

obtaining the claimed result. This result is feasible only if the denominator is positive, thus adding a second
requirement of the form

1þ 2MjS1j � 2Mð1þMjS1jÞ
XJ

j¼1

jSjj

1þMjSjj
40.

This requirement can be rearranged to a simpler form, similar to the result obtained in [19], being

XJ

j¼1

jSjj

1þMjSjj
o

1þ 2MjS1j

2Mð1þMjS1jÞ
.

and this concludes the proof. &
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The last condition appears (in slightly different structure but completely equivalent to the one here) in
[19] as the condition on the cardinalities that leads to the success of the BP. This result parallels our sparsity
requirement posed in (12) for the general dictionary case.
3.2. Two ortho-bases case revisited

When dealing with two ortho-bases (J ¼ 2), the above conditions could be further simplified. The
requirement (27) after few algebraic steps becomes

SNR ¼
T

dþ �
42

ffiffiffiffiffi
N
p
�
jS1j þ jS2j þ 2MjS1jjS2j

1�MjS2j � 2M2jS1jjS2j
. (37)

The condition for this bound to hold true is the positivity of the denominator:

1�MjS2j � 2M2jS1jjS2j40. (38)

This requirement is exactly the one posed in [17] for the success of the BP in the noiseless case with a
dictionary built by two ortho-bases.

Assuming that the denominator is positive, the above expression suggests a lower bound on the SNR that
can be dealt with successfully with the BP. This bound increases with both cardinalities jS1j and jS2j,
exploding to infinity on the boundary of the condition in (38).

The above result could be read differently, leading to a different interpretation. Given the desired SNR
(dictated by our application), we can ask what are the cardinalities jS1j and jS2j that will enable it. Using
(37) we obtain the quadratic inequality that the cardinalities are to satisfy

2M 1þM
SNR

2
ffiffiffiffiffi
N
p

� �
jS1jjS2j þ 1þM

SNR

2
ffiffiffiffiffi
N
p

� �
jS2j þ jS1j �

SNR

2
ffiffiffiffiffi
N
p o0. (39)

Recall that we assume throughout these inequalities that jS1jpjS2j. Thus, we can sweep through jS1j ¼

1; 2; 3; . . . , and per each solve for the permissible jS2j values, this way mapping the boundary of possible
cardinalities that allow stability with the pre-specified SNR. Fig. 1 was obtained this way for varying
values of SNR. As can be seen, as the SNR goes to infinity the cardinalities jS1j and jS2j are approaching
those of the noiseless case as described in [17]. For convenience we plot the bound (12) of the general
noiseless case, the bound jS1j þ jS2jo1=M, and the bound jS1j þ jS2joð

ffiffiffi
2
p
� 0:5Þ=M, which is the

simplified requirement for the success of the BP in the noiseless case with a dictionary built as two ortho-
bases.

In fact, in this case we can obtain an analytic bound of the form ka0k0 ¼ jS1j þ jS2jof ðSNR;M;NÞ,
depicting a worst case simplified bound. We achieve this by rearranging (39) to be

jS1jo
ðSNR=2

ffiffiffiffiffi
N
p
Þ � ð1þMðSNR=2

ffiffiffiffiffi
N
p
ÞÞjS2j

2Mð1þMðSNR=2
ffiffiffiffiffi
N
p
ÞÞjS2j þ 1

, (40)

and then adding jS2j to both sides, getting

jS1j þ jS2jo
ðSNR=2

ffiffiffiffiffi
N
p
Þ � ð1þMðSNR=2

ffiffiffiffiffi
N
p
ÞÞjS2j

2Mð1þMðSNR=2
ffiffiffiffiffi
N
p
ÞÞjS2j þ 1

þ jS2j. (41)

The right-hand side expression bounding jS1j þ jS2j is a function of jS2j. By minimizing this function
with respect to jS2j we can replace this expression with a function of the form f ðSNR;M ;NÞ, and obtain
the desired result.
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Taking a derivative of the right-hand side and zeroing it leads to the value jS2j that minimizes this
expression (the second derivative confirm this claim but we omit this development here). It is easy to verify
that this leads to

jS2jopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þMðSNR=2

ffiffiffiffiffi
N
p
ÞÞ þ 2M ðSNR=2

ffiffiffiffiffi
N
p
Þ � ð1þMðSNR=2

ffiffiffiffiffi
N
p
ÞÞ

q
� 1

2Mð1þMðSNR=2
ffiffiffiffiffi
N
p
ÞÞ

. (42)

