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Abstract

In a wide range of applied problems of 2D and 3D imaging a continuous formulation of the problem places great emphasis on
obtaining and manipulating the Fourier transform in Polar coordinates. However, the translation of continuum ideas into practical
work with data sampled on a Cartesian grid is problematic. In this article we develop a fast high accuracy Polar FFT. For a given
two-dimensional signal of size N × N , the proposed algorithm’s complexity is O(N2 logN), just like in a Cartesian 2D-FFT.
A special feature of our approach is that it involves only 1D equispaced FFT’s and 1D interpolations. A central tool in our method
is the pseudo-Polar FFT, an FFT where the evaluation frequencies lie in an oversampled set of nonangularly equispaced points. We
describe the concept of pseudo-Polar domain, including fast forward and inverse transforms. For those interested primarily in Polar
FFT’s, the pseudo-Polar FFT plays the role of a halfway point—a nearly-Polar system from which conversion to Polar coordinates
uses processes relying purely on 1D FFT’s and interpolation operations. We describe the conversion process, and give an error
analysis of it. We compare accuracy results obtained by a Cartesian-based unequally-sampled FFT method to ours, both algorithms
using a small-support interpolation and no pre-compensating, and show marked advantage to the use of the pseudo-Polar initial
grid.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Polar Fourier transform

Fourier analysis is a fundamental tool in mathematics and mathematical physics, and also in signal and image
processing. The discovery, popularization, and digital realization of fast algorithms for Fourier analysis—so called
FFT—has had far reaching implications in science and technology in recent decades. The scientific computing com-

* Corresponding author.
E-mail address: elad@cs.technion.ac.il (M. Elad).
1063-5203/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.acha.2005.11.003



146 A. Averbuch et al. / Appl. Comput. Harmon. Anal. 21 (2006) 145–167
munity regards the FFT as one of the leading algorithmic achievements of the 20th century [1]. In fact, even ordinary
consumer-level applications now involve FFT’s—think of web browser decoding JPEG images—so that development
of new tools for Fourier analysis of digital data may be of potentially major significance. In this paper we develop
tools associated with Fourier analysis in which the set of frequencies is equispaced when viewed in Polar coordinates.

Let f (x) = f (x1, x2) be a function on the plane x = (x1, x2) ∈ R2. Let

f̂ (φ) =
∫

f (x) exp(−iφ′x)dx

be the usual continuum Fourier transform of f . Writing the frequency φ = {r cos(θ), r sin(θ)} in Polar coordinates,
we let

f̃ (r, θ) = f̂
(
φ(r, θ)

)
.

In this paper, the term Polar Fourier transform will always refer to the operation

f̃ (r, θ) = PF
{
f (x)

}
,

namely, getting f (x) in Cartesian variables and computing f̃ (r, θ) defined with Polar variables.
While changes of variables are, of course, banal per se, their significance lies in the change of viewpoint they

provide. As it turns out, several fundamental procedures for manipulation of such continuum functions f can best be
defined in terms of Polar variables. The Polar FT can be a powerful tool for organizing our understanding of operators
and functions on the two-dimensional continuum. Much the same can be said of higher dimensions.

1.2. Digital problematics

The relatively simple and obvious continuum concepts, posing little or no intellectual challenge, correspond to
concrete processes operating on sampled digital data, which are important and widely used. Such is the case in image
rotation, image registration, tomography, and more. It seems natural to ask if the conceptual simplicity and clarity
of the continuum Polar FT can be used in some way to assist, improve, or simplify practical procedures for digital
processing, which appear as digitally sampled realizations of rotation, registration, radon transformation, and so on.

This leads naturally to the question of whether there could be a Polar FT for discrete data, particularly a fast
algorithm, or Polar FFT. Such a hypothetical entity should have many of the properties of the continuum Polar FT,
including relations to rotation, registration, Radon transform, and so on, and yet would be definable and rapidly
computed for digital data in the now ubiquitous equispaced Cartesian format.

The prevailing belief seems to be that there is no such algorithm. For example, in Briggs’ treatise The FFT: An
Owner’s Manual for the Discrete Fourier Transform [2], which is widely considered comprehensive and authoritative,
the index contains the entry “Polar FFT,” continuing with “no FFT for, 284”! Indeed, several difficulties stand in
our way to construct such a fast Polar FT for discrete data: (i) the need to define the appropriate Polar grid in the
frequency domain; (ii) finding a fast way to evaluate (or approximate) the FT on this grid points; and (iii) enabling a
stable transform inversion.

1.3. This paper’s contribution

In this paper we propose a notion of a Polar FT which is well suited for digital data—a procedure which is faithful
to the continuum Polar FT concept, highly accurate,1 fast, and generally applicable. As in Fig. 1, we define the Polar
grid of frequencies ξp,q = {ξx[p,q], ξy[p,q]} in the circle inscribed in the fundamental region ξ ∈ [−π,π)2, and,
given digital Cartesian data f [i1, i2] we define the Polar FT to be the collection of samples {F(ξp,q)}, where F(ξp,q)

is the trigonometric polynomial

F(ξp,q) =
N−1∑
i1=0

N−1∑
i2=0

f [i1, i2] exp
(−i

(
i1ξx[p,q] − i2ξy[p,q])). (1)

1 This implies that the proposed algorithm gives an approximated evaluation of the transform with high accuracy.
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Fig. 1. Polar grid—intersection of 8 concentric circles and 16 angularly equispaced rays.

The sampled frequency points are given by{
ξx[p,q] = πp

N
cos(πq/2N)

ξy[p,q] = πp
N

sin(πq/2N)
for −N � p � N − 1, 0 � q � 2N − 1

}
. (2)

Thinking of the Polar Discrete Fourier Transform (PDFT) mapping PDFT :f [i1, i2] → F(ξp,q) as a linear operator,
we also consider a generalized inverse procedure of it, going back from discrete Polar Fourier data to Cartesian spatial
data.

In this paper we carefully define the Polar FT concept for digital data, the associated fast algorithms, and discuss
its features such as accuracy and computational complexity. We will make special effort to describe five advantages of
the proposed PFFT, speed, accuracy, stability, vectorizability, and nonexpansivity. These terms will be given meaning
as we deepen our description. A brief and partial version of this work appeared in [3], and here we give an expanded
and more detailed description.

1.4. Relation to state of the art

Two existing bodies of literature contain ideas relevant to the above definition of Polar FT—one corresponds to
methods to compute the inverse Radon transform, and the other treating the general problem of evaluating the Fourier
transform on nonequally spaced frequency points.

The literature of tomography concerns reconstruction of an image from a collection of its one-dimensional inte-
grals. An important approach to this problem is the direct Fourier method [4–16]. The direct Fourier method uses
the projection-slice theorem, which suggests that one can convert a collection of projection data (Rf )(·, θ) into a
two-dimensional Fourier data f̂ (ξ) on a Polar grid, and then reconstruct by Fourier inversion.

