
K-SVD and its Non-Negative Variant for Dictionary Design

Michal Aharon Michael Elad Alfred M. Bruckstein
Department of Computer Science

Technion—Israel Institute of Technology
Technion City, Haifa 32000, Israel

Abstract

In recent years there is a growing interest in the study of sparse representation for signals. Using
an overcomplete dictionary that contains prototype signal-atoms, signals are described as sparse
linear combinations of these atoms. Recent activity in this field concentrated mainly on the study of
pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries
to better fit the above model can be done by either selecting pre-specified transforms, or by adapting
the dictionary to a set of training signals. Both these techniques have been considered in recent years,
however this topic is largely still open. In this paper we address the latter problem of designing
dictionaries, and introduce the K-SVD algorithm for this task. We show how this algorithm could
be interpreted as a generalization of the K-Means clustering process, and demonstrate its behavior in
both synthetic tests and in applications on real data. Finally, We turn to describe its generalization
to nonnegative matrix factorization problem that suits signals generated under an additive model
with positive atoms. we present a simple and yet efficient variation of the K-SVD that handles such
extraction of non-negative dictionaries.

1 Introduction

Recent years have witnessed a growing interest in the use of sparse representations for signals. Using
an overcomplete dictionary matrix D ∈ IRn×K that contains K atoms, {dj}

K
j=1, as its columns, it is

assumed that a signal y ∈ IRn (n � K) can be represented as a sparse linear combination of these
atoms. The representation of y may either be exact y = Dx, or approximate, y ≈ Dx, satisfying
‖y − Dx‖2 ≤ ε. The vector x ∈ IRK contains the representation coefficients of the signal y. This
sparsest representation is the solution of either

(P0) min
x

‖x‖0 subject to y = Dx, (1)

or

(P0,ε) min
x

‖x‖0 subject to ‖y − Dx‖2 ≤ ε, (2)

1

where ‖·‖0 is the l0 norm, counting the non zero entries of a vector. Applications that can benefit from
the sparsity and overcompleteness concepts (together or separately) include compression, regularization
in inverse problems, feature extraction, and more.

In order to use overcomplete and sparse representations in applications, one needs to fix a dictionary
D, and then find efficient ways to solve (1) or (2). Exact determination of sparsest representations proves
to be an NP-hard problem [1]. Hence, approximate solutions are considered instead. In the past decade
or so several efficient pursuit algorithms have been proposed. The simplest ones are the Matching Pursuit
(MP) [2] or the Orthogonal Matching Pursuit (OMP) algorithms [3]. These are greedy algorithms that
select the dictionary atoms sequentially.

A second well known pursuit approach is the Basis Pursuit (BP) [4]. It suggests a convexisation of the
problems posed in (1) and (2), by replacing the `0-norm with an `1-norm. The Focal Under-determined
System Solver (FOCUSS) is very similar, using the `p-norm with p ≤ 1, as a replacement to the `0-
norm [5]. Here, for p < 1 the similarity to the true sparsity measure is better, but the overall problem
becomes non-convex, giving rise to local minima that may divert the optimization. Extensive study of
these algorithms in recent years has established that if the sought solution, x, is sparse enough, these
techniques recover it well [6, 7, 8, 3].

All the above is done with the assumption that the dictionary is given. Designing dictionaries to better
fit the above model can be done by either selecting pre-specified transforms, or by adapting the dictionary
to a set of training signals. Both these techniques have been considered in recent years, however this
topic is largely still open.

In this paper we consider the problem of designing dictionaries based on learning from signal exam-
ples. Our goal is to find the dictionary D that yields sparse representations for a set of training signals.
Such dictionaries have the potential to outperform commonly used pre-determined dictionaries. With the
ever-growing computational resources that we have access to today, such methods will adapt dictionaries
for special classes of signals, and yield better performance in various applications.

