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Abstract Biblio is an adaptive system that automati-
cally extracts meta-data from semi-structured and struc-
tured scanned documents. Instead of using hand-coded
templates or other methods manually customized for
each given document format, it uses example-based ma-
chine learning to adapt to customer-defined document
and meta-data types. We provide results from experi-
ments on the recognition of document information in two
document corpuses: a set of scanned journal articles and
a set of scanned legal documents. The first set is semi-
structured, as the different journals use a variety of flexi-
ble layouts. The second set is largely free-form text based
on poor quality scans of FAX-quality legal documents.
We demonstrate accuracy on the semi-structured doc-
ument set roughly comparable to hand-coded systems,
and much worse performance on the legal documents.
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1 Introduction

Biblio is a system for automatically extracting informa-
tion from scanned documents. A scanned document is
an electronic representation of a collection of pages. The
electronic representation typically consists of an image
component and an optical character recognized (OCR)
component. Electronic documents may be viewed as
images, or as text objects, and contain both represen-
tations. Documents may be annotated with additional
information in an extensible format (XML). For exam-
ple, documents may contain hyperlinks, tables, logos,
line art, or other automatically recognized information.
A document may be as small as a receipt or as large as
a thesis. Users annotate documents which Biblio uses
to learn how to classify documents and extract user-
specified information.

The space of documents contains a range of docu-
ment structure types from highly structured forms such
as invoices or tax returns through partially structured
business letters to unstructured text. Biblio was designed
to make it easy to add the ability to automatically extract
information from the full range of document types. The
current version of Biblio works with highly structured
and partially structured documents.

The goal is to identify the document type, and then to
recognize the relevant meta-data embedded in the doc-
ument. A chief design goal was maximal flexibility and
adaptability with zero document-type-specific coding of
any sort. This is achieved via statistical and machine
learning techniques in the form of neural networks and
support vector machines. Another design goal is fast
operation during recognition with the assumption that
training might be done during off-hours and if necessary
could consume significant computational resources.
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Most machine learning methods attempt to learn, or
fit a model to, a �n �→ �m function. Unfortunately, it
is difficult to map whole documents into a fixed-size
�n vector in a way that captures sufficient semantic
information to make meta-data recognition and extrac-
tion possible. The Biblio architecture breaks documents
down into fixed size blocks using sliding windows and
layout information to facilitate this requirement.

Processing is done in several phases with each phase
typically analyzing the document in greater detail at a
finer resolution. Various alternatives are pruned at each
step using a combination of support vector machines
(SVMs) and neural networks to minimize the overall
required computation.

Biblio operation has two major modes: training and
recognition. The training system adaptively modifies the
system based on user feedback and input. The recogni-
tion system classifies documents it has been trained to
recognize. Biblio is intended to be an automated system
with as little user interaction as possible. In addition,
Biblio does not require the user to understand any-
thing about how Biblio works; all user-interactions are
in terms of items that are of interest to the user, such as
defining or specifying document and document-specific
types.

Both modes of operation use a cascading series of
classifiers. This was done in order to increase the per-
formance. In most documents a small proportion of the
data is specific to the document type. By cascading clas-
sifiers we are able to quickly throw out large chunks of
the document without needing to look at each word,
sentence, etc. During recognition, if the page classifier
finds no evidence of meta-data at the page level, the rest
of the page need not be examined.

The user interacts with Biblio indirectly through a
document browser. While viewing a document, the user
can specify the type of the document (e.g., “bank state-
ment" or “journal article”) and may establish new doc-
ument types. Each document type has an associated list
of meta-data types (e.g., “account number”, “author”).
The browser allows the user to highlight text on the
document and indicate that the highlighted text is of a
particular meta-data type. Users can also define new
meta-data types for a particular document type. The
browser will save the user-specified document type along
with the meta-data in the document. Later, Biblio can
use that information during self-training to improve its
recognition capabilities.

During document acquisition, as part of the scan-
ning process, Biblio will annotate documents with the
information that it recognizes. Users can over-ride the
automatically generated annotations, correct mistakes,
or add information using the document browser. Biblio

may use the modified document during re-training to
improve its performance. Recognition run-time require-
ments are stringent since it is expected that the user is
waiting for the process to complete.

The training system requires extensive processing and
is expected to run without user guidance. It utilizes the
sample (user annotated) documents and the document
types along with their associated meta-data types to gen-
erate the data structures and systems utilized at run-time
by the recognition system.

The focus of this paper is on the information extrac-
tion component of Biblio. We report the results of an
experiment designed for determining how well Biblio
performs during meta-data extraction. The experiments
were run using only two types of documents and there-
fore we will defer any claims to Biblio’s document clas-
sification ability to a later paper.

The next section describes prior work in document
analysis and classification. Section 3 discusses the ma-
chine learning and information retrieval technologies
on which Biblio relies, including neural networks and
support vector machines. In Sects. 4 and 5, we give a
description of the system and the major software com-
ponents. Section 6 delineates our experimental setup for
testing Biblio while Sect. 7 reports on results of those
experiments. We conclude in Sect. 8 along with a discus-
sion of future work.

2 Prior work

A great deal of work on document analysis and classi-
fication has been done in the areas of document man-
agement systems and document recognition (e.g., page
decomposition and optical character recognition) [1,8,9,
15,16,25,30]. In this article we are concerned with tech-
niques for identifying the type of a new document from
some set of known document types. This is intended
for a document understanding system that puts no prior
conditions on the documents presented to the system.
This contrasts with much of the current work (e.g., [18]
and the proceedings of ICDAR, DAS), which often fo-
cuses on only one or more well defined document types.
For example, title pages of books [32], journals [11],
business cards [31], business letters [6,34,35], or office
documents [23]. In each of these articles, the specific
semantic or structural characteristics of the particular
document type under consideration is exploited to ana-
lyze the document contents. There have also been a num-
ber of more general systems proposed which deal with
multiple document types. Lam [12] presents a general
document understanding framework (see also Srihari
[26]), which contains different processing elements for
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different document types. However, it appears that
document types are separated by some kind of identity
strings printed on the document itself and subsequently
recognized by the system, rather than structure-based
type detection.