In the second body of literature [17–29] one has data at an equally spaced Cartesian grid, but wishes to evaluate its
discrete Fourier transform as a nonequispaced non-Cartesian set of frequencies. This problem is known as either the
USFFT (short for Unequally Spaced FFT), or the NUFFT (non-Uniform FFT) problem.

It is not hard to see the direct relevance of the above literature to the definition we have given. The Polar sampling
set defined above is certainly a nonequispaced, non-Cartesian set. Thus, the problem of computing F(ξp,q) from
digital data f [i1, i2] is explicitly a problem of evaluating the Fourier transform of f at unequally spaced frequencies.
In other words, the problem of computing the PDFT is a special case of the USFFT problem. Second, note that, if we
take the projection data (Rf )(·, θ) and perform a discrete Fourier transform in the (discretely sampled) t-variable, we
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Fig. 2. The pseudo-Polar grid and its separation into BV (filled circles) and BH (empty circles) coordinates (N = 8)—intersection of 8 concentric
squares and 16 slope-equispaced rays.

effectively have f̂ (ξp,q). Hence, the problem of Radon inversion is closely connected to the problem of going back
from discrete Polar Fourier data f̂ (ξp,q) to Cartesian spatial data f [i1, i2].

The existing state-of-the-art expressed by the above literature can be adapted to produce an approximated Polar
FFT (PFFT) and its inverse. Adapting ideas from the USFFT literature, the forward Polar-FFT can be accomplished
by the following stages: (i) pre-multiplication of f [i1, i2] by pre-computed weights s[i1, i2]; (ii) computation of the
2D-FFT on an oversampled Cartesian grid; and (iii) interpolation of the desired values on the Polar grid based on
those given on the Cartesian one. Reversing these operations can provide the adjoint operator. The inversion of the
transform can be accomplished, for example, by least-squares fitting, as proposed in [28]. This approach is similar to
ideas available in the direct Fourier reconstruction literature mentioned above.

The approach we propose here for PFFT is in fact similar to the above, using a special type of USFFT method,
where a different launching grid is used, rather than the Cartesian one. Our method factors the problem into two steps:
first, a pseudo-Polar FFT is applied, in which a pseudo-Polar sampling set is used, and second, a conversion from
pseudo-Polar to Polar FT is performed.

At the heart of the method proposed here for the PFFT we use the pseudo-Polar FFT—an FFT where the evaluation
frequencies lie in an oversampled set of nonangularly equispaced points (see Fig. 2). The pseudo-Polar FFT offers us
a near-Polar frequency coordinate system for which exact rapid FT evaluation is possible [30]. Whereas the Polar grid
points sit at the intersection between linearly growing concentric circles and angularly equispaced rays, the pseudo-
Polar points sit at the intersection between linearly growing concentric squares and a specific choice of angularly
nonequispaced rays.

The pseudo-Polar transform plays the role of a halfway point—a nearly-Polar system from which conversion to
Polar coordinates uses processes relying purely on 1D FFT’s and interpolation operations. We present this conver-
sion process, along with an error analysis of it, showing far improved performance compared to the Cartesian-based
USFFT-based alternative approach. The reason for the expected improvement in accuracy is the ability of the pseudo-
Polar grid to provide a space-varying sampling of the frequency domain, which is close in density to the Polar
destination one. More specifically, the pseudo-Polar grid gives a denser sampling near the origin, enabling better
interpolation performance. In comparison, starting with a Cartesian grid, getting similar density (and thus accuracy)
near the origin requires an increased oversampling all-over the frequency domain. Note also that for most signals,
their energy resides near the origin, and thus, better treatment there implies higher overall accuracy.



A. Averbuch et al. / Appl. Comput. Harmon. Anal. 21 (2006) 145–167 149
As mentioned before, the above described approach enjoys the following important advantages:

• Complexity. For a given two-dimensional signal of size N × N , the complexity of both the proposed Polar FFT
and its inverse is of order N2 logN , just like in a Cartesian 2D-FFT operating on the same input array.

• Accuracy. Since polynomial interpolations are involved in the algorithm’s path, exact results cannot be claimed.
However, as will be shown later, the applied interpolations are expected to yield highly accurate results due to
specific features of the frequency domain function slices. The accuracy obtained is substantially better than the one
expected with Cartesian-based USFFT methods. We should note that this claim is demonstrated in our work for
short-support interpolation schemes that provide an overall simple algorithm. Recent work by Fessler and Sutton
[28] have clearly shown a marked improvement in the obtained accuracy with Cartesian USFFT when using large
support Kaiser–Bessel interpolation and pre-compensation. Further work is required to use those options with
initial pseudo-Polar grid and explore ways to further improve our method.

• Stability. This property refers mostly to our ability to invert the transform, and claim almost one-to-one mapping
between spatial array and its inverse PFFT result. Two ingredients are responsible for such a behavior—adequate
conditioning of the signal, prior to its transform, and a proper set of Polar frequency samples that would be
considered representative.

• Vectorizability. The process we propose is organized as a series of purely one-dimensional signal manipulation
processes, in which data form a single row or column of an array are subjected to a series of Fourier transforms,
1D interpolations, and ancillary operations. Owing to the use of vectorized operations, the overall algorithm is
“cache-friendly.”2

• Nonexpansivity. There is no drastic oversampling of the underlying array. As we show later on, a similar accuracy
by a Cartesian-based USFFT method requires much higher oversampling.

1.5. Content

This paper is organized as follows: Section 2 describes the pseudo-Polar Fourier grid, and the forward/inverse
transforms over this grid. In this section we closely follow the work in [30]. Section 3 then discusses the conversion
from pseudo-Polar-to-Polar for the forward transform, and from Polar-to-pseudo-Polar in the inverse one. We show
how these conversions amount to one-dimensional operations and discuss reasons for the high interpolation accuracy
obtained. Section 4 analyzes the proposed algorithm from several aspects. Accuracy is studied by experimenting
on images, and by finding the worst-case scenarios maximizing the approximation error. Section 5 gives a brief
description of a freely available software performing the proposed PFFT transform. This software also includes the
code to reproduce this paper’s results. Section 6 concludes this paper, with discussion on future work and open
questions.

2. Pseudo-Polar Fourier transform

The pseudo-Polar Fourier transform is based on a definition of a Polar-like 2D grid that enables fast Fourier
computation. This grid has been explored by many since the 1970s. The pioneers in this field are Mersereau and
Oppenheim [31] who proposed the concentric squares grid as an alternative to the Polar grid. Work by Pasciak [32],
Edholm and Herman [33], and Lawton [34] showed that fast exact evaluation on such grids is possible. Later work
by Munson et al. [8,10] have shown how these ideas can be extended and used for tomography. Recently, the pseudo-
Polar grid was proposed as the base for a stable forward and inverse Radon transform called Fast Slant-Stack [30,35].
It has also been used for image registration [36].

As we shall see next, in this work we strongly build on this notion of near-Polar grid, and exploit the fast and stable
forward and inverse transforms with the frequency domain sampled with such coordinate system. In this section we
cover the basics of the pseudo-Polar grid and its use for forward and inverse transform.