A pioneering work by Field and Olshausen set the stage for dictionary training methods, proposing a
ML-based objective function to minimize with respect to the desired dictionary [9]. Subsequent work
by Lewicki, Olshausen and Sejnowski, proposed several direct extensions of this work [10]. Further
important contributions on training of sparse representations dictionaries has been made by the creators
of the FOCUSS algorithm, Rao and Kreutz-Delgado, together with Engan [11, 12]. They pointed out
the connection between the sparse coding dictionary design and the vector quantization problem, and
proposed some type of generalization of the well known K-Means algorithm. In this work we present a
different approach for this generalization. We regard this recent activity on the subject as a further proof
for the importance of this subject, and the prospects it encompasses. A more thorough summary of the
above activity can be found in [13].

In this paper we present a novel algorithm for dictionary training – the K-SVD. We show how this
algorithm could be interpreted as a generalization of the K-Means clustering process, and demonstrate
its behavior in both synthetic tests and in applications on real data. Finally, We turn to the describe its
generalization to nonnegative matrix factorization that suits signals generated under an additive model
with positive atoms. we present a simple and yet efficient variation of the K-SVD that handles such
extraction of non-negative dictionaries.

2

2 The K-SVD Algorithm

We now turn to introduce the K-SVD algorithm. We start our discussion with a short description of the
Vector Quantization (VQ) problem and the K-Means algorithm. In VQ, a codebook C that includes K

codewords is used to represent a wide family of signals Y = {yi}
N

i=1 (N � K) by a nearest neighbor
assignment. This leads to an efficient compression or description of those signals, as clusters in IRn

surrounding the chosen codewords. The VQ problem can be described as a programming task

min
C,X

{

‖Y − CX‖2
F

}

s.t. ∀i, xi = ek for some k, (3)

where ek is a vector from the standard basis, having all zero entries except one, in the k-th entry, being
1. The K-Means algorithm [14] is an iterative method, used for designing the optimal codebook for VQ.
At each iteration there are two stages - one for sparse coding that essentially evaluates X by mapping
each signal to its closest atom in C, and the second for updating the codebook, changing sequentially
each column ci in order to better represent the signals mapped to it.

The sparse representation problem can be viewed as a generalization of VQ objective (3), in which
we allow each input signal to be represented by a linear combination of codewords, which we now call
dictionary elements or atoms. As a result, the minimization described in Equation (3) converts to

min
D,X

{

‖Y − DX‖2
F

}

subject to ∀i, ‖xi‖0 ≤ T0. (4)

A similar objective could alternatively be posed as

min
D,X

∑

i

‖xi‖0 subject to ‖Y − DX‖2
F ≤ ε, (5)

for a fixed value ε. In this paper we mainly discuss the first problem (4).
In the K-SVD algorithm we solve (4) iteratively, using two stages, parallel to those in K-Means. In

the sparse coding stage, we compute the coefficients matrix X, using any pursuit method, and allowing
each coefficient vector to have no more than T0 non-zero elements. Then, we update each dictionary
element sequentially, changing its content, and the values of its coefficients, to better represent the
signals that use it. This is markedly different from the K-Means generalizations that were proposed
previously, e.g., [11, 12], since these methods freeze X while finding a better D, while we change the
columns of D sequentially, and allow changing the relevant coefficients as well. This difference results
in a Gauss-Seidel-like acceleration, since the subsequent columns to consider for updating are based on
more relevant coefficients. We also note that the computational complexity of the K-SVD is equal to the
previously reported algorithms for this task [12].

We now describe the process of updating each atom dk and its corresponding coefficients, which are
located in the k-th row of the coefficient matrix X, denoted as xk. We first find the matrix of residuals,

Ek = Y −
(

DX − dkx
k
)

(6)

and restrict this matrix only to the columns that correspond to the signals that initially use the currently
improved atom. Let ω be the set of indices of these signals,

ω = {i | 1 ≤ i ≤ N,xk(i) 6= 0} = {i | 1 ≤ i ≤ N, xi(k) 6= 0}}. (7)

3

Similarly, denote Eω
k as the restricted residual matrix, which we would now like to approximate using a

multiplication of the two updated vectors dk and xk, i.e. we seek for a rank-one approximation. Clearly,
this approximation is based on the singular value decomposition (SVD), taking the first left and right
singular vectors, together with the first singular value. A full description of the algorithm is given in
Figure 2.