In Wenzel [34], documents are represented as
directed graphs with vertices given by the compounds
obtained from a segmentation algorithm. This technique
allows both document type identification and document
meta-data classification by using graph isomorphisms to
find the best match in existing document databases. Note
that this technique is similar to the constraint solving ap-
proach used by Lam [12], which could equally be used to
classify document types. Another scheme for processing
general document types is presented in Taylor [28], but
once again the problem of automatically determining
the type of a new document is not broached. In Casey
[4], an input document is classified as one of a number
of known form types by matching the lines found on
the page with the form type database. This procedure
relies on the fixed structure and scale of the documents
involved.

The work most similar to ours is Wnek [36], which
employs automatically generated document templates
using inductive learning from annotated example doc-
uments. Biblio uses similar data elements for learn-
ing and prediction, for example, attributes associated
with pages, lines, words, and characters. However, Biblio
works with additional elements such as paragraphs and
columns. Furthermore, because we use neural networks
as a learning methodology, Biblio can discover charac-
teristics common to document types and elements of
which the user may not be aware. Another differentia-
tor between the two systems is that Biblio can work on
both structured and unstructured document types while
the generalized document template system works only
on structured document types.

CiteSeer [13] analyzes PostScript and PDF documents
to extract meta-data and citation information. It uses
hand-coded parsing and recognition engines to extract
both document meta-data such as author, title and date,
and citations to other documents.

3 Machine learning and information retrieval

Biblio exploits techniques from both machine learn-
ing (neural networks and support vector machines) and
information retrieval (term weighting methods in text
retrieval) to perform document recognition.

Machine learning can be described abstractly as a
black box that predicts a vector of outputs when given
vector inputs. Generally, this involves a “training” phase,

and an operation or prediction phase. During training,
the system is exposed to a number of input vectors to-
gether with the desired output vector. The system uses
these examples to “learn” how to respond to inputs.
During operation the system is simply given the input
vector and it uses its stored knowledge to predict the
output vector.

One key element of Biblio’s design goals are that it
can operate independently without a skilled operator
tuning the machine learning system(s). Most neural net-
work and support vector machine implementations re-
quire the user to tune one or more parameters to obtain
the optimal performance. Since this was not possible in
our case, we either developed or adopted techniques to
automatically control and optimize the machine learn-
ing meta-parameters.

3.1 Support vector machines

Support vector machines are a kernel-based approach to
machine learning [3,5,19,29]. We used the publicly avail-
able system, LIBSVM, as the support vector machine
engine. LIBSVM includes four kernel functions: linear,
polynomial, radial basis function (RBF), and sigmoid.
We used the RBF kernel function which is defined as:

RBF : k(u, v) = e−γ |u−v|2 . (1)

During training, Biblio’s SVM engine creates input
vectors representing the words found in the training
documents. Biblio uses the RBF kernel function with
autonomous SVM parameter selection [27] to create a
set of support vectors for each type of known meta-data.
These vectors are then stored along with the parameter
settings to be used during the recognition phase.

3.2 Evolutionary neural networks

Neural networks are an example of a machine learn-
ing technology. Biblio uses Hplinet (an in-house neural
network application) for both training and operation.
Hplinet is an artificial neural network package with an
evolutionary mechanism for automatically configuring
network architecture based on ideas from Yao [37,38].
It employs training algorithms that do not require user
defined parameters, such as BFGS [2] and LBFGS [14],
while using techniques from evolutionary algorithms to
search for the optimal network architecture. The net-
works use a generalized feed-forward architecture. It
also uses committees of networks in order to increase
the stability of predictions.

Hplinet uses gradient-based training techniques to
train networks for a given architecture and training set.
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Depending on memory availability, the system switches
between full quasi-Newton training (BFGS) and a lim-
ited memory version (LBFGS). The major difference
between these two algorithms is that BFGS stores an
approximation of the full inverse Hessian matrix of the
network function with respect to the network weights
(nLink by nLink elements), whereas LBFGS ignores
the off-diagonal elements and stores only the diagonal
of this matrix. The LBFGS algorithm pays a penalty in
convergence time, but does offer a reasonable alterna-
tive in low memory situations.

The network architecture must also be chosen. This
means determining the number of hidden nodes and the
structure of the links connecting input, output, and hid-
den nodes. The size and complexity of the architecture
is generally a good measure of the complexity of the
output function, and it can have a dramatic effect on
both the duration of training time and the accuracy of
the resulting network [7].

It is well known that neural networks often converge
to local minima in the error surface, and that differ-
ent initial weight configurations can lead to networks of
identical architectures giving quite different solutions
on the same training data. In addition, neural networks
often have areas of the input space where they perform
very well, but they may have areas where they perform
poorly because the network has not learned to repre-
sent the function accurately in that region of the input
space. A more stable overall solution can be obtained
by training multiple networks and combining them into
committees.

Committees are groups of neural networks, often
trained on the same data but with different initial weight
settings. During runtime each network is given the data
and their outputs are combined to form a final output
using any of the number of possible methods, such as
voting. In this way, overall accuracy of the system can
be increased by factoring most of the erroneous predic-
tions.

In general, Biblio trains ten networks for each prob-
lem. It uses a separate validation data set to rank the
performance of the networks and chooses the best five
networks to create a committee. The committee result is
created by averaging the outputs of the five committee
members. For classification problems, the real-valued
network outputs are thresholded to binary values and a
majority vote is used instead of a simple numeric aver-
age.

