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ABSTRACT

Shrinkage is a well known and appealing denoising technique. The
use of shrinkage is known to be optimal for Gaussian white noise,
provided that the sparsity on the signal’s representation is enforced
using a unitary transform. Still, shrinkage is also practiced suc-
cessfully with non-unitary, and even redundant representations. In
this paper we shed some light on this behavior. We show that sim-
ple shrinkage could be interpreted as the first iteration of an al-
gorithm that solves the basis pursuit denoising (BPDN) problem.
Thus, this work leads to a sequential shrinkage algorithm that can
be considered as a novel and effective pursuit method.

1. INTRODUCTION

One way to pose the maximum a-posteriori probability (MAP) es-
timator for the denoising problem is the minimization of the func-
tion

f(x) =
1

2
· ‖x− y‖22 + λ · 1T · ρ {Tx} . (1)

The first term is known as the log-likelihood, describing the re-
lation between the desired (clean) signal,x ∈ IRN , and a noisy
version of it,y ∈ IRN . We assume the modely = x + v, with
v ∈ IRN a Gaussian zero mean white noise. The term1T ·ρ {Tx}
stands for the prior posed on the unknown signalx, based on spar-
sity of the unknown signal with respect to its transformed (T)
representation. The functionρ is a scalar robust measure (e.g.,
ρ(z) = |z|), and when operating on a vector, it does so entry-wise.
The multiplication by1T sums those robust measures.

Donoho and Johnstone pioneered a wavelet based signal de-
noising algorithm in line with the above structure. They advocated
the use of sparsity of the wavelet coefficientsWx (i.e., hereT is
the unitary matrixW) as a driving force in recovering the desired
signal [1, 2]. Later work in [3, 4, 5] simplified these ideas and
related them to the MAP formulation as presented above. Interest-
ingly, using such a prior in Equation (1) leads to asimple closed-
form solution, known as shrinkage. This solution amounts to a
wavelet transform on the noisy signal, a look-up-table (LUT) func-
tion on the coefficients (that depends on the functionρ), S{Wy},
and an inverse wavelet transform to produce the outcomex̂. More
on how the shrinkage algorithm becomes indeed the optimal solver
of (1) can be found in [6]. This optimality depends strongly on the
`2-norm used in evaluating the distancex − y, and this has di-
rect roots in the white Gaussianity assumptions on the noise. Also,
crucial to the optimality of this method is the orthogonality ofW.

A new trend of recent years is the use of overcomplete trans-
forms, replacing the traditional unitary ones – see [7, 8, 9, 10, 11,

12] for representative works. This trend was partly motivated by
the growing realization that orthogonal wavelets are weak in de-
scribing the singularities found in images. Another driving force
in the introduction of redundant representations is the sparsity it
can provide, which many applications find desirable. Finally, we
should mention the desire to obtain shift-invariant transforms, again
calling for redundancy in the representation. In these methods
the transform is defined via a non-square full rank matrixT ∈
IRL×N , with L > N . Such redundant methods, like the un-
decimated wavelet transform, curvelet, contourlet, and steerable-
wavelet, were shown to be more effective in representing images,
and other signal types.

Given a noisy signaly, one can still follow the shrinkage pro-
cedure, by computing the forward transformTy, putting the coef-
ficients through a shrinkage LUT operationS{Ty}, and finally
applying the inverse transform to obtain the denoised outcome,
T+S{Ty}. Will this be the solver of (1)? The answer is no!
As we have said before, the orthogonality of the transform plays a
crucial role in the construction of the shrinkage as an optimal pro-
cedure. Still, shrinkage is practiced quite often with non-unitary,
and even redundant representations, typically leading to satisfac-
tory results – see [7, 8, 9] for representative examples. Naturally,
we should wonder why this is so.

In this paper we shed some light on this behavior. Our main
argument is that such a shrinkage could be interpreted as the first
iteration of a converging algorithm that solves the basis pursuit de-
noising (BPDN) problem. The BPDN forms a similar problem to
the one posed in (1), replacing the analysis prior with a generative
one. While the desired solution of BPDN is hard to obtain in gen-
eral, a simple iterative procedure that amounts to step-wise shrink-
age can be employed with quite successful performance. Thus,
beyond showing that shrinkage has justified roots in solid denois-
ing methodology, we also show how shrinkage can be iterated in
a simple form, to further strengthen the denoising effect. As a
byproduct, we get an effective pursuit algorithm that minimizes
the BPDN functional via simple steps.

