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ABSTRACT

In this work we investigate the image denoising problem. One common approach found in the literature involves
manipulating the coefficients in the transform domain, e.g. shrinkage, followed by the inverse transform. Several
advanced methods that model the inter-coefficient dependencies were developed recently, and were shown to
yield significant improvement. However, these methods operate on the transform domain error rather than on
the image domain one. These errors are in general entirely different for redundant transforms. In this work we
propose a novel denoising method, based on the Basis-Pursuit Denoising (BPDN). Our method combines the
image domain error with the transform domain dependency structure, resulting in a general objective function,
applicable for any wavelet-like transform. We focus here on the Contourlet Transform (CT) and on a redundant
version of it, both relatively new transforms designed to sparsely represent images. The performance of our
new method is compared favorably with the state-of-the-art method of Bayesian Least Squares Gaussian Scale
Mixture (BLS-GSM), which we adapted to the CT as well, with further improvements still to come.

Keywords: denoising, sparsity, contourlet transform, redundancy, Gaussian scale mixtures, basis-pursuit, Lapla-
cian distribution, inter-coefficient dependency

1. INTRODUCTION

In this work we focus on the problem of denoising images contaminated by additive white Gaussian noise.
Symbolically, let x be the unknown clean image, n the additive noise and y the observed noisy image, i.e. y = x+n.
Then denoising is defined as retrieving a reconstructed image x̂, such that x̂ ≃ x under some optimality criterion.
Many recently developed denoising methods use the same basic algorithm: 1) Transform: calculate the coefficients
of the given image in a chosen basis or frame 2) Operate: modify these coefficients in some way 3) Inverse
transform: reconstruct the image. The most common way of such manipulation is shrinkage, namely performing
a look-up-table (LUT) operation on each coefficient separately.1, 2 Albeit simple, such approach ignores the
inevitable inter-coefficient dependency. As we turn to use the more effective redundant transforms, this overlooked
dependency further increases.

More advanced methods3–5 try to model these dependencies, thus improving the performance while also
complicating the algorithm. A drawback shared by these algorithms is their focus on removal of the noise in
the transform domain, rather than in the image domain. Formulating optimality criteria with respect to the
representation coefficients does not guarantee a successful treatment. Counter to the above algorithms, there
exist several methods6, 7 that relate the denoising objective directly to the image-domain error, and obtain the
denoised image by minimization of a cost function. Nevertheless, their performance is often surpassed by the
above transform-domain techniques.

In this paper we propose a new denoising method, built as a merge of these two distinct approaches. It
minimizes an objective function containing the measurement error and a prior penalty. This penalty emerges
from an approximate joint probability model for adjacent transform-domain coefficients, and thus can describe
their inter-dependencies. This method can be easily extended to colored Gaussian noise, as well as to the
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reconstruction of noisy and blurred images problem. Although we concentrate here on the contourlet transform
and its redundant version (see below), this method is valid for any wavelet-like transform. In addition, we adapt
the Gaussian-Scale-Mixture (GSM) model,4 originally developed for steerable wavelets, to contourlets. We
compare both denoising methods, showing that (a) taking into account coefficients dependencies is helpful; (b)
redundancy improves the denoising results; and (c) the proposed approach leads to state-of-the-art performance,
while being of manageable complexity and having clearer objective.

2. THE CONTOURLET TRANSFORM

It is well known that many signal processing tasks, e.g. compression, denoising, feature extraction and enhance-
ment, benefit tremendously from having a parsimonious representation of the signal at hand. Do and Vetterli
have conceived the Contourlet Transform8 (CT), which is one of several transforms developed in recent years,
aimed at improving the representation sparsity of images over the Wavelet Transform9 (WT). The main feature of
these transforms is the potential to efficiently handle 2-D singularities, i.e. edges, unlike wavelets which can deal
with point singularities exclusively. This difference is caused by two main properties that the CT possess: 1) the
directionality property, i.e. having basis functions at many directions, as opposed to only 3 directions of wavelets
2) the anisotropy property, meaning that the basis functions appear at various aspect ratios (depending on the
scale), whereas wavelets are separable functions and thus their aspect ratio equals to 1. The main advantage of
the CT over other geometrically-driven representations, e.g. curvelets10 and bandelets,11 is its relatively simple
and efficient wavelet-like implementation using iterative filter banks. Due to its structural resemblance with the
wavelet transform, many image processing tasks applied on wavelets can be seamlessly adapted to contourlets.
Because of these features we chose to employ this transform throughout our work.