3.3 Information retrieval

Broadly speaking, information retrieval techniques
operate on text streams, and they are commonly used

for managing and searching large text corpuses such as
the Internet or a library. They are also used for rout-
ing and filing documents such as emails into folders.
The most common approach is to build a dictionary of
known terms and to assign each term a unique index.
Documents can then be represented as a vector, with the
values typically computed as a function of the term fre-
quency within the document. A Boolean model would
simply set the value to 1 if the term appears and 0 oth-
erwise. A more powerful and commonly used function
is TFIDF [22] which is computed based on the term’s
frequency within the document multiplied by the in-
verse of the frequency with which the term appears in all
documents.

Biblio uses word dictionaries to determine if the text
is indicative of a particular type of meta-data. There
are two types of dictionaries: meta-data type dictio-
naries and special dictionaries. Meta-data dictionaries
are used to represent the words associated with a given
meta-data type. Special dictionaries are used to repre-
sent words that may be common across meta-data types,
such as names. The function of meta-data dictionaries is
to give the probability that the given text stream contains
text representing a particular type of meta-data. During
training the system is given example text streams from
the training documents. The text streams may or may
not contain meta-data. Currently the dictionaries are
updated manually; however, the dictionaries need to be
self-updating without user intervention during training.

There are a number of models and approaches for
text classification, such as Naive Bayes [21] and SVMs
[17]; however, we currently use SVM with RBF kernels.
The SVM engine also uses a dictionary that contains a
unique ID for every word it encounters. Each time it
discovers a new word, a unique ID is generated and the
word is stored in the dictionary permanently. During
training, the SVM engine builds input vectors using IDs
from the dictionary to identify words in the document.
This allows the SVM to create support vectors that iden-
tify the most probable words associated with a particular
type of meta-data. During operation, the dictionary is
again used by the SVM engine to build the input vectors
for use with the SVM model created during training.

4 System description

There are two modes of operation for Biblio: training
and recognition. Biblio uses several analysis engines
for both types of processing; however, they are used
in different ways. This section describes both systems,
the analysis stages and how they differ between the two
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modes, and the major data structures used in training
and recognition.

4.1 Recognition system

For recognition, Biblio is designed to eliminate many
possibilities early to reduce the processing requirements.

The recognition the system is structured as follows:
There are some number of user-visible document types
such as “Business Letter”, “Journal Article”, or “Bank
Statement”. Each document type has some meta-data
types such as “Author” or “Account Number”. There
are typically many example documents of a single type,
which are available to the system as it trains and re-
trains itself. Within a single document type, Biblio may
break documents down into document classes, which
are generally documents that are similar to each other
within the document type. Each document class has its
own set of neural networks and SVM models for de-
tailed processing. The system itself creates the document
classes from the pool of documents in the document
type.

Recognition is done in stages, with possibilities fil-
tered at each stage. Before the first stage, Biblio has no
knowledge about the document. It could belong to any
of the document classes and could contain any type of
meta-data. To minimize the computational costs, Biblio
tries to eliminate as many candidate document types as
quickly and cheaply as possible.

The first stage, compound analysis, is both content and
layout-based and is done for each document type. Each
compound is flagged with the meta-data types that may
be contained in that compound. Compounds perceived
to contain no meta-data are discarded and ignored in
further processing.

In the second stage, document type analysis, the sys-
tem evaluates the probability that the document is of a
particular type. For each document type, the system uses
the information from the compound layout information
to compare the document’s structure to documents of
that type. Biblio chooses the closest match or rejects all
candidate types. From this point forward, all processing
is done with respect to a single candidate document type.

There are three following stages, paragraph analy-
sis, line analysis, and word analysis, which iteratively
analyze the compound, paragraph, and line to select or
reject paragraphs, lines, and words that contain meta-
data. Each paragraph, line, and word is flagged with
the meta-data it is perceived to contain, and the flagged
pieces are passed on for further processing. At the end,
Biblio takes the remaining words and annotates the
document with the recognized document type and
meta-data.

4.2 Training system

The training system adaptively modifies the system
based on user feedback and input. Training is designed
to be run as a batch processing job, preferably during low
usage times such as overnight. This is because training
may consume resources at an unacceptable rate while
the user is actually using the system.

Each document type has several example documents
on which to learn. We use neural networks and support
vector machines but training may also include actions
such as updating word databases or other supporting
data structures in response to the user’s feedback.

5 Analysis engines

Biblio uses a variety of analysis engines and techniques
to evaluate the document at each analysis stage. Anal-
ysis engines create evidence and are called witnesses.
Judges assemble witnesses, collect and collate evidence,
make judgments, and propagate verdicts. Judges use
special witnesses, called chairmen, to produce final evi-
dence for each meta-data type in the document class,
and this evidence is used to produce the verdict. This
modular architecture makes it easy to add new analysis
engines.

Biblio uses a layered hierarchy of analysis engines to
develop and iteratively refine evidence and classification
information about each information layer: compound,
document, paragraph, line, and word. Each layer serves
as a filter; portions that are rejected are not processed
further while the remaining portions are passed on to
the remaining filters. These layers correspond to the five
analysis phases. Each analysis phase has a complete set
of analysis engines trained exclusively for that phase and
document class.

We use a cascade of neural networks and support
vector machines (SVM) for learning and recognizing
documents and document data. During training, the
SVM engines are used for creating dictionaries at each
information layer. During recognition, these dictionar-
ies are used by the neural networks while looking for
evidence of data specific to a document type. While we
investigated other techniques, we decided on the SVM
approach because of its efficient use of space and time.

5.1 Compound analysis

At the beginning of compound analysis during recogni-
tion, each document contains a list of compounds, which
are really OCR recognized regions. The compound anal-
ysis is run separately for each candidate class, and the
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Fig. 1 Compound processing

Compound
Neural

Network

Compound Position

X / page width

Y / page height

W / page width

H / page height

Text Characteristics
Font size / average font size

Bold text

Italic text

IR/SVM Text Analysis

Probability contains Title text

Probability contains Author text

Probability contains Date text

Network Inputs Network Outputs

Probability contains Title text

Probability contains Author text

Probability contains Date text

output for each class is only passed to the document
analysis for that class. Each document class has its own
compound analysis neural network.