In the next section we bridge between an analysis based ob-
jective function and a synthesis one, leading to the BPDN. Section
3 then develops the iterated shrinkage algorithm that minimizes it.
In Section 4 we present few simulations to illustrate the algorithm
proposed.

2. FROM ANALYSIS TO SYNTHESIS-BASED PRIOR

Starting with the penalty function posed in (1), we definexT =
Tx. Multiplying both sides byTT , and using the fact thatT is



full-rank, we get1 x = (TT T)−1TT xT = T+xT . Using these
relations to rearrange Equation (1), we obtain a new function of
the representation vectorxT ,

f̃(xT ) =
1

2
· ‖DxT − y‖22 + λ · 1T · ρ {xT } , (2)

where we have used the notationD = T+.
Denoising can be done by minimizingf and obtaining a so-

lution x̂1. Alternatively, we can minimizẽf with respect toxT

and deduce the denoised outcome byx̂2 = Dx̂T . Interestingly,
these two results are not expected to be the same in the general
case, since in the conversion fromf to f̃ we have expanded the
set of feasible solutions by allowingxT to be an arbitrary vector
in IRL, whereas the original definitionxT = Tx implies that it
must be confined to the column space ofT. Notice that this differ-
ence between the two formulations disappears whenT is full rank
square matrix, which explains why this dichotomy of methods do
not bother us for the regular wavelet transform.

Still, the formulation posed in (2) is a feasible alternative Bayesian
method that uses a generative prior. Indeed, for the choiceρ{z} =
|z|, this formulation is known as the basis pursuit denoising (BPDN).
Referring toD as a dictionary of signal prototypes (atoms) be-
ing its columns, we assume that the desired signalx is a linear
construction of these atoms, with coefficients drawn independently
from a probability density function proportional toexp{−Const·
ρ{xT (j)}}. In the case ofρ(z) = |z| this is the Laplace distribu-
tion, and we effectively promote sparsity in the representation.

3. PROPOSED ALGORITHM

3.1. Sequential Approach

We desire the minimization of (2). Assume that in an iterative pro-
cess used to solve the above problem, we hold thek-th solution̂zk.
We are interested in updating itsj-th entry,z(j), assuming all the
others as fixed. Thus, we obtain a one-dimensional optimization
problem of the form

min
w

1

2
· ‖ [Dzk − djzk(j)] + djw − y‖22 + λ · ρ {w} . (3)

In the above expression,dj is the j-th column inD. The term
Dzk − djzk(j) uses the current solution for all the coefficients,
but discards of thej-th one, assumed to be replaced with a new
value,w.

Since this is a 1D optimization task, it is relatively easy to
solve. Ifρ(w) = |w|, the derivative is

0 = dT
j ([Dzk − djzk(j)] + djw − y) + λ · sign{w} , (4)

leading to

w = zk(j) +
dT

j (y −Dzk)

‖dj‖22
− λ · sign{w}

‖dj‖22
(5)

= v(D,y, zk, j)− λ̂(j) · sign{w} .

Here we have defined

v(D,y, zk, j) =
dT

j (y −Dzk)

‖dj‖22
+ zk(j) and (6)

λ̂(j) =
λ

‖dj‖22
.

1If T is a tight frame (αTT T = I), thenx = αTT xT .

Bothv(D,y, zk, j) andλ̂(j) are computable using the known in-
gredients and thus this leads to a closed form formula for the opti-
mal solution forw, being a shrinkage operation onv(D,y, zk, j),

wopt = S {v(D,y, zk, j)} (7)

=





v(D,y, zk, j)− λ̂(j) for v(D,y, zk, j) > λ̂(j)

0 for |v(D,y, zk, j)| ≤ λ̂(j)

v(D,y, zk, j) + λ̂(j) for v(D,y, zk, j) < −λ̂(j)

.

A similar LUT result can be developed for any many other choices
of the functionρ(·).

It is tempting to suggest an algorithm that applies the above
procedure forj = 1, 2, . . . , , L, updating one coefficient at a time
in a sequential coordinate descent algorithm, and cycle such pro-
cess several times. While such algorithm necessarily converges,
and could be effective in minimizing the objective function using
scalar shrinkage operations only, it is impractical in most cases.
The reason is the necessity to draw one column at a time fromD
to perform this computation. Consider, for example, the curvelet
dictionary. While the transform and its inverse can be interpreted
as multiplications by the dictionary and its transpose (because it
is a tight frame), this matrix is never explicitly constructed, and
an attempt to draw basis functions from it or store them could be
devastating. Thus we take a different route.