2.1. Basic Transform

The CT is constructed by two filter-bank stages, a Laplacian Pyramid12 (LP) followed by a Directional Filter
Bank13 (DFB). The LP decomposes the image into octave radial-like frequency bands, while the DFB decomposes
each LP detail band into many directions (a power of 2). Both of the stages are critically sampled, hence the
transform is up to 33% redundant (due to the redundancy of the LP). In addition, the separability of the stages
allows different number of directions for each radial band. Figure 1(a) shows a sample frequency partition of
the CT, where three radial bands are divided into 8, 4 and 4 directional subbands, from fine to coarse. This
partition is not accidental – it has been proven8 that minimal asymptotic approximation error is achieved when
the number of directions is multiplied at every other finer scale. This concept, which appears also in the curvelet
transform, as proposed by Candés and Donoho,10 emerges from the optimal scaling law of w ∼ l2, where w and
l symbolize the effective width and length of a contourlet. Figure 1(b) demonstrates this rule: when the width
is divided by 4 (i.e. two scales finer), the length is divided by

√
4 = 2.

Figure 1. The CT: (a) Sample frequency partition. (b) Effective spatial support of subbands at two scales apart.



2.2. Extensions

The CT is a shift-variant transform, as it involves sampling at both the LP and the DFB stages. However,
shift-variance is not a desirable property for various signal-processing tasks, and specifically denoising. To
overcome this problem, a translation-invariant version of the CT was proposed by Cunha et al., called the
Nonsubsampled-Contourlet-Transform14 (NSCT). This transform eliminates all sub-sampling operations, result-
ing in high redundancy, but accompanied by huge memory and computational requirements.

In this work the new denoising method was not employed on the NSCT, because of the enormous memory
and running time requirements. Instead, a less-redundant version was used, which we call the Semi-Rotation-
Invariant-Contourlet-Transform, or simply SRICT. As suggested by the name, only the DFB sub-sampling
operations are eliminated, while the LP is still critically sampled. This means that at each finer scale, the
amount of coefficients is multiplied by 4 if the number of directions stays the same, or by 8 if the number of
directions is doubled. Therefore the total redundancy is

(

∑

j

2lj /4j−1
)

− 1, (1)

where 2lj denotes the number of directions at the j-th scale (j = 1 is the finest scale), and lj = 0 for the remaining
lowpass coefficients.

3. GAUSSIAN SCALE MIXTURE MODEL FOR CONTOURLETS

The Bayesian Least Squares Gaussian Scale Mixture (BLS-GSM) is a recently developed method for image
denoising,4 which achieves state-of-the-art results. It is based on statistical modelling of the coefficients of a
multiscale oriented frame, specifically the Steerable Wavelet Transform,15 but can be applied to other transforms
as well. We will first describe briefly the method, and then elaborate on its application to the CT and the SRICT.

3.1. Description

It has been known for some time that images behave in a non-Gaussian fashion,16 both at the image and the
transform domain. This can be easily observed in the log marginal histogram of a bandpass filter response for
some sample image, as shown in Fig. 2(a). The histogram is characterized by a kurtotic behavior, i.e. a sharp
peak at zero, and tails that decay much slower than a Gaussian of the same variance.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
10

0

10
1

10
2

10
3

10
4

(a) (b)

Figure 2. Histograms of one subband from the CT of Peppers: (a) log marginal; (b) conditional (each column has been
separately rescaled to fit the display range).

The bandpass filter responses exhibit also non-Gaussian joint statistical behavior, not only marginal one.
Specifically, coefficients at close spatial position, scale and orientation, show strong dependencies that cannot
be vanished by decorrelation.17 Firstly, large coefficients in a bandpass response of a natural image are mostly
clustered together, which is particulary evident near edges. Secondly, the distribution of a coefficient conditioned
by its neighbor value resembles a bow-tie shape (see Fig. 2(b)).