Compound analysis annotates each compound with
the likelihood that each type of meta-data is contained
in the compound. It only examines the list of meta-data
types that are associated with the particular document
class.

Compound analysis uses a neural network to anno-
tate a single compound at a time. Since the number of
meta-data types for each document class is fixed (at least
until the user modifies the list), the neural network can
output the probability for each meta-data type directly.
Figure 1 is a graphical representation of the network for
compound analysis. It shows the inputs and the outputs
of the network.

Neural networks require a fixed number of numeric
inputs, but document content is not usually fixed size
and is usually not described numerically. Biblio trans-
lates the compound contents and layout into a fixed
number of numeric inputs. The inputs are:

1. The bounding box of the compound
2. The font size of the text
3. The probabilities generated by the support vector

machines for each meta-data
4. The proportion of all words found in the compound

that are associated with known meta-types
5. The proportion of descendant words (words con-

tained within the compound) containing lower case
letters

6. The proportion of descendant words containing
upper case letters

7. The proportion of descendant words containing
upper case digits

8. The proportion of descendant words containing
upper case symbols

9. The proportion of descendant words containing
upper case initials

During training, the system generates the support
vector machine output for each compound first. The
system then trains a committee of networks to recog-
nize compound types for each document class. It uses
the probabilities produced by using the support vectors
as well as the layout inputs. It creates sample inputs
by feeding the system example compounds with exam-
ples containing meta-data and some that do not contain
meta-data. The number of training examples is bounded
and training time is generally reasonable.

5.2 Document analysis

During recognition, document analysis is done on a per-
document class basis. The per-class results are compared
to choose the best match. Each document class has its
own document analysis neural network.

Document analysis uses a neural network to evaluate
the probability that a document belongs to that class.
Each meta-data type has a set of inputs to the neural
network which include the same inputs as the compound
analysis inputs. It uses the compound analysis results to
create a pseudo compound based on the union of the
compounds containing that meta-data type.

During training, the system trains a committee of
networks on each document class. It takes example doc-
uments from all classes to train the network to distin-
guish between document classes. Any time a new class
is added, all document analysis networks need to be re-
trained, which can be very expensive.

In the future, we would like to apply signature filter-
ing [24] that will guarantee only documents from certain
document classes will be passed. If we are successful,
modifications to radically dissimilar classes should not
require retraining of the document network.

5.3 Paragraph and line analysis

The paragraph and line analysis is done only for the
most likely document type during recognition. It uses
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the information from the compound analysis to elim-
inate portions of the document from further process-
ing. Each document class has a neural network for each
meta-data type. The neural networks take the previous
compound or paragraph analysis results and SVM prob-
abilities as input. For each meta-data type, the networks
output the likelihood that the paragraph or line contains
that meta-data.

A committee of networks recognizing the paragraphs
or lines that contain meta-data are trained for each
document class. These networks are trained only with
examples from the document class, and training time is
generally reasonable. These networks only need to be re-
trained if there are changes in the target document class.

5.4 Word analysis

The final step for the recognition process is to examine
each word in the remaining lines and identify those that
are associated with a particular meta-data type. This is
currently done using a neural network that takes token
information for three words and outputs information
about the middle word.

By giving the neural network information about three
words, we give the network some context for the current
word, which dramatically improves the network’s accu-
racy. However, these networks are large, requiring more
inputs and more hidden units than any other network in
the system.

For each document class the system trains, a com-
mittee of networks scan the individual words in selected
lines. The networks are only trained with examples from
lines containing meta-data in the target document class.

Since the system creates a training example for each
word, the number of training examples is huge and the
training time can take up to a day (24 h) on 50 docu-
ments. This is currently the single largest consumer of
CPU time in the training system. These training time
problems compel us to look for alternative strategies
for extracting the meta-data from each line.

6 Implementation

This section describes the major software classes and
their methods during training and operation. Figures 2
and 3 are block diagrams of the major objects and their
interactions.

6.1 Portfolios, hubs, and evidence

Portfolios contain document hubs, which are objects that
contain information about the files on which Biblio is

Biblio Training Process
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Documents

SVM Judge
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Fig. 2 Biblio training block diagram
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Fig. 3 Biblio operation block diagram
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currently working. During training, the portfolio can
have as many files as is physically possible to load into
memory. In our case, we used a maximum of 50. Dur-
ing processing, the portfolio contains a single document
hub, the document it is trying to recognize. The port-
folio is mainly responsible for the creation and removal
of hubs.

Each hub contains information about the file it rep-
resents. The main components include an XML tree
representation of the document and evidence objects.
The XML representation makes it easy to quickly ac-
cess any part of the document at any level. In addition,
a hash table containing all the words in the document
is included for fast word searches. The evidence objects
work as a central repository that is used by witnesses
for storing and accessing evidence. During training, the
evidence object contains lists of probabilities for each
type of known meta-data. Each witness is responsible
for determining the probability of existence for each
type of meta-data at the current level, i.e., compound,
paragraph, line, and word. A special witness, the chair-
man, later collects all the evidence for use in training the
neural networks. These networks are trained to recog-
nize meta-data. During operation, the evidence object
is again used to collect evidence by witnesses and the
chairman later collects this evidence. The difference is
that during recognition, the chairman uses the evidence
as input to a neural net trained to recognize meta-data.

6.2 Judges and witnesses

Biblio was designed to make it easy to add functionality.
This could include alternative machine learning technol-
ogies, document processing capabilities, statistical, and
mathematical algorithms. This means that whenever a
promising technology with application to machine learn-
ing or document understanding is invented, it can easily
be incorporated into Biblio.