Plugging this into (41) we obtain a lower bound on the right-hand side. Instead of simplifying what seems
like a very complex expression, we simply plug jS2jopt to (41), getting

jS1j þ jS2jo
ðSNR=2

ffiffiffiffiffi
N
p
Þ � ð1þMðSNR=2

ffiffiffiffiffi
N
p
ÞÞjS2jopt

2Mð1þMðSNR=2
ffiffiffiffiffi
N
p
ÞÞjS2jopt þ 1

þ jS2jopt. (43)

Fig. 2 presents the original bound curves and the simplified requirement developed above. As can be seen,
every curve bound is matched with a diagonal line of slope �1 that bounds the curve from below, thus
guaranteeing worst-case requirement.

We have special interest in the case where SNR!1, since we are already familiar with results for the
noiseless case. We have

lim
SNR!1

jS2jopt ¼ lim
SNR!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þMðSNR=2

ffiffiffiffiffi
N
p
Þ

� �
þ 2M ðSNR=2

ffiffiffiffiffi
N
p
Þ � 1þMðSNR=2

ffiffiffiffiffi
N
p
Þ

� �q
� 1

2Mð1þMðSNR=2
ffiffiffiffiffi
N
p
ÞÞ

¼
1ffiffiffi
2
p

M
.
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Plugged into (43) we obtain that the bound becomes

jS1j þ jS2jo lim
SNR!1

ðSNR=2
ffiffiffiffiffi
N
p
Þ � ð1þMðSNR=2

ffiffiffiffiffi
N
p
ÞÞjS2jopt

2Mð1þMðSNR=2
ffiffiffiffiffi
N
p
ÞÞjS2jopt þ 1

þ jS2jopt

¼ lim
SNR!1

1�MjS2jopt

2M2jS2jopt
þ jS2jopt ¼

ffiffiffi
2
p
� 0:5

M
, ð44Þ

which is the result given in [17].
3.3. The general case—simplified bound

An important shortcoming of the obtained result in Theorem 4 is the lack of a simple condition in the
form of (9) that relates the radius of error, the noise power, and the cardinality of the original
representation. We seek a condition similar to (43) that was developed for the two ortho-bases case. Note
that since the requirement in (43) does not have a simple form, we will be satisfied with a computable
expression being of the form f ðSNR;M ;N; JÞ.

The following theorem walks through similar scenery as in [19] to propose such a simpler
structured requirement. As we will show shortly, the result in [19] is correct, but not tight, and thus
can be further improved. We shall propose such an improvement, and generalize both bounds to the
noisy case.

Theorem 5. We assume a signal S ¼ Da0 þ Z constructed as a sparse combination of columns of the

dictionary D of size N �NJ, where D is constructed as a union of J orthonormal bases with mutual

incoherence M. We assume a bounded noise, jZjp1 � �. Then, stability of the BP with ‘1 error smaller than T is
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guaranteed if

ka0k0o

1

M
�
ðJ � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p
Þ
2

J � 1þ 1=2MRþ 1
� J

" #
J 2 CðM;RÞ

1

M
�
ðJ � 1ÞMR=ð2MRþ 1Þ

J � 1� ðMR=ð2MRþ 1ÞÞ
Else;

8>>>><
>>>>:

(45)

where

R ¼
T

2
ffiffiffiffiffi
N
p
ð�þ dÞ

; ð46Þ

and the condition needed above, J 2 CðM;RÞ, is all J satisfying

ðJ � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p
Þ
2

J � 1þ 1=2MRþ 1
� JX

ðJ � 1Þð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðMRþ 1Þ=ð2MRþ 1Þ
p . (47)

Before proving this theorem, a natural question that should be asked is how this bound matches the more
general form given in Section 3. Fig. 3 presents a comparison of the bounds in (9) and the upper part of
(45), assuming J 2 CðM ;RÞ. We have fixed M ¼ 1E � 2 and we show the bound curves as a function of J

for varying R. As can be seen, for small enough J the new bound is ‘‘more generous’’ due to its ability to
exploit the dictionary structure. The crossing between the bounds is an artifact that will be cleared at a later
stage. This behavior implies that the obtained bound is wrong and should be fixed—this is indeed done by
the condition posed and the alternative bound supplied. We will present more about these two bounds as
we proceed into the proof.