One way of describing both the marginal and the joint statistics of coefficients at the transform domain is by
the Gaussian Scale Mixture (GSM) model.4 In this model a local neighborhood is represented by a product of a
Gaussian vector and an independent scalar multiplier. Formally, denote z as a local neighborhood of a reference
coefficient,

√
α as a positive scalar multiplier and u as a zero-mean Gaussian vector. Then the basic GSM model

assumption is
z =

√
αu. (2)

α is known as the hidden multiplier, since it cannot be observed directly. In other words, the vector z is an
infinite mixture of Gaussian vectors, and its probability density function (pdf) is determined by the covariance
matrix Cu of u and the pdf p(α). Many distributions can be represented as a GSM model (depending on p(α)),
e.g. the generalized Gaussian family and the symmetrized Gamma family.18

Since the GSM model specifies only a local description, the problem of obtaining a global model should be
dealt with. One possibility is to divide the transform domain into non-overlapping neighborhoods, such that
an independent GSM model is attached to each neighborhood.18 Unfortunately, this simple idea results in
noticeable artifacts at the neighborhood boundaries when performing denoising. Another option is to describe
every local neighborhood by a GSM model, which means that each coefficient belong to many neighborhoods.
This yields implicitly a global Markov model, which has a very complicated structure, thus making a task
like denoising extremely difficult. The remaining possibility, which is the chosen one, is simply performing
denoising to each coefficient according to its vicinity, ignoring the inevitable statistical dependency between
overlapping neighborhoods. Note that the lowpass coefficients of the noisy image are not modified, since the
noise is attenuated strongly there.

Following the above discussion, an observed noisy neighborhood v can be expressed as

v =
√

αu + w, (3)

where w is the additive noise Gaussian vector, and all three random variables on the right side of Eq. (3) are
independent. Assuming known noise characteristics at the image domain, the covariance matrix Cw of w can
be calculated in advance. The covariance matrix Cv of v is presumed constant for all of the coefficients in a
certain bandpass, and is thus estimated by the sample covariance. If we calculate now E{vvt}, we get Cv =
E{α}Cu + Cw. Without loss of generality, one can assume E{α} = 1, and thus we finally get Cu = Cv − Cw.

Although the multiplier’s distribution p(α) can be estimated from the observed data by a Maximum Likelihood
approach, the best PSNR results were obtained by using Jeffrey’s prior,19 which in this case reduces to

p(α) ∝ 1

α
. (4)

Since this is not a proper pdf, practically we set p(α) = 0 outside [αmin, αmax], where αmin and αmax are a
small and a large positive constant, respectively.

Now that all of the variables’ distributions are known (or estimated), we can write the Bayes Least Squares
(BLS) estimate of the reference coefficient zc from the observed neighborhood v. After some mathematical
manipulations, it is given by

E{zc|v} =

∫ ∞

0

p(α|v)E{zc|v, α}dα. (5)

The factor E{zc|v, α} is simply a local Wiener estimate, since z and v are Gaussian for a given α. Hence, this
formula can be interpreted as an infinite weighted average of Wiener estimates. In practice, the integration is
replaced by a finite summation over many multiplier’s values. After all of the coefficients are modified via Eq. (5),
the image is reconstructed by the inverse transform. As mentioned earlier (Sect. 1), all of these manipulations
take place in the transform domain, and thus while there is clearly a relation to the actual image domain noise,
this relation is not entirely accurate and exhaustive.



3.2. Application to the CT and the SRICT

Once the neighborhood is defined for a certain representation, the BLS-GSM method can be employed. To specify
a meaningful neighborhood, we need to look first at the structure of the CT. Figure 3(a) shows the contourlet
coefficients of the image Zoneplate, for a certain frequency partition (4 and 8 directions). It is readily apparent
that the coefficients are organized in a quadtree, where each coefficient has four children at the immediate finer
scale, at the same spatial location, and either at the same direction or at two finer directions (when the number
of directions is doubled). Figure 3(b) shows the nominees to belong to a neighborhood of a particular coefficient3:
1) the parent, i.e. the coefficient in the same spatial location at the immediate coarser scale. 2) the neighbors,
i.e. the eight adjacent coefficients at the same subband. 3) the cousins, i.e. the coefficients at the same scale and
spatial location, but different direction. In our experiments, the best results were obtained with neighborhoods
that include only a parent and the 8 nearest neighbors, and this choice will be referred to hereafter.