Currently, Biblio has two specialized judges whose
job consists of organizing witnesses for specific types of
evidence. These are the neural-net judge and the sup-
port vector judge. Both are derived from a base judge
that defines the basic operations such as creating wit-
nesses, training them, initiating prediction, and acting
as a repository for evidence returned from witnesses.
Another vital task of the judge is to separate data into
three disjoint sets: training, test, and validation. For our
experiments, the test set was given. That is, we took
one file from the list of files, held it out for test, and
used the remaining files for training or validation. The
judge uses a random procedure that assigns roughly 75%
of the remaining files to a training set and 25% to the
validation set. This design makes it easy to derive any

specialized judge that can start up training for special-
ized witnesses and collect evidence from these witnesses
during the prediction phase.

6.2.1 SVM judge

The SVM judge is responsible for directing the training
of the SVM witness. During training, the SVM judge
creates the SVM witness and passes a portfolio of doc-
uments, a specification of the type of the documents,
and the level at which the witness should train, i.e.,
compound, paragraph, line, or word. The SVM witness is
specialized from a base witness class which contains
operations that are generic to all witnesses as well as
special operations related to support vector machine
processing. Some of the base operations include train-
ing and prediction. The main function of this judge is
to direct the SVM witness in creating support vector
models. These models are stored for later use in the pre-
diction process, a process in which the SVM judge is not
currently involved.

The SVM witness The SVM witness is responsible
for loading dictionary objects. There are two types of
dictionaries used by the SVM witness. The main dic-
tionary object contains all the words from every docu-
ment ever seen by Biblio during training together with
a unique ID. When a new document is included dur-
ing training, the dictionary object generates a unique
ID and updates the dictionary with the new ID/word
pairs. This allows the dictionary to grow over time. Dur-
ing training, the SVM witness creates another dictionary
consisting of words from the documents in the training
set known to be associated with specific meta-data types.
For example, for the journal article class of documents,
there are files containing words such as “journal name”
and “author” that are specific to the types of meta data
found in journal articles. The main drawback of these
files is that there is currently no way to automatically
update them, instead they must be edited by hand.

Once both dictionaries are loaded, the SVM witness
builds input vectors for the support vector machine,
one set of vectors for each type of known meta data.
First, the witness creates five or six support vector en-
tries to record the existence of words from the main
dictionary. Each entry in the vector contains the word
ID and the proportion of the current word contained at
current level, e.g., compound, paragraph, line, and word.
Once the input vectors are created, a target vector is cre-
ated for each word represented by the vector. The target
value indicates whether the word is associated with the
particular type of meta-data currently in focus.

Before sending the input/target pairs to the support
vector machine to create the final model, a parameter
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search [27] is initiated to find the best combination of
C and gamma values. Support vector machine training
is executed using these values and once training is com-
plete, prediction and cross-validation is used to deter-
mine how well the system did using those parameter
values. Based on these results, new parameter values
are generated which are closer to the best values from
the previous run and the cycle is repeated. We iterate
through the process five times, after which the values
returned for gamma and C are used for actual training
and model creation. Once the model is created, it is writ-
ten to file where it can be accessed by other instances of
the SVM witness during prediction.

6.2.2 Neural net judge

In addition to the SVM judge there is also a neural
net(NN) judge which is responsible for training and pre-
diction. Similar to the SVM judge, the neural net judge
is mainly a supervisor for witnesses. The NN judge cre-
ates instances of four witnesses: a SVM, a character,
a map, and a neural net witness. The character wit-
ness is responsible for collecting evidence on upper and
lower case letters and the presence of symbols and digits.
The map witness collects evidence on bounding boxes,
average font size, the relative position of the current
compound (paragraph, line, word) within the parent
compound, and the relative number of tokens found in
the compound. The neural net witness is responsible for
collecting evidence from the other three witnesses and
creating the input vectors for training the committee of
networks.

The character witness The hub of each file contains
a hash table of all the words in the document. Attached
to each word is a bit array containing a single bit for
each type of attribute the character witness knows about,
i.e., upper case, lower case, symbols, digits, and initials.
This information can then be used to indicate meta-data
with specific formatting characteristics. For example, ti-
tles or proper names usually include upper case charac-
ters; names often include initials; digits may support the
presence of a date or page numbers; URL and mathe-
matical formulae usually include symbols. This witness
first initializes the word bit arrays and fills them in for
every word in the document. Later it collects evidence by
going through each word in the document and record-
ing the proportion of words containing each attribute
in the document. It then stores this information in the
evidence object of the hub. This process is the same for
both training and recognition.

The map witness The map witnesses can supply up
to seven types of evidence: the bounding box of the type
of compound, i.e., compound, paragraph, line, word;

the relative position of the compound within its parent,
the average number of tokens in the compound, and the
average font size in the compound. Boolean flags passed
to the witness indicate which evidence needs to be col-
lected. In some cases various types of evidence may not
be pertinent to the type of document on which the sys-
tem is being trained. The XML representation of the
document makes calculating the bounding box efficient
as the height and width of every component is stored as
part of the compound object when it is created. The rela-
tive position is also quickly determined because the com-
pound has access to its parent and the parent is aware
of all its children. Bounding box and relative position
evidence may be important, especially for highly struc-
tured documents such as telephone bills which would
have the same information displayed in the same rela-
tive location on every bill. The average font size is also
easy to determine as the font size of each text component
in the compound is stored in each compound object. We
can calculate an average font size for the compound by
dividing it by some maximum number, in our case we
used 50. This tells us whether the average font size is
larger or smaller than usual. It can be very helpful to
know what the average font size is when trying to iden-
tify things such as headings and titles. Finally, the aver-
age number of tokens is calculated by determining the
number of words subordinate to the current compound
and dividing that number by some maximum. Similar to
the average font size measure, this gives us an idea of
whether the number of tokens is small or large.