Initialization : Set the random normalized dictionary matrix D(0) ∈ IRn×K . Set J = 1.
Repeat until convergence,
Sparse Coding Stage: Use any pursuit algorithm to compute xi for i = 1, 2, . . . , N

min
x

{

‖yi − Dx‖2
2

}

subject to ‖x‖0 ≤ T0.

Codebook Update Stage: For k = 1, 2, . . . , K

• Define the group of examples that use dk,
ωk = {i| 1 ≤ i ≤ N, xi(k) 6= 0}.

• Compute

Ek = Y −
(

DX − dkx
k
)

,

• Restrict Ek by choosing only the columns corresponding to ωk, and obtain E
ωk

k .

• Apply SVD decomposition E
ωk

k = U∆VT . Update: dk = u1, xk = ∆(1, 1) · v1

Set J = J + 1.

Figure 1: The K-SVD Algorithm

We call this algorithm “K-SVD” to parallel the name K-Means. While K-Means applies K mean
calculations to evaluate the codebook, the K-SVD obtains the updated dictionary by K SVD operations,
each producing one column. This algorithm is flexible, and can be combined with any pursuit method.
It is simple, and designed to be a truly direct generalization of the K-Means. As such, when forced to
work with one atom per signal, it trains a dictionary for the Gain-Shape VQ. When forced to have a
unit coefficient for this atom, it exactly reproduces the K-Means algorithm. Furthermore, its simplicity
enables several variations for this algorithm in order for it to adapt for similar problem, such as the
non-negative matrix factorization, as will be shown hereafter.

Similar to the K-Means, we can propose a variety of techniques to further improve the K-SVD algo-
rithm. Most appealing on this list are multi-scale approaches, and tree-based training where the number
of columns K is allowed to increase during the algorithm. We leave these matters for future work.

Just like in K-Means, convergence of the K-SVD to the global minimum solution cannot be guar-
anteed. However, if we assume that the pursuit method used is guaranteed to succeed (which is not
trivial, but can be claimed under some conditions) a reduction of the cost function (4) in each iteration
is promised, and therefor, convergence into a local minimum point.

4

3 Experiments

Synthetic Experiments:
In order to demonstrate the K-SVD, we conducted a number of synthetic tests, in which we ran-

domly chose a dictionary D ∈ R20×30 and multiplied it with randomly chosen sparse coefficient vectors
{xi}

1000
i=1 containing 7 non-zeros each. White noise with varying strength was added to those signals, and

the K-SVD was executed on this data for a maximum number of 200 iterations (most tests ended after
100− 150 iterations). The resulting dictionary D̃ was then compared to the original one, using a similar
method to the one reported by [12]. The rate of detected atoms was between 94% to 100%, for SNR
levels of 20 dB and beyond. Similar results were reported in [12], but required about 3-5 times more
iterations.

Experiments on Real Data:
We did several experiments that involve true image data, trying to show the practicality of the proposed

algorithm and the general sparse coding theme. We should emphasize that our tests here come only to
demonstrate the concept of using such dictionaries with sparse representations, and further work is
required to fully deploy those ideas in actual applications.

First, we used the K-SVD algorithm in order to find a best overcomplete dictionary for a training set
containing 11, 000 examples of block patches of size 8 × 8 pixels, taken from a database of face images
(in various locations). Working with real images data we preferred that all dictionary elements except
one has a zero mean. Therefore, the first dictionary element was set to include a constant value in all its
entries, and was not changed afterwards. This element takes part in all representations, and as a result, all
other dictionary elements remain with zero mean during all iterations. We applied the K-SVD, training
a dictionary of size 64 × 441. The choice K = 441 came from our attempt to compare the outcome
to the undecimated overcomplete Haar dictionary of the same size. This dictionary has separable basis
functions, having steps of various sizes and in all locations. The trained dictionary elements, as also the
overcomplte Haar dictionary, are shown in Figure 2. The coefficients were computed using the OMP,
where the maximal number of coefficients is T0 = 10. Note that better performance can be obtained by
switching to BP or FOCUSS. We concentrated on OMP because of its simplicity and fast execution.
Given the two possible dictionaries described above, we performed two experiments:

• Filling in missing pixels: We chose one random full face image, which consists of ∼ 600 blocks
(all of which were not used for training). On each block, r of the pixels, in random locations, were
discarded. The corrupted blocks were decomposed under the learned dictionary and the Haar
dictionary using OMP with error bound of 5 gray levels. All projections in the OMP algorithm
included only the non-corrupted pixels, and for this purpose, the dictionary elements were normal-
ized so that the non-corrupted indices in each dictionary element have a unit norm. The computed
representation defined the reconstructed blocks, after being multiplied in their corresponding dic-
tionary elements.

The mean reconstruction errors (for all blocks and all corruption rates) were computed, and are
displayed in the upper right side of Figure 3. One test image and its reconstruction can be seen

5

Figure 2: On the left, the K-SVD resulted dictionary. On the right, the overcomplete Haar dictionary.

on the bottom right side, where the left image is the corrupted one, having 50% of its pixels
missing, and the middle and right images present the reconstructed images by the learned and Haar
dictionaries, respectively. As can be seen, high quality recovery is obtained, and with substantial
advantage to the learnt dictionary. Note that in using bigger blocks the performance would have
been further improved.

• Compression: A compression test was conducted, comparing between the learned dictionary, the
overcomplete Haar dictionary, and the complete DCT dictionary, which is being used by the JPEG
algorithm. Each 8 × 8 block was compressed independently, using OMP with an error bound
(that depend on the desired SNR value). The compression was measured in bit per pixel (BPP),
assuming 10 bits per each coefficient. In the overcomplete dictionaries, elements with arbitrary
index were allowed, and therefore, the BPP value was set as BPP = C(10 + logK)/64 (where
C is the number of required coefficients). In DCT, we used the leading coefficient (as done by
JPEG), resulting BPP = C · 10/64.

A summary rate-distortion graph is presented on the upper left side of Figure 3, and a sample
compressed image can be seen on the lower left side. We can see that the learned dictionary
outperforms the other two alternatives in all compression rates below 2.7 BPP, where sparsity of
the representation is still true.

4 Non-Negative Sparse Coding via K-SVD

General:
For some applications, using sparse representations and overcomplete dictionaries together with forc-

ing non-negativity on both the dictionary and the coefficients, may lead to revealing the ‘ingredients’

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

ratio of corrupted pixels in image

R
M

SE

K−SVD results
Overcomplete Haar Wavelet results

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

1

2

3

4

5

6

7

8

9

BPP

R
M

SE

K−SVD results
Overcomplete Haar Wavelet results
DCT results

50 % missing pixels

Learned reconstruction
Average # coeffs: 4.8291

RMSE: 7.1397

Haar reconstruction
Average # coeffs: 5.3687

RMSE: 18.4391

Learned compressed image
RMSE: 7.6734
SNR: 27.8355
BPP: 0.50194

Haar compressed image
RMSE: 8.4051
SNR: 27.2716
BPP: 0.78422

DCT compressed image
RMSE: 8.4051
SNR: 27.2716
BPP: 1.0122

Figure 3: On the right - Filling in results. On top: RMSE versus the relative number of missing pixels,
at the bottom: sample images. On the left - Compression test results. On top: results in graph, at the
bottom: sample images.

from which all training signals are built of [15, 16]. The inability to subtract values from the linear
combination force the dictionary elements to become sparser, and converge to the building blocks of the
training signals. This subject is often referred to in literature as ‘Non-Negative Matrix Factorization’,
or NMF, computing both the dictionary and the coefficient matrices, whose product approximates the
signal matrix Y ≈ DX. Application for NMF are many and include dimensionality reduction [17] and
analysis of data such as audio [18], text [19] and even data obtained from astronomical spectrometers
[20].