(a) (b)

Figure 3. The CT: (a) coefficients of Zoneplate; (b) coefficient relationships

The neighborhood definition of the SRICT is a little bit trickier than this of the CT. Since the SRICT is much
more redundant, the effective supports of basis functions of adjacent coefficients at the same subband coincide.
Thus, choosing the same neighborhood as before results in very correlative neighbors. Another option is to take
neighbors that their respective basis functions do not coincide (effectively), and thus the correlation between
neighbors is very small. In our experiments the latter option yielded slightly better results, and therefore was
chosen (with 8 spatial neighbors). As a side note, notice that a parent has eight children when the number of
directions is doubled, rather than four children in the CT.

4. ALTERNATIVE DENOISING METHOD

This section describes a novel method for image denoising, which is basically minimization of a cost function,
incorporating a new global image model. As opposed to recently developed methods, this approach refers to the
image domain error, rather than the transform domain error. Since minimization of the MSE at the transform
domain does not translate directly to MMSE at the image domain for non-orthonormal transforms, a fundamental
flaw lies within many state-of-the-art methods, like the BLS-GSM.

4.1. Formulation

Let us turn our attention first to the Basis-Pursuit De-Noising (BPDN) method, which was introduced by Chen,
Donoho and Saunders.6 It refers to the solution of

ẑ = min
z

1

2
‖y − Φz‖2

2 + λ‖z‖1, (6)

where Φ represents the synthesis transform operator, z the coefficients vector, and λ an adjustable parameter.
The reconstructed image is given by x̂ = Φẑ. This is essentially the maximum a-posteriori probability (MAP)



solution of the denoising problem, where the transform coefficients are modelled as independent Laplacian random

variables. More specifically, each coefficient is distributed according to p(z) ∝ exp(−
√

2
σ
|z|), where σ is the

standard deviation.

This objective function can be generalized somewhat by allowing each coefficient zi to have its own weight
λi, and thus we get

ẑ = min
z

1

2
‖y − Φz‖2

2 +
∑

i

λi|zi|. (7)

With respect to a multiscale transform, such as the Contourlet transform, experiments made on natural images
show that coefficients at different scales and directions have different average standard deviation. Hence σ should
depend on the scale and direction, and perhaps the spatial position as well, which justifies a coefficient dependent
weight λi, as indicated above.

A possible downside of such an approach is the statistical independence assumption of different coefficients. As
later results will show, this approach is inferior to the proposed methods, which explicitly model inter-coefficient
dependencies. In developing these methods, the main challenge arising is how to formulate a global prior model
from the local ones described earlier. However, we must emphasize that these local models serve only as an
intuition, since they correspond to the analysis operator response, not necessarily to the underlying distribution.

We saw in Sect. 3.1 that the empirical distribution of a local neighborhood of a coefficient can be quite
accurately described by a Gaussian Scale Mixture (GSM) model. However, an analytic expression for this
distribution cannot be obtained, thus ruling out its use as a prior.

Sendur and Selesnick5 suggested the use of a new bivariate pdf to model the distribution of a coefficient and
its parent. They employed this pdf to construct a MAP-based bivariate shrinkage rule, unlike the commonly
used scalar shrinkage rules. In contrast with the GSM model, this new model has a simple analytic form, yet it
still retains good approximation of the empirical distribution. More specifically, the joint pdf of a coefficient z1

and its parent z2 is given by

p(z1, z2) =
3

2πσ1σ2
exp

(

−
√

3

√

( z1

σ1

)2

+
( z2

σ2

)2
)

, (8)

where σi corresponds to the standard deviation of zi.

This model can be easily extended to account for the dependencies in a local neighborhood with arbitrary
size. Denote z = (z1, z2, . . . , zn), where zj is the j-th coefficient in the neighborhood (z1 is the central coefficient).
In addition, denote σj as the standard deviation of zj . Then the joint pdf is given by

p(z) = K exp

(

−a

√

∑

j

( zj

σj

)2
)

, (9)

where K is a normalizing factor, and a ensures that σj is indeed the standard deviation of zj .