2 We should note that Cartesian-based USFFT methods may also be made cache-efficient in various ways [25]. However, this property is far more
natural when the data is structured as in the pseudo-Polar coordinates.
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Before we start we remind the reader of the Cartesian grid 2D DFT to set notations. Letting the horizontal and
vertical frequencies{

ξx = 2πk1

N
,ξy = 2πk2

N

}N−1

k1,k2=0
,

we get the familiar DFT in 2 dimensions by

f̂ (ξx, ξy) =
N−1∑
i1=0

N−1∑
i2=0

f [i1, i2] · exp
(−i(i1ξx + i2ξy)

)
. (3)

2.1. The pseudo-Polar coordinate system

We start by defining the pseudo-Polar grid points in the frequency domain. These points are separated into two
groups—the basically vertical (BV) and the basically horizontal (BH) subsets, given by

BV =
{
ξy = π�

N
for −N � � < N, ξx = ξy · 2m

N
for −N

2
� m <

N

2

}
(4)

and

BH =
{
ξx = π�

N
for −N � � < N, ξy = ξx · 2m

N
for −N

2
< m � N

2

}
. (5)

Figure 2 depicts this grid; BV points are marked with the filled disks and BH ones are marked as circles. Several
properties about this grid should be mentioned:

• The grid points are at intersections of linearly growing concentric squares with angularly nonequispaced rays.
The squares’ sides are of size πk/N , k = 0,1, . . . ,N . The BH rays have equispaced slope: 2k/N , k = −N/2 +
1,−N/2 + 2, . . . ,N/2. The BV rays are similar but with clockwise rotation of 90◦.

• The suggested grid is Polar-like. The main two differences are the concentric squares replacing concentric circles,
and equispaced rays in slope replaced by equispaced rays in angle. This resemblance will be exploited for the
development of a true Polar-FFT algorithm.

• Referring to the BV (and similarly to the BH) points, we can see that they are organized on lines with angles
ranging from −π to π . Along each such line, the points are spread uniformly, though in an angle-dependent way.
These two properties are the driving force for the ability to compute the Fourier transform in a fast way for this
grid.

• When looking at Fig. 2 one might get the impression that some points on the outer-most square are missing.
However, since f̂ (ξx, ξy) is periodic with a period of 2π in both axes, these points are actually redundant.

• In computing and storing the Fourier transform for these points, our data structure is given by two simple 2D
arrays—one for the BV and the other for the BH sample sets. Referring to the BV array, the vertical axis corre-
sponds to the index � and the horizontal to m (see (4) and (5)). Thus, our array has 2N rows and N columns.
Overall we have 4N2 frequency sample points, originating from an image of size N × N . The factor 4 oversam-
pling is helpful for numerical stability [30]. This data structure implies that when we draw a row or column from
these arrays, we do not necessarily refer to horizontal or vertical set of frequency points, but rather refer to points
along one ray or points along one of the concentric squares.

• In our treatment, the processing of the BV and the BH data are completely parallel. Our description will refer to
the BV points only.

2.2. A fast forward transform

Given the pseudo-Polar BV grid points in the frequency domain, we are interested in computing the Fourier trans-
form values. In what follows we shall show that simple 1D-FFT operations can be used to achieve this goal.
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Theorem 1. Given a 2D signal f [i1, i2], 0 � i1, i2 < N , evaluation of the FT on the pseudo-Polar grid as defined in
(4) and (5) can be done by 1D operations only, and with complexity of 140N2 logN flops.

Proof. This result can be considered known, applying ideas behind the work of Pasciak [32], Edholm and Her-
man [33], and Lawton [34] to the pseudo-Polar grid, which, however, is not precisely the grid they considered.
Essentially, the result as stated has been obtained in [30], and is spelled-out here for completeness.

Using the definition of the Fourier transform for discrete functions in Eq. (3), and plugging the coordinates from
Eqs. (4) and (5) we obtain

f̂ (ξx, ξy) = f̂ [m,�] =
N−1∑
i1=0

N−1∑
i2=0

f [i1, i2] · exp
(−i(i1ξx + i2ξy)

)

=
N−1∑
i1=0

N−1∑
i2=0

f [i1, i2] · exp

(
−i

(
2πi1�m

N2
+ πi2�

N

))

=
N−1∑
i1=0

exp

(
− i2πi1�m

N2

)N−1∑
i2=0

f [i1, i2] · exp

(
− iπi2�

N

)
. (6)

Concentrating on the inner summation part, we define

f̂1[i1, �] =
N−1∑
i2=0

f [i1, i2] · exp

(
− iπi2�

N

)
. (7)

This expression stands for a 1D-FFT on the columns of the zero padded array f [i1, i2]. In order to show this, assume
that f [i1, i2] is zero padded to yield

fZ[i1, i2] =
{

f [i1, i2], 0 � i2 < N,

0, N � i2 < 2N.

Thus,

f̂1[i1, �] =
N−1∑
i2=0

f [i1, i2] · exp

(
− iπi2�

N

)
=

2N−1∑
i2=0

fZ[i1, i2] · exp

(
− i2πi2�

2N

)
. (8)

This expression stands for 1D-FFT of an array of 2N samples. However, another complicating factor is the range of �

(−N � � � N − 1), as opposed to the regular FFT range that starts at 0. Thus, defining n = � + N we get

f̂1[i1, n] =
2N−1∑
i2=0

fZ[i1, i2] · exp

(
− i2πi2(n − N)

2N

)
=

2N−1∑
i2=0

fZ[i1, i2] · (−1)i2 · exp

(
− i2πi2n

2N

)
. (9)

To summarize this part, computation of the inner summation (w.r.t. i2) amounts to 1D-FFT of length 2N on the
columns of the zero padded and pre-multiplied3 array f [i1, i2] · (−1)i2 . The amount of operations needed for this
stage are 5 · 2N log(2N) per each column,4 and 10N2 log(2N) operations for all the N columns.

We return now to Eq. (6) and assume that the above process has been completed. Thus we hold the N × 2N array
f̂1[i1, �] and we should proceed by computing the second summation

f̂ [m,�] =
N−1∑
i1=0

f̂1[i1, �] exp

(
− i2πi1m�

N2

)
=

N−1∑
i1=0

f̂1[i1, �] exp

(
− i2πi1m

N
· �

N

)
. (10)

3 We have to multiply our array by (−1)i2 , but this could be replaced by later shift, owing to the periodic nature of the transform.
4 We assume hereafter that a regular DFT on a vector of length N requires 5 · N log(N) operations by the FFT algorithm [2]. Although this

applies originally to N being powers of 2, we use it for an arbitrary N , with the understanding that the coefficient may slightly change.
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Removal of the factor α = �/N in the exponent turns this expression into a regular 1D-FFT, this time applied on
the rows of the array f̂1. With this factor α in the above summation, the required operation is known as the Chirp-Z
[37], or the Fractional Fourier Transform (FRFT) [38]. In Appendix A we show how this transform can be computed
efficiently for any α, with 30N logN operations, based on 1D-FFT use. As before, due to a shifted range of the
index m, one has either to shift after the transform, or modulate the array, prior to the transform.