Proof. In the previous theorem we got condition (36) in order to guarantee stability of the BP,

SNR

2
ffiffiffiffiffi
N
p 4

ð1þMjS1jÞ
PJ

j¼1 jSjj=ð1þMjSjjÞ

1þ 2MjS1j � 2Mð1þMjS1jÞ
PJ

j¼1 jSjj=ð1þMjSjjÞ
.
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Fig. 3. Comparison between the general bound in (9) and the special one in (45) developed for the union of ortho-bases. Per each value

of R the blue curve describes the general bound and the red one shows the new bound. M is assumed to be 0:01, thus giving

cardinalities smaller than 1=M ¼ 100. The case of R!1 corresponds to the noiseless case, where these results match those in [19].
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Reorganizing this expression and using the definitions R ¼ SNR=2
ffiffiffiffiffi
N
p

and yk ¼MjSkj; k ¼ 1; 2; . . . ; J,
we obtain the condition

gðy1; y2; . . . ; yJÞ ¼
XJ

j¼2

yj

1þ yj

�
MR� y1

ð2MRþ 1Þð1þ y1Þ
o0.

Among all the support combinations fyjg
J
j¼1 that sum to a constant C we are interested in those that bring

the requirement to its extreme. Thus we should solve the optimization problem

max
y1;y2;...;yJ

gðy1; y2; . . . ; yJ Þ subject to
XJ

j¼1

yj ¼ C and f0py1pyjgjX2. (48)

Using Lagrange multipliers method we obtain

Lfy1; y2; . . . ; yJg ¼
XJ

j¼2

yj

1þ yj

�
MR� y1

ð2MRþ 1Þð1þ y1Þ
� l

XJ

j¼1

yj � C

 !
. (49)

We deliberately disregard the inequality constraints f0py1pyjgjX2 assuming that the solution will satisfy
these nevertheless. This, of course, must be verified when a solution is obtained. Taking the derivatives with
respect to yj we obtain

qL
qy1

¼ 0! y1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þMR

1þ 2MR

r
�
1ffiffiffi
l
p � 1 and for jX2 :

qL
qyj

¼ 0 ! yj ¼
1ffiffiffi
l
p � 1. (50)

It is easily verified that the constraints y1pyj for jX2 are indeed satisfied.
Having found the expressions for yj we first put them into the sum constraint to obtain a relation between

C and the Lagrange multiplier l. This gives

XJ

j¼1

yj ¼ C ¼ ðJ � 1Þ
1ffiffiffi
l
p � 1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þMR

1þ 2MR

r
�
1ffiffiffi
l
p � 1,

leading to

1ffiffiffi
l
p ¼

C þ J

J � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þMRÞ=ð1þ 2MRÞ

p . (51)

Similarly, we can describe gðy1; y2; . . . ; yJÞ as a function of l, obtaining

04gðy1; y2; . . . ; yJ Þ ¼ ðJ � 1Þð1�
ffiffiffi
l
p
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þð2MRþ 1Þ

p ffiffiffi
l
p
� 1

1þ 2MR

The above, together with (51), give a requirement on l being

ffiffiffi
l
p
¼

J � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p
C þ J

4
J � 1þ 1=ð2MRþ 1Þ

J � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p . (52)

The relation in (52) leads to the desired bound on the cardinality, by

ka0k0 ¼
XJ

j¼1

jSjj ¼
1

M
�
XJ

j¼1

yj ¼
C

M
o

1

M
�
ðJ � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p
Þ
2

J � 1þ 1=ð2MRþ 1Þ
� J

" #
.