To examine the accuracy of the model of Eq. (9), it can be compared with an empirical histogram. Figure
4(a) shows the log joint histogram of a reference coefficient and one of its nearest neighbors, estimated from the
finest CT bands of several images. The values in each band were first scaled down by the subband’s standard
deviation, to get a single distribution rather than a mix of distributions. Two main deviations from the discussed
model can be easily observed in the empirical histogram: 1) The model suggests non-smooth surface for z = 0,
but it is in fact smooth. 2) The decay rate diminishes as |z| increases, while the model suggests a constant decay
rate. These phenomena are seen in Fig. 2(a) as well, for a 1-D pdf.

The first difference can be solved by adding a small positive constant ε into the square root of Eq. (9),
thus making the surface smooth near the origin. To overcome the second difference, the model should impose
concaveness for large values of |z|. The simplest way of achieving it is by decreasing the power inside the exponent
from 1/2 to 1/γ (γ > 2). Thus, the modified model is given by

p(z) = K exp

(

−a

(

∑

j

( zj

σj

)2

+ ε

)
1

γ

)

. (10)
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Figure 4. Log joint histogram of two nearest neighbors: (a) empirical; (b) empirical vs. the proposed model in (10).

Figure 4(b) depicts both the estimated and the modelled log joint pdf, manually optimized to obtain visual
fitting (optimal values are ε = 2.5 · 10−2, γ = 6).

This model can be further generalized by introducing correlations between coefficients. Although the current
pdf is not separable, it is certainly symmetric with respect to every axis, and thus all of the coefficients are
uncorrelated. This assumption may be valid for a small-redundancy transform such as the CT, as seen in figure
2(b), but is completely invalid for a redundant transform, where the correlation increases with the redundancy.
To overcome this problem, the previous model can be modified to include a covariance matrix C, such that

p(z) = K exp

(

−a
(

zC−1z + ε
)

1

γ

)

. (11)

Note that Eq. (11) reduces to Eq. (10) by imposing a diagonal covariance matrix.

The question arising now is how to extend the local prior model into a global one. As discussed in Sect. 3.1,
the local GSM model is implicitly extended to a global model, by assuming independent scaling variables for
different neighborhoods, even for overlapping ones. Remember this was done because of the great difficulty to
perform statistical inference with a complicated global dependency model. Sendur and Selesnick5 also assumed
independent neighborhoods, in order to achieve a relatively simple shrinkage rule.

In a similar fashion, we also embrace the independency assumption, so that the global pdf is given by

p(z) ∝
∏

i

exp

(

−a
(

ziC
−1
i zi + ε

)
1

γ

)

. (12)

Here we denote z as the global coefficients vector, zi as the i-th neighborhood coefficients vector and Ci as
the corresponding covariance matrix. Replacing the independent Laplacian prior with the latter prior, Eq. (7)
becomes

ẑ = min
z

1

2
‖y − Φz‖2

2 + λ
∑

i

(

ziC
−1
i zi + ε

)
1

γ

, (13)

where λ is again an adjustable constant. Note that the summation in Eq. (13) is not made over the lowpass
coefficients, since the discussed dependency model is not valid for these. This method will be denoted hereafter
BPDN-COV.



Using the slightly less general model of Eq. (10) instead of Eq. (11), another version of the new denoising
method, which will be denoted by BPDN-VAR, admits the form

ẑ = min
z

1

2
‖y − Φz‖2

2 + λ
∑

i

(

∑

j(i)

( zj

σj

)2

+ ε
)

1

γ

, (14)

where {j(i)} indicates the indices of the coefficients included in the i-th neighborhood. Notice that σ does not
depend on i, thus the value of σj is shared between all of the neighborhoods zj belongs to. On the other hand, in
the BPDN-COV method each neighborhood has its own covariance matrix, hence a coefficient may be attached
with several different variances.

4.2. Variance Estimation

The implementation of the new algorithm requires an estimation of either the variances {σi} (BPDN-VAR
method) or the covariances {Ci} (BPDN-COV method) from the given data. Due to the model’s complexity, a
structured estimator like the maximum-likelihood (ML) estimator is very difficult to develop, thus an heuristic
estimator must be obtained. One common way of estimating the variances (as in Ref. 20) is by using coefficients
from the reference coefficient’s vicinity. Denote σ2

n,i as the noise variance at the i-th coefficient (it is in fact
constant over a subband). Then the variance estimate of the i-th coefficient is given by

σ̂2
i = max

{ 1

#j

∑

j(i)

z2
j − σ2

n,i , 0
}

, (15)

where #j signifies the number of coefficients in the local neighborhood. Although this estimate makes sense, it
is too sensitive to the neighborhood’s size: a small one leads to an unreliable estimation, while a large one yields
slow adaptation to varying characteristics. As a result, the reconstructed images in our experiments obtained in
this method were blotchy, and therefore this method was abandoned.