To summarize, we have 2N rows that are to be put through a Chirp-Z transform. Thus we need 60N2 logN op-
erations for this stage. Adding to the previous stage complexity, we get an overall of 70N2 logN operations for the
computation of the transform for the BV part of the grid. To cover both the BV and the BH grid points we need
140N2 logN . �

In this paper the pseudo-Polar grid is a stepping stone toward the Polar coordinates system. Since interpolations
are to be used to convert from pseudo-Polar to Polar coordinates, we should consider computing the pseudo-Polar
FFT on a more densely-spaced grid. We state here without proof the following result: given a 2D signal f [i1, i2],
0 � i1, i2 < N , the evaluation of the FT on the oversampled pseudo-Polar grid with NS concentric squares and 2NP

slope-equispaced rays can be obtained by 1D vector operations only, and with complexity of 120N2PS log(NS) flops.
In fact, this result could be shown to follow immediately from Theorem 1 with zero-padding of the original image.

2.3. Fast inverse transform and quasi-Parseval relationship

The pseudo-Polar FFT can be inverted by the method of least-squares (LS) (see [28,30] for the same concept). To
see this, consider a matrix–vector formulation of our processes. For an image f [i1, i2] of size N × N , we define the
column vector f of length N2, containing the image pixel values in column-stack ordering. This vector is multiplied

by a matrix TPP ∈ C4N2×N2
, representing the pseudo-Polar FFT. The outcome of this multiplication is a vector f̂

of length 4N2, containing the samples of the Fourier transform on the pseudo-Polar grid. Given f̂ , inversion of the
pseudo-Polar Fourier transform is achieved by solving

f = Arg min
x

‖TPPx − f̂ ‖2
2 = (

TH
PPTPP

)−1TH
PPf̂ = T+

PPf̂ , (11)

where T+
PP denotes generalized inverse.

Of course, the matrix-based solution is useless as a computational approach for reasonable sizes of input ar-
rays; a pseudo-direct inversion of the matrix TPP is computationally prohibitive, and definitely beyond the desired
N2 log(N) complexity. Instead, we approach the optimization problem iteratively by the iteration relation

f
k+1

= f
k
− DTH

PP(TPPf
k
− f̂ ). (12)

The expression TH
PP(TPPx − f̂ ) is the function’s gradient and the multiplication by a positive definite matrix D guar-

antees descent in the LS error. If chosen properly, D could speed-up convergence of this algorithm to the true solution,
as posed in (11). In [30] a specific choice of diagonal matrix D is proposed that down-weights near-origin points in
order to equalize the condition number. It is shown that with few (2–6) iterations this iterative process achieves high
accuracy solutions. As to the initialization, it could be chosen as zeros (f

0
= 0) for simplicity. This way we obtain a

fast inverse transform of the same complexity as the forward one, as every iteration requires the application of both
the forward transform (multiplying with TPP) and its adjoint (multiplying with TH

PP). It still remains to be seen that
the adjoint is computable with the same complexity as the forward transform, which is the claim of the next theorem.

Theorem 2. Given a 2D array f̂ [m,�] of size 2N × 2N representing a pseudo-Polar grid sampling in the frequency
domain, the evaluation of the adjoint pseudo-Polar FFT to produce an N × N image can be done by 1D operations
only, and with complexity of O{N2 log(N)} operations.

Proof. Posed in a matrix notation, multiplication by TH
PP requires taking the conjugate of each element in the ma-

trix TPP, and summing with respect to columns, rather than rows. Thus, using the relation posed in (6) we have that
the regular (forward) transform is applied by
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f̂ [m,�] =
N−1∑
i1=0

N−1∑
i2=0

f [i1, i2] · exp

(
−i

(
2πi1�m

N2
+ πi2�

N

))
.

Similarly, referring to the basically vertical (BV) values only, the adjoint is achieved by

f̃ [i1, i2] =
N/2−1∑

m=−N/2

N−1∑
�=−N

f̂ [m,�] · exp

(
i

(
2πi1�m

N2
+ πi2�

N

))

=
N−1∑

�=−N

exp

(
i
πi2�

N

) N/2−1∑
m=−N/2

f̂ [m,�] · exp

(
i
2πi1�m

N2

)
. (13)

The inner summation could be written as

f̃1[i1, �] =
N/2−1∑

m=−N/2

f̂ [m,�] · exp

(
i
2πi1m

N
· �

N

)

and this is a Fractional FFT, just as we obtained with the forward transform. We have seen that this operation could be
done in O{N log(N)} per every �, producing N values. Thus, for −N � � � N −1 we need to perform O{N2 log(N)}
operations. Once performed, we then obtain the expression

f̃ [i1, i2] =
N−1∑

�=−N

exp

(
i
πi2�

N

)
f̃1[i1, �] (14)

and this is a regular inverse-FFT, which requires O{N log(N)} per every 0 � i1 � N − 1. Thus, again we get that
O{N2 log(N)} operations are required to conclude this part of the computations.

As a last point in this proof, we should refer similarly to the BH rays. The complete adjoint operation is obtained
by performing the same process as described above, and adding the two resulting arrays. �
3. From pseudo-Polar to Polar

Similar to the Cartesian-based USFFT approach, we suggest to compute the Polar-FT values based on a different
grid for which a fast algorithm exists, and then go to the Polar coordinates via an interpolation stage. However, instead
of using the Cartesian grid in the first stage, we use the pseudo-Polar grid of the previous section. Since this grid is
closer to the Polar destination coordinates, there is a reason to believe that this approach will lead to better accuracy
and thus lower oversampling requirements. However, as we shall see next, beyond the proximity of the pseudo-Polar
coordinates to the Polar ones, another very important benefit is the ability to perform the necessary interpolations via
pure 1D operations without losing accuracy. This property is vital in understanding the superiority of the proposed
scheme over traditional Cartesian-based USFFT methods.

3.1. Pseudo-Polar–Polar: grid conversion

We define the Polar coordinate system based on the pseudo-Polar one, with manipulations that lay out the necessary
interpolation stages discussed later on. Starting from the basically-vertical frequency sampling points in the pseudo-
Polar grid as given in (4)

BV =
{
ξy = π�

N
for −N � � < N, ξx = 2πm�

N2
for −N

2
� m <

N

2

}
,

the Polar ones are obtained by two operations:

(1) Rotate the rays. In order to obtain an angularly-uniform ray sampling as in the Polar coordinate system, the rays
must be rotated. This is done by replacing the term 2m/N in ξx above with tan(πm/2N), leading to the grid
points
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Fig. 3. The first interpolation stage for rotating the rays. Circles represent the known pseudo-Polar grid points and squares are the desired equian-
gularly spaced rays.

BVnew =
{
ξy = π�

N
for −N � � < N, ξx = π�

N
· tan

(
πm

2N

)
for −N

2
� m <

N

2

}
.