3.2. Parallel Approach

Given the current solutionzk, let us assume that we use the above
update formulation to updateall the coefficientsin parallel, rather
than doing this sequentially. Obviously, this process must be slower
in minimizing the objective function, but with this slowness comes
a blessed simplicity that will be evident shortly.

First, let us convert the termsv(D,y, zk, j) in Equation (6) to
a vector form that accounts for all the updates at once. Gathering
these terms for allj ∈ [1, L], this reads

v(D,y, zk) = diag−1
{
DT D

}
DT (y −Dzk) + zk. (8)

If the transform we use is such that multiplication byD and its ad-
joint are fast, then computing the above term is easy and efficient.
Notice that here we do not need to extract some columns from the
dictionary, and need not use these matrices explicitly in any other
way. The normalization by the norms of the columns is simple to
obtain and can be kept as fixed parameters of the transform, com-
puted once off-line. In the case of tight frames, applying multipli-
cations byDT andD are the forward and the inverse transforms,
up to a constant. For a non-tight frame, the above formula says that
we need to be able to apply the adjointand not the pseudo-inverse
of D.

There is also a natural weakness to the above strategy. One
cannot take a shrinkage of the above vector with respect to the
threshold vectorλ · diag−1

{
DT D

}
· 1, and expect the objective

function to be minimized well. While updating every scalar entry
wj using the above shrinkage formula is necessarily decreasing the
function’s value, applying all those at once is likely to diverge, and
cause an ascent in the objective. Thus, instead of applying a com-
plete shrinkage as Equation (7) suggests, we consider a relaxed
step of the form

zk+1 = zk + µ [S {v(D,y, zk)} − zk] = zk + µhk. (9)

This way, we compute the shrinkage vector as the formula sug-
gests, and use it to define a descent direction. The solution is



starting from the current solutionzk and updates it by “walking”
towards the shrinkage result. For a sufficiently smallµ > 0, this
stepmust lead to a feasible descent in the penalty function, be-
cause this direction is a non-negative combination ofL descent
directions.

We can apply a line search to find the proper choice for the
value ofµ. In general, a line search seeks the best step-size as a
1D optimization procedure that solves

min
µ

1

2
· ‖D [zk + µhk]− y‖22 + λ · 1T · ρ {zk + µhk} , (10)

wherehk is a computable vector. As it turns out, the solution in
this case is given also as a shrinkage-like procedure [6].

Looking at the first iteration, and assuming that the algorithm
is initialized withz0 = 0, the term in Equation (8) becomes

v(D,y,0) = diag−1
{
DT D

}
DT y. (11)

The solutionz1 is obtained by first applying shrinkage to the above
vector, usingλdiag−1

{
DT D

}
1 as the threshold vector, and then

relaxing it, as in Equation (9). The denoised outcome is thus

Dz1 = µDS
{

diag−1
{
DT D

}
DT y

}
, (12)

and the resemblance to the heuristic shrinkage is evident. In fact,
for tight frames with normalized columns the above becomes ex-
actly equal to the heuristic shrinkage [6].

4. EXPERIMENTAL RESULTS

We present here a simple set of experiments that corresponds to the
case of a tight frame with normalized columns. Other experiments
are reported in [6]. We buildD as a union of10 random unitary
matrices of size100 × 100 each. We synthesize a sparse repre-
sentationz0 with 15 non-zeros in random locations and Gaussian
i.i.d. entries, so as to match the sparsity prior we use. Thus the
clean signal is defined asx0 = Dz0. This signal is contaminated
by a Gaussian i.i.d noiseσ = 0.3 (parallels an SNR of≈ 1.3dB).

We apply several algorithms to the denoising task: (i) a heuris-
tic shrinkage as described in the introduction; (ii) the IRLS algo-
rithm, which is very heavy but minimizes the BPDN effectively,
and thus is good as a reference method [6]; (iii) the sequential
shrinkage algorithm developed above; and (iv) the parallel coun-
terpart. We assumeρ(z) = |z|, and the results are reported in
Figures 1- 3.