An alternative estimation method was introduced by Chang et al.21 for the WT, though it remains valid for
any multiscale transform like the CT. Consider a subband with M coefficients, and denote z̄i as a p × 1 vector
containing the absolute values of p neighbors of zi. The context of zi is defined as a weighted average of its
neighbors’ absolute values yi = wtz̄i. The weights vector w is calculated by the least squares (LS) estimate over
the whole subband, i.e.

wLS = (ZtZ)−1Zt|z|, (16)

where Z is a M × p matrix with rows {z̄i}, and z is a M × 1 vector of the subband’s coefficients. As shown in
Fig. 4, the contourlet coefficients are essentially uncorrelated, and thus a linear predictor based on their values
cannot carry much information about another coefficient. Yet, the absolute values of neighbors are correlated,22

which explains their use in Eq. (16).

Following the context calculation, a coefficients’ variance is estimated based on all of the coefficients in the
subband with similar context. More precisely, the contexts {yj} are sorted in an increasing order, and the
coefficients {zj} whose context are at most L values away from yi are chosen (i.e. 2L + 1 coefficients). The
variance estimate of zi is then

σ̂2
i = max

{ 1

2L + 1

∑

j(i)

z2
j − σ2

n,i , 0
}

. (17)

As Fig. 2(b) demonstrates, a coefficients’ standard deviation scales roughly linearly with its neighbor’s absolute
value. Hence, the above method can be understood as gathering of coefficients with the same variance, then
estimating this variance. Similarly to Ref. 21, we choose L = max {100, 0.02M} to guarantee reliable estimation
along with adaptivity to varying characteristics. In addition, we set p = 9 (eight spatial neighbors and one
parent), yet other values (p = 5, 8) led to the same performance.

In a similar fashion to the extension of this method for the shift-invariant WT,21 we now extend it for the
SRICT. Since the estimator of Eq. (17) originates from the ML estimator in the Gaussian i.i.d. case, it will be
unreliable if the data samples are highly correlative, which is the case for adjacent coefficients of the SRICT. To



prevent such a scenario, a subband is first partitioned into several clusters with little intra correlation. This is
done by grouping together of basis functions that their effective supports do not coincide (see Fig. 1(b)), and
thus a subband in a 2l-directional scale is divided into 2l clusters. From this point each cluster is treated as a
separate subband with respect to Eqs. (16) and (17), hence the correlation problem is circumvented.

Estimation of the covariances in the BPDN-COV method is a more challenging task than the variances
estimation. A simple approach utilized in the BLS-GSM method (Sect. 3.1) contains imposing a single covariance
matrix to each subband, and estimating it by the sample covariance. Although this approach yields reliable
estimation due to the small number of unknown parameters, it fails to adapt to spatially changing characteristics.
As a consequence, the denoising performance of this method in our experiments was quite poor.

To allow spatial adaptation while still retaining reliability, we propose a variation of the context-driven
variance estimation method described earlier. Maintaining the same notations, the estimate of Ci is given by

Ĉi =
1

2L + 1

∑

j(i)

ziz
t
i − Cn,i, (18)

where Cn,i represents the noise covariance at the i-th neighborhood (once again, it depends on the subband

only). To assure that Ĉi ≻ 0, its eigen-values are increased to become positive, if necessary. The idea behind this
approach is that coefficients with similar variances, also have associated neighborhoods with similar covariances.
However, the enormous amount of unknown parameters makes this suggestion impractical.

To significantly reduce the number of parameters, a compromise between the two above approaches is made.
The subband’s coefficients are uniformly classified into several groups (for example 50), based on their context,
and each group is attached with a single covariance matrix. Then the estimator of Eq. (18) is obtained, where
the reference context value of a group is its median. Of course, since a covariance matrix contains many
unknown parameters, more data values are needed than in the variance estimation case, and thus we choose
L = max {750, 0.05M}. The results of this approach was substantially better PSNR-wise than those of the
non-adaptive covariance approach. However, its computational complexity still proved too expensive, which
prevented its thorough examination on large images. We thus leave this matter for future work and concentrate
on the BPDN-VAR method.