The result is a set of points organized on concentric squares as before, but the rays are now equispaced in angle
rather than slope. Figure 3 depicts this step as an interpolation stage. Rotating the rays amounts to a 1D operation
along horizontal lines (for the BV points). A set of N equispaced points along this line are replaced by a new set
of N points along the same line in different locations (marked as small squares) implementing equispaced angular
sampling.
An interesting property of this interpolation stage is the fact that the underlying function to be interpolated as-
sumes a simple form, which implies that interpolation accuracy is expected to be high, even for low oversampling
factors. Furthermore, the given points are densely arranged around the desired locations, thus ensuring a bet-
ter interpolation accuracy (compared to the same number of points spread from end-to-end, as in the Cartesian
USFFT).
Returning to Eq. (6) and referring to a specific row with fixed ξy , we have

f̂ (m, ξy) =
N−1∑
i1=0

N−1∑
i2=0

f [i1, i2] · exp

(
−i

[
2mi1

N
+ i2

]
ξy

)

=
N−1∑
i1=0

[
N−1∑
i2=0

exp(−iξyi2)f [i1, i2]
]

· exp

(
−i

2mi1

N
ξy

)
=

N−1∑
i1=0

C[i1] ·
[

exp

(
−i

2i1

N
ξy

)]m

(15)

and this is a complex trigonometric polynomial of order N .
One implication of this observation is that given N samples of this function, all information about this function
is given. Theoretically, this implies that a perfect interpolation is possible if for every destination point all the
N given samples are used. From a more practical point of view, the above observation implies that the function
defined in Eq. (15) is relatively smooth, and with a moderate oversampling, a near-perfect interpolation is expected
for a small neighborhood operation.
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Fig. 4. Second interpolation stage for circling the squares. Small circular points represent the known grid points after the previous interpolation
stage, and the square points are the desired final interpolated values.

(2) Circle the squares. In order to obtain concentric circles as required in the Polar coordinate system, we need to
‘circle the squares.’ This is done by dividing both ξx and ξy by a constant along each ray, based on its angle, and
therefore a function of the parameter m, being

R[m] =
√

1 + tan2

(
πm

2N

)
. (16)

The resulting grid is given by{
ξy = π�

NR[m] for −N � � < N

ξx = π�
NR[m] · tan

(
πm
2N

)
for −N

2 � m < N
2

}
.

Figure 4 depicts this step as an interpolation stage. Circling the squares amounts to a 1D operation along rays.
A set of 2N equispaced points is replaced by a new set of 2N points along the same line in different locations
(marked as small squares). This time the destination points are equispaced, but with a different spacing.
We have seen above that the first interpolation stage is applied on a trigonometric polynomial, which explains the
expected accuracy obtained. In this later stage, the function over which we interpolate is not of the same simple
form, but nevertheless smooth enough. Referring to one ray of slope α (in the range [−1,1], considering the BH
rays) we have that the 1D slice to work on is given by

f̂ (ξx, ξy) =
N−1∑
i1=0

N−1∑
i2=0

f [i1, i2] · exp
(−i(i1ξx + i2ξy)

) =
N−1∑
i1=0

N−1∑
i2=0

f [i1, i2] · exp
(−i(i1 + αi2)ξx

) = f̃ (ξx).

Consider the function f̃ (z) described above as a 1D function and take its Fourier transform

F
{
f̃ (z)

} =
∞∫

f̃ (z) exp(−iωz)dz =
∞∫ N−1∑

i =0

N−1∑
i =0

f [i1, i2] · exp
(−i(i1 + αi2)z

)
exp(−iωz)dz
−∞ −∞ 1 2
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=
N−1∑
i1=0

N−1∑
i2=0

f [i1, i2] · δ(i1 + αi2 + ω).

Here δ(i1 + αi2 − ω) is the Dirac function, being nonzero for i1 + αi2 − ω = 0. This expression assumes its
maximal frequency at i1 = i2 = N − 1 and its minimal frequency at i1 = i2 = 0. The frequency support of this
function is the interval [−(N − 1)(1 + α),0]. Thus, for α = 1 we obtain the widest bandwidth of 2N , and then
the Nyquist-sampling rate for this function is Tmax = π/N .
This means that the Fourier transform f̂ restricted to the ray is a band-limited function with required maximal
sampling period of π/N . If this function is sampled in this rate along the entire ray (from −∞ to ∞) we have a
complete representation of it that enables knowledge of its values at any location. In our case, for a limited interval
z ∈ [−π,π] we have 2N samples, which is the critical sampling rate exactly. Thus, with a moderate oversampling
we may expect to represent this function very accurately. This implies that this function is relatively smooth as
well and lends itself to high-accuracy interpolation.

3.2. The proposed scheme—overview

In performing the proposed Polar-FFT, we start with computation of the Fourier transform over a pseudo-Polar
grid, followed by the two interpolation stages presented above. As we have seen, in order to obtain high accuracy,
the pseudo-Polar grid should be oversampled, both radially and angularly. One approach to oversampling is the use
of the over-sampled pseudo-Polar grid as presented in the previous section (e.g., by zero padding). Alternatively,
as the pseudo-Polar fast transform can be broken into two parts, this separation could be used for better efficiency.
For the BV coordinates, the vertical FFT can be done with oversampling by zero padding as before, and then, as
we go to the second phase of Fractional FFT per each row, we can apply this stage one row at a time with the
interpolation that leads directly to the rotated rays. The memory savings are substantial (directly proportional to the
oversampling factor P ). Note that in performing the 1D interpolations, complete rows or columns from the result
array are brought to the cache, and processed to produce the desired values. Thus, memory management becomes
extremely effective, as opposed to the regular USFFT methods that require general memory access that may lead to
many cache misses.

As for the complexity of the overall algorithm, we have seen before that an amount of 120N2SP log2(NS) op-
erations are required for the computation of the oversampled pseudo-Polar FFT. Those operations are followed by
the first interpolation requiring O(N2S) operations (every row uses NP points to compute N values requires O(N)

operations, and there are NS of those). The second interpolation requires O(N2) operations (every ray with 2NS

values is used to produce 2N new values, and there are N rays). Thus, the overall operation count is dominated by
the 120N2SP log2(NS) operations of the pseudo-Polar FFT. This is 12SP times more complex than plain N × N

Cartesian grid 2D-FFT.
In terms of memory requirements, the overcomplete pseudo-Polar FFT requires 4N2SP float-values, and once

those are allocated, all other operations can be done within this array. Alternatively, using row-wise interpolation,
only 4N2S values are required. Also, a factor 2 saving can be obtained if a proper separation between the basically
vertical and basically horizontal parts is applied. Further savings could be obtained by breaking each of these groups
(BV and BH) to sub-parts with small overlap.

All the above applies to a general image of size N × N , resulting with an output Polar FT array of size 2N × 2N .
If higher oversampling is desired in the destination grid, all the above is still applicable. One simple way to get such
oversampling is to zero-pad the input array (this way modifying the initial N ).