The SVM witness The SVM witness behaves differ-
ently depending on the judge that creates it. If the judge
is a SVM judge, the witness creates the SVM model as
described above. If the judge is a neural net judge, then
the SVM witness uses the model it previously created
to collect evidence for both the training and recogni-
tion processes. As with model creation, the SVM wit-
ness must create input for the support vector machine
from the document. It does this in exactly the same way
as when building the model. However, during evidence
collection, the SVM witnesses loads the model, calls the
support vector machine prediction module, and passes
it the input vector. The SVM witness uses this model,
along with the previously determined parameters to pre-
dict whether each of the words represented by the input
vectors contain meta-data. Prediction returns probabili-
ties for each word in the compound. These probabilities
are then put into the evidence object of the correspond-
ing hub.

The neural net witness The neural net witness is the
chairman. This means it is responsible for collecting all
the evidence produced by the other witnesses and using
it to either train a committee of neural networks or to
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use as input for recognition. During training the neu-
ral net builds a single training object containing all the
evidence from each hub evidence object in the training
set. It also builds a similar object using the validation set
of hubs. Target arrays are built that associate the true
value to each piece of evidence collected. It then creates
a committee of evolutionary neural networks, passing
in the evidence and target arrays. The number of net-
works created is configurable. In our experiments we
used committees of ten networks. Once the network has
found the optimal architecture and configuration, the
witness stores the network for use during prediction.

During prediction, the neural network witness col-
lects all the evidence from the hub evidence object and
creates a single input vector. The witness then loads the
network architecture from the previously stored file and
passes it to the input vector. Output from the committee
consists of probabilities for each type of meta-data. This
is stored back into the hub’s evidence object and passed
back to the judge. The judge will then be able to use the
evidence to decide on the type of document based on
the probabilities of meta-data found.

7 Experimental setup

We used a corpus consisting of a few hundred docu-
ments. These documents were either articles from vari-
ous computer science journals or legal documents
recording transfer of properties, i.e., deeds. All were
scanned into the system and stored in an HP proprietary
file format consisting of both images and text recognized
by the scanner. Meta data describing the document and
identifying key words (i.e., words that are unique to the
type of the document trained on) is embedded within
the XML.

We trained Biblio on 50 documents at a time, as
the memory requirements for larger document sets was
prohibitive. During training, the documents are decom-
posed into regions consisting of major regions, para-
graphs, lines, and words. The system considers each
type of component separately and determines the sup-
port vectors based on known meta-data types for each
type of component. Once the support vectors are iden-
tified the system uses these vectors to generate proba-
bilities that each component contains a specific type of
meta-data. The resultant probabilities are fed into the
neural network as evidence for training the neural net-
work. The network takes the evidence and builds a par-
simonious architecture based on the best results. This
means the final network consists of the architecture
with the fewest nodes and is close to the absolute best
architecture, which may actually have many more nodes.
Biblio then saves this network for use during operation.

During operation, or prediction, the neural network
acts as the driver for the entire process. In general, evi-
dence is gathered on a previously unseen document and
the trained network uses this evidence to determine the
type of the document. We tested the meta-data recog-
nition aspect of Biblio in these experiments by giving
Biblio the document type with which to begin. The evi-
dence gathering process starts the SVM process. This
process takes the stored support vectors for each type
of known meta-data and determines probabilities that
are subsequently fed into the trained network. Once
the network has identified the document type and the
meta-data contained within it, the system annotates the
original file by adding the document type and the recog-
nized meta-data.

To test the system, we use leave-one-out cross fold
validation for our experiments [33]. For each of the
50 documents we hold one document out, train on the
remaining documents, and then predict whether the doc-
ument held for testing contained meta-data appropriate
to the type of document we trained on. During pre-
diction we collect confusion matrix data to report the
results.

7.1 Documents and meta-types

We ran our experiments on two types of documents:
journal articles and grant deeds. The journal articles are
an example of structured documents while the grant
deed documents are an example of unstructured doc-
uments. Within the journal article type there are two
classes of documents: articles from IEEE Transactions
journals and articles from the HP Journal. For grant
deeds there are six registered types of meta-data:
Date of Recording - Meta0, County - Meta1, Document
Number - Meta2, Return Address - Meta3, Grantor -
Meta4, and Grantee - Meta5.

For journal articles there are five registered types of
meta-data: Title - Meta0, Author - Meta1, Journal Name
- Meta2, Pages - Meta3, and Date - Meta4.

8 Results

The results consist of statistics generated from the confu-
sion matrices collected during our experiments on three
sets of data.

8.1 Confusion matrix

Table 1 contains the confusion matrix information
for all documents. The Total column is the total of all
the words in the associated document class. For com-
parison, the total number of actual words containing
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Table 1 Confusion matrix

Type Total TrueNeg FalseNeg FalsePos TruePos PosCount NegCount

GRDE-Meta0 48,629 48,496 121 0 12 133 48,496
GRDE-Meta1 48,629 48,368 143 0 118 261 48,368
GRDE-Meta2 48,629 48,477 98 0 54 152 48,477
GRDE-Meta3 48,629 47,051 869 11 698 1,567 47,062
GRDE-Meta4 48,629 47,076 1,192 14 347 1,539 47,090
GRDE-Meta5 48,629 47,106 1,152 35 336 1,488 47,141
JA00-Meta0 19,208 18,991 28 0 189 217 18,991
JA00-Meta1 19,208 19,048 32 16 112 144 19,064
JA00-Meta2 19,208 19,044 11 0 153 164 19,044
JA00-Meta3 19,208 19,184 15 0 9 24 19,184
JA00-Meta4 19,208 19,161 3 4 40 43 19,165
JA01-Meta0 19,703 19,463 6 0 234 240 19,463
JA01-Meta1 19,703 19,521 27 17 138 165 19,538
JA01-Meta2 19,703 19,638 31 0 34 65 19,638
JA01-Meta3 19,703 19,670 15 0 18 33 19,670
JA01-Meta4 19,703 19,632 33 0 38 71 19,632