5. EXPERIMENTS

5.1. Implementation Issues

The BPDN-VAR method contains several unknown parameters which must be selected: γ, ε, λ and the neigh-
borhood size. As discussed earlier (Sect. 4.1), γ and ε can be set manually to fit the 2-D joint histogram (see
Fig. 4). However, such a choice might not be suitable for higher dimensional distributions. Moreover, for γ > 2
the objective function in Eq. (14) is not convex, necessitating a sequential minimization for increasing values of
γ. Therefore, in this paper we set γ = 2, although other values will be examined in a future work. The value
of ε must be positive to ensure a smooth objective function, and also to allow better fitting of the empirical
histogram to the model. On these grounds and based on our experiments we have chosen ε = 10−2.

Regarding the neighborhood selection, it has been shown3 that the dependency between a coefficient and its
parent exceeds that of any other neighbor. Thus the parent is included in all of the neighborhoods, other than
those at the coarsest scale, because no parent exists there. For the CT, the choice of spatial neighbors which led
to the best performance was of the four nearest neighbors, unlike eight neighbors in the GSM-BLS method (see
Sect. 3.2). The same stands for the SRICT, only that we refer to the neighbors whose supports do not coincide.
For comparison, we will also examine the 1×1 neighborhood case (i.e. the reference coefficient alone), which will
be denoted by BPDN-VAR-NN (stands for No-Neighbors).

Returning briefly to Eq. (7), and remembering that it corresponds to the MAP-solution for an independent
Laplacian prior model, we get λi =

√
2σ2

n/σi, where σ2
n is the noise variance at the image domain. Going back

to the BPDN-VAR-NN method, the corresponding value of λ is λ0 =
√

2σ2
n, which turned out to be indeed the

optimal value performance-wise. However, in the BPDN-VAR method (see Eq. (14)), each coefficient appears five
times in the summation if it belongs to the finest scale, or nine times otherwise. Clearly no value of λ exists such



that the ’effective’ weight of each coefficient equals
√

2σ2
n/σi. One possible solution is to multiply σ2

i by (9/5)2,
except for coefficients at the finest scale, and also to set λ = λ0/5. For the CT, the same PSNR values were
reached for λ ∈ [λ0/5, λ0/2], yet better visual quality was seen by setting λ = λ0/2, hence this value was finally
chosen (likewise, λ = 10λ0/7 proved optimal for the BPDN-VAR-NN method). This choice indeed exceeded all
other possibilities performance-wise (e.g. a certain λ without changing σ2

i ). For the SRICT, a slightly different
manipulation of σ2

i was made,23 and λ = λ0/5 yielded the best results (or λ = λ0/3 for BPDN-VAR-NN). As
said before, the PSNR values change very little with λ, proving the robustness of our method.

Following the selection and estimation of the unknown parameters, the minimization of the cost function in
Eq. (14), denoted hereafter by f(z), can begin. It must be emphasized that rather than obtaining an accurate
solution of (14), our goal is to reach the highest quality image fast. A work by Elad2 showed that the BPDN
problem (Eq. (6)) can be solved by iteratively performing simple shrinkage on the coefficients. This work can
be easily extended to apply on the BPDN-VAR-NN method by making a certain modification to the coefficient-
dependent thresholds. In our experiments, this technique produced satisfactory results much faster than any
other optimization technique. Nevertheless, the BPDN-VAR method cannot be expressed as a series of closed-
form LUT operations. This distinction vastly increases the complexity of the discussed technique, thus ruling
out its use for BPDN-VAR method.

After testing many optimization algorithms, we finally decided to use the Truncated-Newton algorithm with
preconditioning24, 25 for BPDN-VAR method. In short, the current solution zk is updated by zk+1 = zk + αkdk,
where αk is obtained from a line-search along the direction dk. This direction is an approximate solution of
Hkd = −gk, where Hk and gk are the hessian and the gradient of f(z) at zk, respectively. Such an approximation
can be made by the Conjugate-Gradients method, sped up by employing a diagonal preconditioner. More details
about the optimization method, including explicit expressions for the gradient and the hessian’s diagonal, can
be found in Ref. 23.