The inversion of the Polar-FFT requires an implementation of the inverse pseudo-Polar FFT as described in the
previous section. Starting with a set of Polar coordinates in the frequency domain, we first apply two interpolation
stages—squaring the circles, and then rotating the rays—just as described above but in reversed order. For such
operation to succeed, we assume that the Polar grid is given in an over-complete manner (i.e., we start with an
array of 2NP [rays] × 2NS[circles] and interpolate to a pseudo-Polar grid with 2N [rays] × 2N [squares]). Once those
coordinates are filled with values, inverse pseudo-Polar FFT is applied as described previously, using the adjoint
operator. The same arguments posed above explain the suitability of the 1D interpolation and their expected accuracy
in the above reverse process.
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Fig. 5. The frequency support options: the outer square stands for the original frequency support of an arbitrary digital image. The inscribed disk
stands for the required support for the Polar-FFT to behave well. The smaller square inside is the one archived by the simple re-sampling proposed,
where the number of pixels in the image is increased by factor 2.

3.3. Disk band-limited support as regularization

A major difficulty in using the Polar coordinate system with digitally sampled data arises from the square shape of
the fundamental frequency domain [−π,+π]2. In our Polar FFT the corners are not represented and this may lead to
some loss of information. From an algebraic point of view, one may say that the matrix representing the Polar FFT
we have defined is not invertible, or badly conditioned.

A way around this problem is to assume that there is no content in those nonsampled corners. This means that the
image should be supported in the frequency domain inside a disk of radius π , leaving the corners empty. If the given
image is sampled at

√
2 times the Nyquist rate on both Cartesian axes then its frequency domain support is the square

[−π/
√

2,+π/
√

2]2, and this square is contained in the disk required. Thus, given any image, we can easily verify that
this condition holds: zero-padding the image by factor

√
2 in both axes, and applying 2D-FFT followed by 2D-IFFT,

the result image is twice as big (in pixel count) and its frequency domain support is as required. All these operations
add O(N2 log2(N) flops to the Polar FFT that follows. Figure 5 illustrates these frequency supports.

In the inversion transform from the frequency Polar-coordinates to the spatial domain, the knowledge about the
corners having zero content is valuable, and could be used to further stabilize the inverse transform. This is done in
the interpolation to the pseudo-Polar grid, by assigning zero values to all grid-points outside the π -radius circle.5

Figure 6 presents the effect of the corner-nulling process proposed here on the condition number of the transform
matrix. For an input array of size N × N (with N assuming the values 4,6,8, . . . ,30) we compose the transform
matrix for the 4N2 Polar coordinates and compute its condition number. As can be seen from the graph, this value
grows exponentially. As an example, for a moderate size of 30 × 30 input array, the condition number is 2 × 109,
implying that inversion by least-squares will require numerous iterations, and will be highly sensitive to numerical
errors.

The second curve refers to the same transform matrix with an augmented part referring to the corners. The aug-
mentation part is obtained by generating a regular 4N × 4N Cartesian grid transform matrix, and choosing the rows

5 Note that this discussion is not to be confused with the need to apply preconditioning in the inversion of the pseudo-Polar transform.
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Fig. 6. The condition-number for the transform matrix for a direct Polar-coordinates transform and for an augmented one, that nulls the corners.

that refer to the corners (outside the π -radius disk). Roughly speaking, we have doubled the number of rows, and the
condition-number this time is well controlled. For an input array of size 30×30 the condition number is 6.6, meaning
that standard iterative techniques of linear algebra achieve a high accuracy inversion.

This numerical experiment comes to show that zero-forcing at the corners stabilizes the inversion process. However,
in practice, there is no need for the augmentation as done in the prescribed experiment—all that is needed is nulling
values outside the frequency support disk of radius π , and the improved condition-number presented here holds true
nevertheless.

4. Analysis of the Polar FFT algorithm

4.1. Experimental evidence—USFFT versus Polar-FFT

We apply the USFFT and the Polar-FFT tools to the image Lena (scaled down to size 64 × 64 pixels, in order
to speedup this and later experiments), and compare error behaviors. In particular, we are interested in studying the
effect of the oversampling. Figure 7 presents the results of the first experiment.

For the Cartesian-based USFFT method, we use a 2D Hermite interpolation on a 2 × 2 support [39]. It exploits
known Fourier values on the Cartesian grid, along with their horizontal and vertical derivatives (altogether, 12 values),
in order to fit a polynomial. Those directional derivatives are obtained by pre-multiplying the image by linear terms
and applying the 2D-FFT three times [21]. For the pseudo-Polar based method, the first interpolation stage is also
based on Hermite interpolation with a 2-samples support (as for the USFFT, but applied in 1D, and exploiting 4
known values on this support to fit a cubic). The second stage interpolation uses a piecewise cubic spline using the
Fourier values alone and forcing alignment of the first derivatives6 [39]. Thus, the interpolation schemes deployed
on our Polar-FFT are inferior to the one practiced for the Cartesian-USFFT. Those schemes remain fixed throughout
the reported experiments. As already mentioned in the Introduction, better interpolation methods can be used for both
algorithms. Here we chose to concentrate on short-support and relatively simple methods that are easy to understand
and implement, and ones that eventually lead to an acceptable level of accuracy, nevertheless.

Figure 7 presents both �1 and �2 measures of error. The error presented is a relative error, normalized by the
appropriate norm of the ideal result. The horizontal axis in the plots is the overall oversampling ratio. For the Cartesian-
based USFFT, for an oversampling factor of S in each axis, the overall oversampling ratio is S2. Similarly, for our

6 Evaluating the directional derivatives for this stage requires a replication of the first stage interpolation for those as well, and thus was avoided,
settling for a weaker scheme.
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Fig. 7. USFFT and the Polar-FFT error as a function of the over-sampling. The USFFT oversampling is the same along the two axes, while for the
PFFT we fix the angular oversampling (P = 1,2, . . . ,6, and thus 6 curves) and vary the radial one S = 1,2, . . . ,20.

method, the overall oversampling is PS, where S and P are the oversampling ratios for the number of squares and
number of rays. Several choices of P and S are tested.

We see that for the proper choice of P and S (S ≈ 5P ) the Polar-FFT method is far more accurate than the USFFT,
under either error measure. For a fixed P there is a saturation effect in the approximation error as S → ∞ because
errors caused by the first interpolation stage dominate and cannot be compensated. The higher needed oversampling
along the rays can be explained in two ways: (i) the radial interpolation stage of the PFFT uses a lower-order procedure,
based on splines instead of Hermite interpolation; and (ii) the radial interpolation task is more difficult as the signal
to be interpolated is less smooth (see previous section). Extensive experiments with different signals, their sizes, and
metrics of error evaluations, all confirm that the above conclusions comparing the two methods are typical.

4.2. Frequency domain spread of the error

Given the specific image and fixing the oversampling ratio, we study how the errors of the two methods behave in
the frequency domain. Intuitively, we know that Cartesian-based USFFT method should cause higher errors near the
origin where the interpolation starts from an inherently coarser grid. In contrast, we expect the Polar-FFT to perform
equally well in most frequency locations.