Table 2 Word recall

Type WordPosCount WordRecall

GRDE-Meta0 133 [0.04 − 0.14]
GRDE-Meta1 261 [0.39 − 0.51]
GRDE-Meta2 152 [0.28 − 0.43]
GRDE-Meta3 1,567 [0.42 − 0.47]
GRDE-Meta4 1,539 [0.20 − 0.25]
GRDE-Meta5 1,488 [0.20 − 0.25]
JA00-Meta0 217 [0.83 − 0.92]
JA00-Meta1 144 [0.71 − 0.85]
JA00-Meta2 164 [0.89 − 0.97]
JA00-Meta3 24 [0.18 − 0.57]
JA00-Meta4 43 [0.85 − 1.00]
JA01-Meta0 240 [0.96 − 0.99]
JA01-Meta1 165 [0.78 − 0.89]
JA01-Meta2 65 [0.40 − 0.64]
JA01-Meta3 33 [0.38 − 0.72]
JA01-Meta4 71 [0.42 − 0.65]

meta-data (column labeled PosCount) and the total
number of actual words not associated with meta-data
(column labeled NegCount) are included. Obviously, the
majority of the words are not associated with meta-data.
During testing, the neural networks used a threshold of
0.50 when deciding whether or not a particular word was
meta-data. There are two types of errors: False Nega-
tive (prediction of false when the meta-data is actually
there) and False Positive (prediction of true when no
meta-data exists). Table 1 shows that Biblio does pre-
dict incorrectly. However, as Tables 3 and 4 below show,
Biblio does not incorrectly label data very often.

8.2 Recall

Table 2 reports the Word recall of Biblio. Recall is
defined as:

Recall = TruePositiveCount
TruePositiveCount + FalseNegativeCount

.

(2)

In our case, recall is a measure of how well Biblio can
detect real meta-data in the document when it exists.
Results were divided into positive and negative predic-
tions with positive predictions shown in the WordPos-
Count and Count column. These values reflect the actual
number of meta-data words, that is, number of true posi-
tive plus the number of false negative predictions during
testing. WordPosCount is the sum of all true positive and
false negative predictions for all files.

One thing should be noted here about the sample
populations. We had approximately three times more
samples of the GRDE group than each of the Jour-
nal Article group samples. The GRDE group consists
of three separate runs of 50 documents each, while the
Journal Article groups consisted of one run each with
approximately 50 documents. We combined the GRDE
runs because there is essentially no difference between
the three sets of data. However, there are differences
between the Journal Article groups, for example, type
of journal and layout.

The WordRecall column is the 95% confidence inter-
vals for the recall measure.

8.2.1 Analysis

From Table 2 we can see a large difference between the
GRDE and Journal Article document classes. In gen-
eral, Biblio performed poorly in recognition of most
meta-data types for GRDE. This is somewhat expected
since GRDE falls into the unstructured document
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Table 3 Positive word prediction rate

Type FalsePos TruePos WordRate

GRDE-Meta0 0 12 [0.000 − 0.000]
GRDE-Meta1 0 118 [0.000 − 0.000]
GRDE-Meta2 0 54 [0.000 − 0.000]
GRDE-Meta3 11 698 [0.006 − 0.024]
GRDE-Meta4 14 347 [0.019 − 0.059]
GRDE-Meta5 35 336 [0.065 − 0.124]
JA00-Meta0 0 189 [0.000 − 0.000]
JA00-Meta1 16 112 [0.068 − 0.182]
JA00-Meta2 0 153 [0.000 − 0.000]
JA00-Meta3 0 9 [0.000 − 0.000]
JA00-Meta4 4 44 [0.006 − 0.176]
JA01-Meta0 0 234 [0.000 − 0.000]
JA01-Meta1 17 138 [0.060 − 0.159]
JA01-Meta2 0 34 [0.000 − 0.000]
JA01-Meta3 0 18 [0.000 − 0.000]
JA01-Meta4 0 38 [0.000 − 0.000]

Table 4 Negative word prediction rate

Type FalseNeg TrueNeg WordRate

GRDE-Meta0 121 48,496 [0.002 − 0.003]
GRDE-Meta1 143 48,368 [0.002 − 0.003]
GRDE-Meta2 98 48,477 [0.001 − 0.002]
GRDE-Meta3 869 47,051 [0.017 − 0.019]
GRDE-Meta4 1,195 47,076 [0.023 − 0.026]
GRDE-Meta5 1,152 47,106 [0.023 − 0.025]
JA00-Meta0 28 18,991 [0.001 − 0.002]
JA00-Meta1 32 19,048 [0.001 − 0.002]
JA00-Meta2 11 19,044 [0.000 − 0.001]
JA00-Meta3 15 19,184 [0.000 − 0.001]
JA00-Meta4 3 19,161 [0.000 − 0.000]
JA01-Meta0 6 19,463 [0.000 − 0.001]
JA01-Meta1 27 19,521 [0.000 − 0.002]
JA01-Meta2 31 19,638 [0.001 − 0.002]
JA01-Meta3 15 19,670 [0.000 − 0.001]
JA01-Meta4 33 19,632 [0.001 − 0.002]

category, which we assumed would be harder to recog-
nize. In addition, the GRDE files have numerous OCR
errors. If meta-data words contain OCR errors, it is diffi-
cult for Biblio to recognize them as meta-data. While we
did not track the OCR error rate as part of the experi-
ment, we assume that lower OCR error rates would lead
to better performance on the part of Biblio for those
documents containing known meta-data. It is also pos-
sible that a different threshold value would allow better
separation.