A major difference in the PSNR behavior between the CT and the SRICT was revealed in our experiments. As
for the CT, the PSNR increased with every multidimensional iteration, until it settled after about 15 iterations.
On the other hand, for the SRICT there was a quick rise in the PSNR, then about 4 iterations of peak value,
followed by a small decrease until settling. This suggests that minimization of f(z) does not translate to
maximization of the PSNR for the SRICT. However, it does mean that premature termination is possible and
even recommended. In all of the simulations the maximal PSNR value was reached as soon as 6 (for 256 × 256
images) or 7 (for 512×512 images) iterations, irrespective of the specific image at hand, and thus the BPDN-VAR
method is well-defined.

To further assess the performance of our new methods, we have implemented two more algorithms. One is
hard-thresholding (HT), namely zero-forcing zi if it is smaller than a threshold Kσn,i (see Sect. 4.2 for notations).
As in Ref. 14, we set K = 4 for the finest scale, and K = 3 otherwise. The other algorithm, which will be named as
adaptive-soft-thresholding (AST), performs soft-shrinkage with a threshold of σ2

n,i/σ̂i, where {σ̂i} are calculated

as in Sect. 4.2. This is the algorithm proposed by Chang et al.,21 adapted to the CT.

5.2. Results

Figure 5 displays a 128 × 128 slice of Peppers, and its denoising results with the discussed methods, using the
CT. The corresponding PSNR values appear in Table 1. The better visual quality of both the BPDN methods
relative to standard shrinkage techniques is readily seen. In addition, although the PSNR of BLS-GSM is slightly
higher, the BPDN-VAR method produces the same, if not better, visual quality.

Table 1 summarizes the PSNR results of all of the examined methods, for σn = 20. The test images were
downloaded from http://decsai.ugr.es/˜javier/denoise. This comparison reveals some interesting observations:
1) Not surprisingly, adding redundancy improves the performance, although not dramatically. 2) The BPDN-
VAR method surpasses the BPDN-VAR-NN method uniformly (on average, 0.24dB for CT, 0.28dB for SRICT).
Therefore, modifying the prior to account for the dependencies is worthwhile. 3) For the CT, the BPDN-VAR
method attains essentially the same PSNR as BLS-GSM (merely 0.02dB less). For the SRICT, the difference is
larger (0.11dB less). Yet, remember that the strong inter-coefficient correlations in the SRICT are handled by
the BLS-GSM method, in contrast with BPDN-VAR. Thus, a more fair comparison, which is left to future work,
would include the BPDN-COV method.



Figure 5. Denoising results of a 128 × 128 slice of Peppers (using the CT and for σn = 20). From left to right and top
to bottom: Original; HT; AST; BPDN-VAR-NN; BPDN-VAR; BLS-GSM.

Table 1. PSNR values for all of the images and methods (σn = 20)

Peppers256 Peppers Lena Barbara
CT SRICT CT SRICT CT SRICT CT SRICT

HT 26.73 28.07 29.08 30.31 29.27 30.59 26.16 27.54
AST 28.59 29.05 30.52 30.79 30.91 31.14 28.66 29.08
BPDN-VAR-NN 28.81 28.99 30.79 30.92 31.19 31.23 28.92 28.81
BPDN-VAR 29.02 29.25 30.96 31.08 31.47 31.52 29.20 29.21
BLS-GSM 28.91 29.12 31.08 31.30 31.49 31.62 29.26 29.44

6. CONCLUSIONS

We have proposed a novel denoising method, by merging the inherent transform domain inter-coefficient depen-
dencies into a MAP framework. The resulting algorithm proved competitive with the state-of-the-art method
of BLS-GSM, which we adapted for the contourlet transform. The new approach is advantageous both in its
direct reference to the image domain error, and its straight-forward extension to other inverse problems. It is
also applicable to any wavelet-like transform.

There is still much work to be carried out concerning this method. First, the performance of the BPDN-
COV method should be thoroughly investigated, while ways of speeding-up the optimization process need to
be sought after. Also, various values of γ and ε (see Sect. 4.1) should be tested. Secondly, the same prior
developed here could serve for more general inverse problems such as deblurring. As a last point we mention
that additional study can be done to further modify the priors in Eqs. (13) and (14), in order to better describe
the inter-coefficient dependencies. These and other directions are part of our future work plan.
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