Using the same test image from the previous experiment (scaled down Lena), Fig. 8 shows the relative errors
obtained by the USFFT (S = 9 in both axes), and the Polar-FFT (S = 20, P = 4). The plots show log (with base
10, being crucial for a good visualization) of the absolute value of the transform errors, divided by the mean absolute
value of the true transform, so as to get a relative error evaluation. The frequency domain is presented on Cartesian
axes in order to give more intuitive frequency-content description. Since the frequency domain is sampled in Polar
coordinates in the transforms, we use a Voronoi diagram to slice the plane into pieces per each Polar frequency sample.
This is a matter of visual display only.

Our expectations about the distribution of errors in the frequency domain are validated—the Cartesian-USFFT
concentrates the error at the origin, while the Polar-FFT errors are spread around. Moreover, the errors obtained by
the Polar-FFT are substantially smaller.
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Fig. 8. The relative error as a function of frequency location using a specific image. This figure shows the error obtained by the USFFT method
(left) and the PFFT algorithm errors (right). The error scale is relative and logarithmic.

4.3. Frequency domain spread of the error—worst-case analysis

A limitation of the above experiment is that it relies on a specific choice of a signal. We now address the same
question from a worst-case point of view: for a specific frequency location in the destination Polar grid, what is
the worst possible signal, maximizing the error at this point, and how big is this maximum error? Answering these
questions per each location, we can draw a worst-case error map in the frequency domain and compare for both the
USFFT and the Polar-FFT methods.

Let x of size N × N denote the signal to be transformed. The transform result has 2N rays containing 2N samples
each. As all the involved operations are linear, we adopt a matrix–vector representation for the exact (Te), the USFFT
(Tu), and the Polar-FFT (Tp). All these matrices are of size 4N2 × N2. As to the construction of these matrices, Te

can be built directly using the definition of the transform in Eq. (1) and the grid defined in (2). The USFFT and the
proposed Polar-FFT matrices can be built by applying these transforms on N2 signals drawn from the trivial basis
(having ‘1’ in one location and zeros elsewhere). Every such transform produces a 4N2 long vector being a column
in the desired matrices.

For the given signal x of length N2 (due to its lexicographic ordering), the transform error for the USFFT is
(Te − Tu)x, with a similar expression for the Polar-FFT method. To maximize this error is to solve

max
x

‖W(Te − Tu)x‖2
2

‖x‖2
2

. (17)

W is a diagonal matrix with all entries being zero apart from the one element chosen in the frequency domain. Thus,
essentially, only one row of the matrix Te − Tu is used—denote this as eT . Clearly, by Cauchy’s inequality, the
maximum is obtained for x = e, and the error obtained is ‖e‖2.

Figure 9 presents these worst-case errors7 as a function of frequency for both methods when N = 16. The Polar-
FFT performs far better in all locations. Note that our relatively low choice of N = 16 in this experiment causes
special sampling effects.

7 In this and later experiments based on the matrix–vector representation of the transforms, we use low value for N because of the induced matrix
sizes. One could use much higher N values if instead of explicitly forming the matrices, the transform and its adjoint operator are applied.
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Fig. 9. The error as a function of frequency location: using the worst case signal per location (left: USFFT, right: the proposed Polar-FFT).

4.4. Worst case error via eigenspace analysis

4.4.1. Direct approach
We desire a plot of the worst case �2 error of each method under a fixed oversampling. Using matrix–vector

notation, for a given signal x, the transform error of the USFFT is (Te − Tu)x. Now we solve the optimization
problem

max
x

‖(Te − Tu)x‖2
2

‖x‖2
2

, (18)

seeking the worst-possible signal x maximizing error, subject to unit �2-norm. The answer is of-course the first right
singular vector of (Te −Tu) [40] and the value of (18) is the square of the first singular value (a square-root is required
to align with previous error measures).8

Figure 10 presents the real and imaginary parts of these worst-case signals for the USFFT (S = 9) and the Polar-
FFT (S = 20, P = 4), and the absolute frequency description of this signal. The USFFT’s maximal square-root MSE
error is 3.6 × 10−3 while the Polar-FFT’s is 1.9 × 10−4. Again, the USFFT method is weaker, and its worst signal is
concentrated near the frequency origin where the method is weakest. Note that the worst signal is modulated (notice
the shift from the center in the spatial domain) to result in a very nonsmooth frequency behavior.

4.4.2. Relative approach
A major problem with the above analysis is the difficulty in understanding the meaning of the error found, being

a ratio between energies in the frequency and the spatial domains. An interesting alternative is the definition of worst
signals by

max
x

‖(Te − Tu)x‖2
2

‖Tex‖2
2

. (19)

Put in words, we seek the worst error relative to transform size in Polar frequency coordinates. This problem amounts
to a generalized eigenvalue problem [40]. Figure 11 presents the results for Cartesian USFFT method (maximal error
is 3.6 × 10−4) and Polar-FFT method (worst error is 4.5 × 10−5). Both methods lead to similar worst-case signals,

8 Alternatively, the objective function defined in (18) can be maximized by an eigendecomposition of the symmetric and positive semi-definite
matrix (Te − Tu)H (Te − Tu), and taking the eigenvector that corresponds to the largest eigenvalue. This is theoretically equivalent to the SVD
approach mentioned above.
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Fig. 10. Worst case signal—direct eigenvalue approach. The top row shows the worst signal for the USFFT—the real spatial part (left), the imaginary
spatial part (middle), and its spectrum (right). The bottom row shows the same for the PFFT.

Fig. 11. Worst case signal—relative eigenvalue approach. The top row shows the worst signal for the USFFT—the real spatial part (left), the
imaginary spatial part (middle), and its spectrum (right). The bottom row shows the same for the PFFT.

with energy mostly falling outside the circle of radius π , so that the denominator in the above definition is nearly zero.
Nevertheless, our Polar-FFT has an advantages over Cartesian coordinates.

4.4.3. Relative approach with support constraint
In order to avoid signals of the sort obtained earlier, we seek the worst case signal for (19) with the side-constraint

of no energy in the frequency domain outside the circle of radius π . Thus we solve

max
x

‖(Te − Tu)x‖2
2

‖Tex‖2
2

subject to F1x = 0, (20)

where F1 represents the regular Cartesian FFT in a predetermined density, restricted to frequency points outside the
circle. Alternatively, we reformulate this using

max
{x|F1x=0}

‖(Te − Tu)x‖2
2

‖Tex‖2
2

≈ max
x

‖(Te − Tu)x‖2
2

‖Tex‖2
2 + λ‖F1x‖2

2

. (21)

With this formulation we again have a generalized eigenvalue problem. For large λ, (21) yields an approximate so-
lution of the original problem (20). We chose λ = 1000 and find that higher values does not change the results
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Fig. 12. Worst case signal—relative eigenvalue approach with constraint. The top row shows the worst signal for the USFFT—the real spatial part
(left), the imaginary spatial part (middle), and its spectrum (right). The bottom row shows the same for the PFFT.

perceivably. Those results are shown in Fig. 12. The USFFT worst error is 6.5 × 10−5 and with the Polar-FFT method
the error we obtain is 4.2 × 10−6.