First, we show how effective are these algorithms in minimiz-
ing the objective in Equation (2). Figure 1 presents the value of
the objective as a function of the iteration number. Here we have
implemented the paralle shrinkage algorithm both with a fixed
µ = 1/α and with a line-search. As expected, the IRLS per-
forms the best in terms of convergence speed. The sequential and
the parallel (with line-search) coordinate descent are comparable
to each other, being somewhat inferior to the IRLS.

When implementing these algorithms for denoising, we sweep
through the possible values ofλ to find the best choice. In assess-
ing the denoising effect, we use the noise decay factor measure
r(x̂,x0,y) = ‖x̂ − x0‖22/‖y − x0‖22, which gives the ratio be-
tween the final reconstruction error and the error withy as our es-
timate. Thus, a value smaller than1 implies a decay in the noise,
and the closer it is to zero the better the result.

We compare the IRLS results (after the1-st and the5-th itera-
tions) to the simple shrinkage algorithm. The simple shrinkage in
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Fig. 1. The objective as a function of the iteration – algorithms
B-D.

this case uses a threshold beingλ/α = 10λ, so as to match to the
objective function that usesλ in its formulation. Figure 2 presents
this comparison, showing the noise decay factor versusλ. Inter-
estingly, it appears than the simple shrinkage manages to utilize
most of the denoising potential, and5 iterations of the IRLS give
only slightly better results.

Figure 3 presents a similar comparison of the simple shrink-
age with the parallel coordinate descent shrinkage with a fixedµ
chosen asµ = 1/α. We see that the first iteration of the par-
allel shrinkage aligns perfectly with the simple shrinkage when
µ = 1/α, as predicted, and having5 iterations gives a slight im-
provement. Other experiments with the other algorithms are re-
ported in [6], and were omitted from here because of space con-
straints.
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5. RELATED WORK

Interestingly, a sequence of recent contributions proposed a similar
sequential shrinkage algorithm. First, the work reported in [13, 14]
uses such an algorithm for finding the sparsest representation over
redundant dictionaries (such as the curvelet, or combination of dic-
tionaries). These papers motivated such algorithm heuristically,
relying on the resemblance to the unitary case, on one hand, and
the block-coordinate-relaxation method, on the other [15].

Figueiredo and Nowak suggested a constructive method for
image deblurring, based on iterated shrinkage [16]. Their algo-
rithm aims at minimizing the penalty function

fB(x) =
1

2
· ‖Kx− y‖22 + λ · 1T · ρ {Wx} , (13)

whereK is a square matrix representing the blur, andW is a uni-
tary wavelet transform. Their sequential shrinkage method is de-
rived via expectation-maximization, and its structure is very simi-
lar to the method proposed in this work. However, their algorithm
is restricted to the deblurring case, and cannot be generalized to
handle the minimization of the objective posed in (2).

Most related to this paper is the work by Daubechies, Defrise,
and De-Mol [17]. While addressing the same objective as posed
in (13), their work copes with a general (and thus not necessarily
square) operatorK. Thus, by definingxW = Wx, the above
penalty function becomes

f̃B(xW ) =
1

2
· ‖KWT xW − y‖22 + λ · 1T · ρ {xW } . (14)

Defining D = KWT , their method can handle the very same
problem we have posed here. Indeed, their work proposes a se-
quential shrinkage procedure, very much like the one we propose.
However, their way of developing the algorithm is entirely differ-
ent, leaning on the definition of a sequence of surrogate functions
that are minimized via shrinkage. Also, while the resulting algo-
rithms are similar, they are not the same: the norms of the atoms
play different roles in the two algorithms; the thresholds chosen in
the shrinkage are somewhat different; and the choice ofµ is done
entirely different.

6. CONCLUSION

We have shown that the heuristic shrinkage has origins in Bayesian
denoising, being the first iteration of a in a sequential shrinkage
denoising algorithm. This leads to several consequences: (i) we
are able to extend the heuristic shrinkage and get better denoising;
(ii) we obtain alternative shrinkage algorithms that use the trans-
form and its adjoint, rather than its pseudo-inverse; (iii) the new
interpretation may help in addressing the question of choosing the
threshold in shrinkage, and how to adapt it between scales; (iv)
the obtained algorithm can be used as an effective pursuit for the
BPDN for other applications; and (v) due to the close relation to
[17], the proposed algorithm can handle general inverse problems
of the form (hereKD is the effective dictionary):

f̃(xT ) =
1

2
· ‖KDxT − y‖22 + λ · 1T · ρ {xT } . (15)
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