This is the claim of the theorem, although we still have to establish that it is conditioned. For that, we
should now add another ingredient that is missing in [19]. The above result is correct only if the solution of
(48) satisfies y1X0. We have already argued that if this is true, then all other yj are non-negative as well,
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thus removing the need to test their non-negativity. Thus, we must require

y1X0 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ

ð2MRþ 1Þ

s
X

ffiffiffi
l
p

. (53)

Using the expression for l as in (51) we get yet another condition on C being

CX
ðJ � 1Þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p . (54)

Using the expression for C given above, this is equivalent to the requirement

ðJ � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p
Þ
2

J � 1þ 1=ð2MRþ 1Þ
� JX

ðJ � 1Þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p . (55)

This requirement essentially leads to a quadratic equation posing a condition on J. We can pose this
condition on the bound of cardinality by dividing by M. Fig. 4 present the two bounds as in Fig. 3 for
R ¼ 1E4 (representing nearly a noiseless case), and along these curves we present the restriction on C=M as
in (54). As we can see, for small enough J values the condition is met (the red curve is beneath the
condition). In fact, even J ¼ 3 already is not satisfying this condition, and thus the bound obtained is
wrong.

The reason for this phenomenon is that as J grows, the cardinality should be divided between the J

sections of the representation vector. For small cardinalities, the optimal solution of (48) should lead to
y1 ¼ 0 and equal division of the support between the other J � 1 parts. In fact, even this is not exact since
we have to propose an integer solution, but we will disregard this effect. This explains why our ‘‘tighter’’
bound is not truly tighter as J crosses some critical value, as manifested in Fig. 5.

Considering the case where (54) is not satisfied, we necessarily have to assume y1 ¼ 0. Then the
optimization posed in (48) leads to y2 ¼ y3 ¼ � � � ¼ yJ ¼ x. The sum constraint in (48) leads to

ðJ � 1Þx ¼ C ! x ¼
C

J � 1
,
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Fig. 5. Comparing the bounds for the noiseless case: (i) the general bound (0:5ð1þ 1=MÞ) in cyan, (ii) the simplified bound in [19]
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2
p
� 1þ ð1=2ðJ � 1ÞÞÞ) in red, and (iii) the new bound (1=Mð0:5þ 1=ð4J � 6ÞÞÞ in blue. We also show the cross-over point
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and the value of the penalty in (48) becomes

gðy1; y2; . . . ; yJÞ ¼
ðJ � 1ÞC

J � 1þ C
�

MR

2MRþ 1
.

Requiring negativity of this function leads to the condition

gðy1; y2; . . . ; yJÞo0 ! Co
ððJ � 1ÞMRÞ=ð2MRþ 1Þ

J � 1� ðMR=ð2MRþ 1ÞÞ
,

and this leads to the final cardinality requirement

ka0k0 ¼
XJ

j¼1

jSjj ¼
1

M
�
XJ

j¼1

yj ¼
C

M
o

1

M
�
ððJ � 1ÞMRÞ=ð2MRþ 1Þ

J � 1� ðMR=ð2MRþ 1ÞÞ
, (56)

which is the requirement for values of J for which the previous results are wrong (due to y1o0). This
concludes the proof as we have shown the two bounds and the decision rule between them. &

3.4. The noiseless case—updated results

We now check the obtained simplified results for R!1 and compare to the result in [19]. The
Theorem’s first bound becomes

lim
R!1

1

M
�

J � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p� �2
J � 1þ 1=ð2MRþ 1Þ

� J

" #
¼

1

M
�

ffiffiffi
2
p
� 1þ

1

2ðJ � 1Þ

� �

and this is the result shown given in [19]. However, based on (54), the above result is true only for small
enough J, satisfying

CX lim
R!1

ðJ � 1Þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMRþ 1Þ=ð2MRþ 1Þ

p ¼ ðJ � 1Þð
ffiffiffi
2
p
� 1Þ. (57)
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Thus, using the above result C ¼
ffiffiffi
2
p
� 1þ ð1=2ðJ � 1ÞÞ and using the above inequality we get

C ¼
ffiffiffi
2
p
� 1þ

1

2ðJ � 1Þ
XðJ � 1Þð

ffiffiffi
2
p
� 1Þ ! Jp

2
ffiffiffi
2
p

4ð
ffiffiffi
2
p
� 1Þ
þ 1 ¼ 2:7071. (58)

For JX3 we thus use the alternative bound as in (56), being

ka0k0o lim
R!1

1

M
�
ðJ � 1ÞMR=ð2MRþ 1Þ

J � 1�MR=ð2MRþ 1Þ
¼

1

M
�

1

2
þ

1

4J � 6

� �
. (59)