4.5. Signal-space ordering via eigenspace analysis

We return to the definition of error in Eq. (19). In solving the maximization problem for the Polar-FFT we find
the worst signal and the accompanying worst error. This worst signal represents only a one-dimensional subspace of
signals, and for signals orthogonal to it, all we can say is that the error on their transform computation is expected to
be smaller, though we cannot say by how much.

Solving the same problem again while forcing the result to be orthogonal to the previous eigenvector (the already
found worst-possible signal), we obtain a second worst rank-1 sub-space. Repeating this process, we essentially find
ranked orthonormal basis that represents the signal-space CN×N , such that the first vector spans the worst signals, the
second spans the “next” worst signals, and so on. The process described above is simply an eigenvalue problem for
the matrix

(Te − Tu)
H (Te − Tu).

The eigenvectors are the ranked ortho-basis and the eigenvalues are related squared errors. Denote the results of the
above process on the Polar-FFT error by {uk}k=N2

k=1 , such that uN2 is the worst signal. Then the sequence

{λk}N2

k=1 =
{‖(Te − Tp)uk‖2

2

‖uk‖2
2

}N2

k=1
(22)

measures the errors induced by each subspace, from ranked best to the worst. Using the same ortho-basis, we may
compute

{δk}N2

k=1 =
{‖(Te − Tu)uk‖2

2

‖uk‖2
2

}N2

k=1
, (23)

the errors we will effectively obtain from the Cartesian USFFT method on the same subspaces. Plotting these two
sequences in Fig. 13, we compare the distribution of errors by subspace and obtain a complete picture about the
transform errors of the two methods for all the signal space.

Figure 14 is similar but uses (20) to obtain the ortho-basis and the errors for its subspaces. In this case the eigenvalue
problem becomes a generalized eigenvalue one. Similarly, Fig. 15 presents results from the constrained generalized
eigenvalue problem (21). All these figures show a consistent superiority (and even a growing one, as we turn from the
worst-case direction to the remaining subspace) of our Polar-FFT over the USFFT method.
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Fig. 13. The ranked signal space—the direct eigenvalue approach.

Fig. 14. The ranked signal space—the relative eigenvalue approach.

5. Available software and reproducible results

One of the main objectives of this project has been development of a software tool that performs the computations
given here. We intend to make this toolbox available to the public, in a fashion parallel to Wavelab and Beamlab
libraries [41,42]. Our implementation uses Matlab code to perform various tasks around the idea of Polar FFT. The
PFFT toolbox is freely available in http://www.cs.technion.ac.il/~elad/PolarFFT.zip.

As part of the freely available software, we supply code reproducing every figure in this paper that is based on
computation. We believe that this will help researchers entering this area, and engineers interested in better under-
standing the details behind the verbal descriptions supplied here. This also agrees with the recent emerging standard
of guaranteeing reproducible results in scientific publications [41].

http://www.cs.technion.ac.il/~elad/PolarFFT.zip
http://www.cs.technion.ac.il/~elad/PolarFFT.zip
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Fig. 15. The ranked signal space—the relative eigenvalue approach with constraints.

6. Conclusions

In this article we have developed a rapid and accurate Polar FFT. For a given two-dimensional signal of size N ×N ,
the proposed algorithm produces a Polar FFT with C × N2 coordinate samples, where C is a chosen parameter (e.g.,
C = 4). The complexity of this algorithm is O(CN2 logN), just like in a Cartesian 2D-FFT. Two special features of
this algorithm are (i) it involves only 1D equispaced FFT’s and 1D interpolations, leading to a highly cache-aware
algorithm; and (ii) it has very high accuracy for moderate oversampling factors.

The accuracy of the algorithm was studied both for specific images and from a worst-case standpoint. The new
approach is shown to be far more accurate than Cartesian-based Unequally-Spaced Fast Fourier Transform (USFFT).
Our analysis shows that the proposed scheme produces highly accurate transform values near the origin, where “typ-
ical” signals concentrate on. However, these comparative results are restricted to the use of simple and small-support
interpolations and no pre-compensation. Further work is required in order to incorporate more advanced techniques
from the USFFT literature.

In the present paper we emphasize the basic construction, leaving aside applications, improvements, and extensions.
We believe that this paper serves the researchers/engineers interested in applying those tools in applications, offering
a reasonable confidence in the accuracy and speed. The supplied software, along with this documentation, may make
the adoption of these methods relatively painless.

Future work on this topic might consider various improvements to the interpolation stages implemented in our
algorithm, using recent results in the USFFT literature (e.g., [28,29]). The proposed algorithm might have applications
in stable and rapid inversion of Radon transform, fast image rotation and registration, and elsewhere. Extension to 3D
will require definition of Polar-like9 coordinates.

Appendix A. Chirp-Z transform (FRFT)

Definition 3. Given the discrete signal x[n] over the support 0 � n < N , and given an arbitrary scalar value α, the
Chirp-Z Transform (also known as the Fractional Fourier Transform) is given by

x̂[k] =
N−1∑
n=0

x[n] exp

(
− i2πkn

N
· α

)
for 0 � k < N. (A.1)

9 There is no exact Polar sampling method for 3D, thus we must settle for Polar-like grids.
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As we have seen through the definition of the pseudo-Polar Fourier transform, we need to perform this kind of
transform as part of our process. The following theorem guarantees existence of a highly efficient algorithm for this
transform. This theorem, and more importantly, the efficient process itself, are described in [37,38].

Theorem 4. Evaluation of the Chirp-Z transform can be done with order of 30N logN operations.

Proof. Our proof will be given by construction of such an efficient process. Our starting point is the trivial assignment
2kn = k2 + n2 − (k − n)2. Using this relationship into the definition above we obtain

x̂[k] =
N−1∑
n=0

x[n] exp

(
− iπα

N

(
k2 + n2 − (k − n)2))

= exp

(
− iπα

N
k2

)N−1∑
n=0

x[n] · exp

(
− iπα

N
n2

)
· exp

(
iπα

N
(k − n)2

)
. (A.2)

If we define the sequence

s[n] = exp

(
− iπα

N
n2

)
,

then the above equation can be rewritten as

x̂[k] = s[k]
N−1∑
n=0

x[n]s[n]s[k − n]. (A.3)

This equation suggests a way to evaluate the transform, starting with pre-multiplication of x[n] by s[n], followed by
a convolution with s[n], and finally, post-multiplying with s[n] again.

The main saving in computation comes from replacing convolution by a 1D-FFT based method. A 1D-FFT trans-
form should be applied on the two sequences, multiply the results, and apply inverse transform on the resulting
sequence. FFT should be computed for the two sequences with zero padding to length 2N in order to avoid cyclic
effects.

Three 1D-FFT’s are needed, costing each 10N logN operations. The creation of s[n] and the pre-/post-
multiplication by it require O(N) additional operations. Thus, an overall of 30N logN operations is needed for
the entire process, as claimed by the theorem. �
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