Non-negative Decomposition:
Pursuit methods with non-negativity constraints are similar to those presented earlier. A non-negative

version of BP minimizes the following convex function [15],

min
x

‖y − Dx‖2
2 + λ

∑

i

xi, subject to ∀i xi ≥ 0. (8)

The non-negative constraint reduces the need for an absolute value over the entries of the coefficient
vector x. The derived iterative technique is the following [15],

xt+1 = xt. ∗ (DTy)./(DTDxt + λ), (9)

where .∗ and ./ represent entry-wise multiplication and division. Kreutz-Delgado and Murray showed a
non-negative version of the FOCUSS algorithm [21], to which they called FOCUSS+. They proposed to

7

project the results after each iteration onto the positive surface, by setting to zero all negative elements.
A thorough analysis concerning the linear programming solution of the convex problem,

min
x

‖x‖1 subject to y = Dx,x ≥ 0 (10)

was recently given by Donoho and Tanner [22]. They studied the connection between the true sparsest
solution and the approximated one derived from the solution of (10). Considering the intrinsic properties
of the dictionary D, and in particular, the convex hull of the point–set that contains the columns of D,
conclusions regarding the equivalence between the two problems were drawn.

Design of Non-Negative Dictionaries - Prior Art:
A simple method for non-negative matrix factorization, that finds iteratively both the dictionary and

the coefficient matrices was introduced by Lee and Seung in [23]. However, this method does not
encourage coefficients’ sparsity, and therefore is not designed for finding overcomplete dictionaries. In
[24] they introduced their algorithm as a method for revealing the parts constructing the training signals,
and presented their results working on a set of face images. The corresponding dictionary elements
became localized, and each element contained different parts of the face. Hoyer [15, 16] developed an
improvement for Lee and Seung’s algorithm, by enforcing sparsity constraints, therefore allowing the
work with overcomplete dictionaries. He repeated the same tests with similar results.

K-SVD Variation For Non-Negative Dictionaries - NN-K-SVD
In order to adapt the K-SVD for producing non-negative dictionaries (and coefficient matrices) two

slight changes should be done. In the sparse coding stage, an adequate pursuit method must be used,
forcing non-negative coefficients, as described above. One possibility is to use the Non-negative vari-
ation for Focuss [21]. We preferred to use the iterative method presented in [15], also described in
Equation (9), which is a variation of BP for non-negative decomposition. Furthermore, we added one
change for this method, in order to allow finding a decomposition with a pre-specified number of coeffi-
cients, L. After a couple of iterations are done, the indices of the L largest coefficients are selected, and
the data is approximated by those element alone, under least squares sense with non-negativity constraint
on the coefficients. If we denote DL as the sub-matrix that include the L selected elements, we solved

min
x

‖y − DLx‖ s.t. x ≥ 0. (11)

using Matlab’s function, which uses the algorithm described in [25].
In the dictionary update stage, we must force the dictionary matrix to stay positive after each atom

optimization. Our problem is

mindk,xk‖Eωk

r − dkx
k‖ s.t. dk, x

k ≥ 0. (12)

Actually it reduces to finding the best positive rank-one matrix that approximate the error matrix Eωk

r

(which might include both positive and negative values). This problem has the same complexity as the
original SVD step, but in order to reach a local minima an iterative technique is required. We chose to
use the iterative technique described in Figure 4, for A = Eωk

r . The initial solution for this method is

8

chosen as the SVD solution, truncated to null the negative entries. Note that the first singular vectors can
both be multiplied by (−1) without changing the overall rank-one approximation, and therefore both
options should be tested and compared. A full description is presented in figure 4

Initialization: Set

d(i) =

{

0 u1(i) < 0
u1(i) otherwise

, x(i) =

{

0 v1(i) < 0
v1(i) otherwise

,

where u1 and v1 are the first singular vectors of A.
Repeat for J times:

1. Set: d = Ax

x′x
. Project: d(i) =

{

0 d(i) < 0
d(i) otherwise

2. Set: x = d′A

d′d
. Project: x(i) =

{

0 x(i) < 0
x(i) otherwise

Figure 4: Finding a positive rank one approximation for a matrix A = dx′

We often found that the true local minima is only slightly different from the initial solution supplied by
the SVD projection to the non-negative space, and therefore, we decided to skip the iterative method in
cases where the initial solution supply a sufficient reduction of the error. Notice that setting the negative
values in the error matrix to zero, and applying SVD, also ensures us positive updated elements, but this
produces worse results.