On the other hand, Biblio did quite well in recogniz-
ing meta-data in the journal articles. This is in spite of the
fact that Biblio had less data on which to learn than the
GRDE category. The main difference in results between
the two types of journal Articles are with meta-data type

3 (page numbers). We theorize that this is because the
first type, the HP Journal Articles, are much less struc-
tured than the IEEE articles. The format of HP Journals
can vary widely. Meta data types 2, 3, and 4 for the HP
Journal articles (Journal Name, Pages, Date) are not
consistently placed on every page or between different
articles. Another factor affecting the results could be
related to the number of each meta-data type found in
the test file. The table shows significantly better results
for meta-data types with many examples. For example,
both Meta0 and Meta1 (title and author) appear hun-
dreds of times. The associated confidence intervals for
both types of journal articles have upper ranges close to
1.0. The same is true for Meta2 (Journal name) for the
IEEE journal articles. This would make sense if we can
assume that the number of positive examples of each
type of meta-data is representative of what we would
find in a “typical” IEEE or HP Journal Article. The fact
that Biblio did very well for Meta4 on the IEEE journal
articles in spite of the relatively small number of sam-
ples could be related to the fact that IEEE articles have
consistent formats.

8.3 Specificity

The vast majority of the predictions were negative, i.e.,
words that were not meta-data. This is the value con-
taining the true negative plus the false positive predic-
tions. These are the number of words and words in files
containing meta-data, respectively, that did not actually
contain any of the associated type of meta-data labeled
on the row. Specificity is defined as:

Specificity= TrueNegativeCount
TrueNegativeCount+FalsePositiveCount

.

(3)

or how well Biblio classifies non meta-data. We do not
present a table for specificity because all specificities
were either 1.00 or 0.99, with 95% confidence intervals
between [0.99 − 1.00]. In general, this means that our
prediction system is very good at identifying words that
do not contain meta-data.

8.4 False positive ratios

Another interesting statistic shows the proportion of
meta-data that Biblio predicted as being present that is
not really there. Table 3 shows these results. The Wor-
dRate column reports the 95% confidence interval for
the statistic. The ratio is computed using:
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Negative word rate

= FalsePositiveCount
TruePositiveCount + FalsePositiveCount

. (4)

This is an important result for potential users of Biblio.
Because the majority of the words in any document will
most likely not be meta-data, if Biblio reports too many
false positives, users will spend time correcting errors.
While it is not clear whether this problem is as severe
as missing meta-data that does exist, it is an annoyance
likely to keep users from using the system. As the table
shows, misclassifications occur with Meta1 (Author) data
for both journal article classes. On average, when Biblio
predicted Meta1 type for the JA00 class, 12% of the time
it was incorrect. For JA01 the rate for Meta1 positive
misclassification is 0.11. It is encouraging, however, that
for 10 of the 16 meta-types, Biblio made no false positive
predictions. The rest of the positive misclassifications
occurred at a rate of 9% or less.

8.5 False negative ratios

The proportion of words that Biblio predicted as non
meta-data words when they were actually meta-data
words is reported in Table 4. The WordRate column
reports the 95% confidence interval for the statistic and
the ratio is computed using:

Negative word rate

= FalseNegativeCount
TrueNegativeCount + FalseNegativeCount

. (5)

The table shows that Biblio does better in terms of
predicting false negatives. The highest rate occurs for
GRDE-Meta3 and GRDE-Meta4 and the average for
these meta-types is around 2%. On the other hand, since
the majority of the words in a given document will be
negative, the number of false negatives translates into
the number of corrections the user would have to make.
Because the number of meta types in a given document is
small compared to the number of non meta- data words,
failing to identify even a small amount of the existing
meta data could cause Biblio to incorrectly classify the
document as a whole.

9 Conclusions and future work

Biblio is a meta-data extraction and document type rec-
ognition engine that utilizes a combination of machine
learning technologies to adapt to user-defined document
types and meta-data fields. While our experiments dem-
onstrated the system’s ability to recognize meta-data for

certain document types, we need to test Biblio’s docu-
ment recognition capabilities using a much larger collec-
tion of document types. The data set we used consisted
of only two types of documents. Additionally, there are
a number of areas that we should like to improve and
test.

We did not analyze run time for recognition and
prediction; however, we are aware of the unacceptable
training time needed by the word analysis engine. Train-
ing time for other components such as compounds, para-
graphs, and lines were more reasonable, on the order of
seconds. We need to investigate and implement a more
efficient method for processing words.

Currently, all documents within a single user-defined
class are treated as a unitary class. However, it is likely
that a single class, such as “Journal Article” or “Invoice”,
would have sub-classes such as “phone bill” and “gas
bill” which are far more regular. However, we would
like to automatically discover clusters of similar docu-
ments within a user-defined class so as to take advantage
of similarities without burdening the user.

Another area that we should like to improve is the
ability of the system to recognize when a document is
not a member of any known document class. While the
system does this today, it is not sufficiently selective so
documents can be annotated with spurious meta-data.

We are examining the possibility of using techniques
similar to the methods used by Koller and Sahami [10]
to identify key words in document clusters. This would
involve analyzing the statistical patterns of text contain-
ing meta-data versus text that does not contain meta-
data to give reasonable probabilities for unseen strings.
The Naïve Bayes classification algorithm may be suit-
able for classifying text as containing/not containing
meta-data [20]. The word dictionaries could also be
automatically enhanced using the SONIA clustering
method.

Additionally, we would like to improve the ability of
the system to make use of tagged fields, such as fields
commonly pr-/post-fixed with identifying strings such as
“To:” or “Subject:”. This requires analyzing neighboring
regions to see if they indicate the presence or absence of
meta-data in a given region, and this evidence can then
be passed to the region analysis.

Finally, Biblio is currently a single-page analysis sys-
tem, meaning that each page is analyzed independently.
Sometimes documents contain important meta-data on
more than just the first page. For example, some jour-
nals only put the journal name, volume, and number
on subsequent pages of an article. We should like to
extend the system so that it can analyze a whole docu-
ment and extract any relevant meta-data regardless of
page.
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