The various bounds are described for the noiseless case in Fig. 5. We see that after the critical value of J as
in (58) we get a more optimistic bound that preserves the improvement over the general case. As a side note
we should add that this gain is lost again for high enough J (above 50, where the solution again needs to be
corrected. We believe that this effect should be attributed to the limit on M as J grows (specifically—it can
no longer stay 1=

ffiffiffiffiffi
N
p

), but we will not pursue this matter here.
4. Relation to existing work

Analysis of the BP is a new topic and contributions to this field were made in the past 3–4 years. Among
these, the treatment of the noisy case was addressed only recently in two parallel major efforts [10,11]. To
the best of the authors knowledge, these manuscripts, along with this one are the only attempts to study
how the BP behaves in the presence of noise.

The analysis in [10] addresses uniqueness of sparse representations in the presence of noise, stability of
the BP, recovery of the correct support with BP, and similar analysis (stability and support recovery)
for several versions of the greedy algorithm. The results proposed here could be regarded as direct extension
of the work in [10]. Here we have concentrated on the stability of the BP, but the outcome is different in
several ways:
1.
 The result obtained here approaches that of the noiseless case for zero noise. This is not true for the
results reported in [10].
2.
 The analysis is based on a different noise model and error measurements—while this is not crucial, we
believe that it is these changes that made it possible to draw the tighter results.
3.
 In this paper we have added the treatment of the union of orthobases as a special case of interest.

The work by Tropp in [11] parallels the one in [10], but offers a different point of view and thus
somewhat different results. Rather than discussing the stability property, Tropp concentrates on showing
equivalence between the ‘0 and the ‘1 problem formations. Several modes of operations are discussed and
studied, with sparsity and representation-accuracy forced either as constraints or penalties. As in the
comparison made above, the results given here are tighter than those in Tropps work as well.

Beyond the bound-tightening that takes place in this work, and the treatment of the amalgam of ortho-
bases as a special kind of dictionary, this paper offers another more important benefit. The description of
the problem, the Theorems proposed, and especially the proof to back them up are all far simpler than
those discussed in [10,11]. In fact, we suggest that if anyone is to study the analysis of the BP under noise
results, this paper should necessarily be the starting point, as it offers a simple picture, and one that gives
smooth continuation of the study of the noiseless BP case to the noisy one. This work is a direct extension
of [18] and the work that preceded it in [17]. We believe that this is the true and major contribution of
this work.
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As a final note we should mention that as a by product of this work, in the study of the union of ortho-
bases as a dictionary, this paper proposes a new and corrected result for the equivalence bound, compared
to the work in [19].
5. Conclusions

In this paper we addressed the BP behavior in the presence of noise. We have proven two major stability
results, one that addresses the general dictionary case and the other for the special case where the dictionary
is built as a union of ortho-base. The bottom line result could be summarized by the the following phrases:
The BP successfully recovers sparse representations of signals, even if those signals are contaminated by noise.
In this work we give the exact conditions for this claim to be true.
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Appendix A. —Matlab Programs to Solve (21) and (32)

The following Matlab program builds the problem as posed in (21) and obtains a solution for it.
L=60; N=15;

M=sqrt((L-N)/(L-1)/N);

s=2; c=0.001; T=0.1;

f=[-ones(L,1)*c; T];

A=[-eye(L)+M/(1+M)*ones(L), ones(L,1)];

B=ones(L,1); B(1:s)=-1;

LB=zeros(L+1,1); UB=1000*ones(L+1,1);

U=linprog(-f,A,B,[],[],LB,UB);

X=linprog(B,-A’,-f,[],[],LB);

disp([f’*U,B’*X]); plot(U)
Similar to the above, the following program simulates (32) and builds a solution for it.
L=60; N=15;

M=sqrt((L-N)/(L-1)/N);

s=3; c=0.001; T=0.1;

f=[-ones(L,1)*c; T];

A=[M*ones(L), ones(L,1)];

for k=1:1:L/N,

A((k-1)*N+1:k*N,(k-1)*N+1:k*N)=-eye(N);

end;

B=ones(L,1); B(1:s)=-1;

LB=zeros(L+1,1); UB=1000*ones(L+1,1);
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U=linprog(-f,A,B,[],[],LB,UB);

X=linprog(B,-A’,-f,[],[],LB);

disp([f’*U,B’*X]); plot(U)
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