At the end of this iterative procedure, the vector dk should be normalized by dividing it by a scalar,
as it construct a dictionary element, and xk should be multiplied in the same scalar. The full K-SVD
variation for non-negative factorization, denoted as NN-K-SVD is presented in Figure 5.

Experiment:
The following synthetic experiment was done with the NN-K-SVD. We manually generated 10 dic-

tionary elements of size 8 × 8, containing the images of the 10 decimal digits. Each digit was then
translated by 2 pixels to the right/left, and 1 pixel up/down, to construct 9 possible configurations, re-
sulting with a total of 90 dictionary elements. This dictionary is presented on the upper left side of
Figure 6. 3000 training signals were generated as random combinations of 5 such atoms, with random
positive coefficients. At first, the tests were conducted without noise, and afterward, a noise level of
15 SNR was added. Those 3000 training signals were given as input to the NN-K-SVD, which resulted
with the positive dictionaries presented in the two upper right images (for the two tests) of Figure 6. The
NN-K-SVD run was stopped after 60 and 100 iterations respectively. We also used the same data with
Hoyer’s algorithm [15], which was stopped after 1500 iterations. The resulted dictionaries are presented
in the second row of Figure 6. Information about each image is given in the Figure. Note that in this of
test the NN-K-SVD had an advantage in using the exact number of coefficients, while Hoyer’s algorithm
was executed as is with a sparsity factor of 0.8 (see [16]) on the coefficients.

9

Initialization : Set the non-negative random normalized dictionary matrix D(0) ∈ IRn×K . Set J = 1.
Repeat until convergence,
Sparse Coding Stage: Use any pursuit algorithm for non-negative decomposition to compute xi for
i = 1, 2, . . . , N

min
x

{

‖yi − Dx‖2
2

}

subject to ‖x‖0 ≤ T0 ∧ ∀i xi ≥ 0.

Codebook Update Stage: For k = 1, 2, . . . , K

• Define the group of examples that use dk,
ωk = {i| 1 ≤ i ≤ N, xi(k) 6= 0}.

• Compute

Ek = Y −
(

DX − dkx
k
)

,

• Restrict Ek by choosing only the columns corresponding to ωk, and obtain E
ωk

k .

• calculate dk and xk as described in Figure 4. Normalize dk.

Set J = J + 1.

Figure 5: NN-K-SVD

The NN-K-SVD results for applications on real image data have not been thoroughly examined yet,
and we hope to report of those soon. Initial experiments with face images resulted with elements similar
in nature to those achieved by Hoyer in [16], although further work is required to tie these to a practical
application.

5 Conclusions

In this paper we presented the K-SVD – an algorithm for designing an overcomplete dictionary that best
suits a set of given signals, giving a sparse representation per each. We also described a variation of this
algorithm in order for it to apply to non-negative matrix factorization problems. We have demonstrated
the results of the K-SVD in both synthetic and real images tests.

We believe this kind of dictionary design could successfully replace popular representation meth-
ods, used in image enhancement, compression, parts extraction and more. Further work is required to
establish such belief.

References
[1] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. Journal of Constructive Approximation,

13:57–98, 1997.

10

True Dictionary
Frobenius Norm: 9.4868

NN−K−SVD Results
No Noise

60 Iterations
Error: 0.70306

NN−K−SVD Results
15 SNR

100 Iterations
Error: 0.95649

Hoyer Results
No Noise

600 Iterations
Error: 1.4244

Hoyer Results
No Noise

1500 Iterations
Error: 0.81363

Hoyer Results
15 SNR

1500 Iterations
Error: 1.1488

Figure 6: On top, from left to right: True initial dictionary, K-SVD results after 60 iterations in the
no-noise test, and after 100 iterations when the noise level was 15 SNR. On the bottom, from left to
right: Hoyer’s algorithm results in the no-noise case after 600 and after 1500 iterations, and after 1500
iterations in the test with noise level of 15 SNR.

11

[2] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Processing.,
41(12):3397–3415, 1993.

[3] J.A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory, 50(10):2231–
2242, October 2004.

[4] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM Review, 43(1):129–159,
2001.

[5] B.D. Rao and K. Kreutz-Delgado. An affine scaling methodology for best basis selection. IEEE Transactions on signal
processing, 47(1):187–200, 1999.

[6] D.L. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition . IEEE Trans. On Information Theory,
47(7):2845–62, 1999.

[7] D.L. Donoho and M. Elad. Optimally sparse representation in general (non-orthogonal) dictionaries via l1 minimization.
PNAS, 100(5):2197–2202, 2003.

[8] R. Gribonval and M. Nielsen. Sparse decompositions in unions of bases. IEEE Transactions on Information Theory,
49(12):3320–3325, 2003.

[9] B.A. Olshausen and D.J. Field. Natural image statistics and efficient coding. Network: Computation in Neural Systems,
7(2):333–9, 1996.

[10] M.S. Lewicki and T.J. Sejnowski. Learning overcomplete representations. Neural Comp., 12:337–365, 2000.

[11] K. Engan, S.O. Aase, and J.H. Husφy. Multi-frame compression: Theory and design,. EURASIP Signal Processing,
80(10):2121–2140, 2000.

[12] K. Kreutz-Delgado, J.F. Murray, B.D. Rao, K. Engan, T. Lee, and T.J. Sejnowski. Dictionary leaning algorithms for
sparse representation. Neural Computation, 15(2):349–396, 2003.

[13] M. Elad, M. Aharon, and A.M. Bruckstein. K-svd: An algorithm for designining of overcomplete dictionaries for
sparse representation. submitted to IEEE on Signal Proc.

[14] A. Gersho and R.M. Gray. Vector quantization and signal compression. Kluwer Academic Publishers, Dordrecht,
Netherlands, 1992.

[15] P. O. Hoyer. Non-negative sparse coding. Neural Networks for Signal Processing XII (Proc. IEEE Workshop on Neural
Networks for Signal Processing), pages 557–565, 2002.

[16] P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research,
pages 1457–1469, 2004.

[17] J. P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov. Metagenes and molecular pattern discovery usingmatrix
factorization. PNAS, 101(12):4164–4169, March 2004.

[18] P. Smaragdis and J. C. Brown. Non-negative matrix factor deconvolution; extraction of multiple sound sources from
monophonic inputs. IEEE workshop on application of signal processing to Audio and Acoustics, pages 177–180,
October 2003.

[19] F. Shahnaz, M. Berry, P. Pauca, and R. Plemmons. Document clustering using nonnegative matrix factorization. Sub-
mitted to the Journal on Information Processing and Management, August 2004.

[20] P. Pauca, J. Piper, and R. Plemmons. Nonnegative matrix factorization for spectral data analysis. May 2005.

[21] J. F. Murray and K. Kreutz-Delgado. Sparse image coding using learned overcomplete dictionaries. IEEE International
Workshop on Machine Learning for Signal Processing, September 2004.

[22] Sparse nonnegative solution of underdetermined linear equations by linear programming. Proc Natl Acad Sci U S A.,
2005.

[23] D.D. Lee and H.S. Seung. Algorithms for non-negative matrix factorization. Adv. Neural Info. Proc. Syst., 13:556–562,
2001.

[24] D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factorization. Mature, pages 788–791, 1999.

[25] C.L. Lawson and R.J. Hanson. Solving Least Squares Problems. Prentice-Hall, 1974.

12

