K-SVD: DESIGN OF DICTIONARIES FOR SPARSE REPRESENTATION

Michal Aharon

Michael Elad

Alfred Bruckstein

Technion—Israel Institute of Technology, Haifa 32000, Israel

ABSTRACT

In recent years there is a growing interest in the study of
sparse representation for signals. Using an overcomplete
dictionary that contains prototype signal-atoms, signals are
described by sparse linear combinations of these atoms. Re-
cent activity in this field concentrated mainly on the study
of pursuit algorithms that decompose signals with respect to
a given dictionary.

In this paper we propose a novel algorithm — the K-SVD
algorithm — generalizing the K-Means clustering process,
for adapting dictionaries in order to achieve sparse signal
representations.

We analyze this algorithm and demonstrate its results on
both synthetic tests and in applications on real data.

1. INTRODUCTION

Recent years have witnessed a growing interest in the use
for sparse representations for signals. Using an overcom-
plete dictionary matrix D € R™*¥ that contains K atoms,
{d;}1£,, as its columns, it is assumed that a signal y € R"
can be represented as a sparse linear combination of these
atoms. The representation of y may either be exact y =
Dx, or approximate, y = Dx, satisfying ||y — Dx||2 < e.
The vector x € R¥ displays the representation coefficients
of the signal y. This, sparsest representation, is the solution
of either

(Pp) min|x[|, subjectto y = Dx, (1)
or

(Poe) min|x||, subjectto [y —Dx|,<e (2

where |||, is the ¥ norm, counting the non zero entries of
a vector.

Applications that can benefit from the sparsity and over-
completeness concepts (together or separately) include com-
pression, regularization in inverse problems, feature extrac-
tion, and more. In this paper we consider the problem of
designing dictionaries based on learning from signal ex-
amples. Our goal is to find the dictionary D that yields
sparse representations for a set of training signals. We be-
lieve that such dictionaries have the potential to outperform

commonly used pre-determined dictionaries. With the ever-
growing computational resources that we have access to to-
day, such methods will adapt dictionaries for special classes
of signals, and yield better performance in various applica-
tions.

2. PRIOR ART

Pursuits Algorithms: In order to use overcomplete and
sparse representations in applications, one need to fix a dic-
tionary D, and then find efficient ways to solve (1) or (2).
Exact determination of sparsest representations proves to be
an NP-hard problem [1]. Hence, approximate solutions are
considered instead. In the past decade or so several effi-
cient pursuit algorithms have been proposed. The simplest
ones are the Matching Pursuit (MP) [2] or the Orthogonal
Matching Pursuit (OMP) algorithms [3]. These are greedy
algorithms that select the dictionary atoms sequentially. A
second well known pursuit approach is the Basis Pursuit
(BP) [4]. It suggests a convexisation of the problems posed
in (1) and (2), by replacing the £°-norm with an /!-norm.
The Focal Under-determined System Solver (FOCUSS) is
very similar, using the ¢/P-norm with p < 1, as a replace-
ment to the /°-norm [5]. Here, for p < 1 the similarity to
the true sparsity measure is better, but the overall problem
becomes non-convex, giving rise to local minima that may
divert the optimization. Extensive study of these algorithms
in recent years has established that if the sought solution, x,
is sparse enough, these techniques recover it well [6, 7, 8, 3].
Design of Dictionaries: We now briefly mention the main
work done in the field of fitting a dictionary to data ex-
amples. A more thorough summary can be found in [9].
Pioneering work by Field and Olshausen set the stage for
dictionary training methods, proposing a ML-based objec-
tive function to minimize with respect to the desired dic-
tionary [10]. Subsequent work by Lewicki, Olshausen and
Sejnowski, proposed several direct extensions of this work
[11]. Further important contributions on training of sparse
representations dictionaries has been made by the creators
of the FOCUSS algorithm, Rao and Kreutz-Delgado, to-
gether with Engan [12, 13]. They pointed out the connection
between the sparse coding dictionary design and the vector
quantization problem, and proposed some type of general-

ization of the well known K-Means algorithm. In this work
we present a different approach for this generalization. We
regard this recent activity on the subject as a further proof
for the importance of this subject, and the prospects it en-
compasses.

3. THE K-SVD ALGORITHM

In this section we introduce the K-SVD algorithm for train-
ing of dictionaries. This algorithm is flexible, and works
in conjugation with any pursuit algorithm. It is simple, and
designed to be a truly direct generalization of the K-Means.
As such, when forced to work with one atom per signal, it
trains a dictionary for the Gain-Shape VQ. When forced to
have a unit coefficient for this atom, it exactly reproduces
the K-Means algorithm.

We start our discussion with a short description of the
Vector Quantization (VQ) problem and the K-Means algo-
rithm. In VQ, a codebook C that includes K codewords is
used to represent a wide family of signals Y = {Yz}fi1
(N > K) by a nearest neighbor assignment. This leads to
an efficient compression or description of those signals, as
clusters in R™ surrounding the chosen codewords. The VQ
problem can be mathematically described by

1 — 2) P . .
Iéll)l(l{||Y CX|%} st Vi, x; = e forsome k. (3)

The K-Means algorithm [14] is an iterative method, used
for designing the optimal codebook for VQ. In each itera-
tion there are two stages - one for sparse coding that essen-
tially evaluates X by mapping each signal to its closest atom
in C, and the second for updating the codebook, changing
sequentially each column c; in order to better represent the
signals mapped to it.

The sparse representation problem can be viewed as a
generalization of VQ objective (3), in which we allow each
input signal to be represented by a linear combination of

codewords, which we now call dictionary elements or atoms.

As a result, the minimization described in Equation (3) con-
verts to

in{|[Y — DX||2} subj il < Ty, (4
min {| 1%} subjectto Vi, [xillo < To. (4)

In the K-SVD algorithm we solve (4) iteratively, us-
ing two stages, parallel to those in K-Means. In the sparse
coding stage, we compute the coefficients matrix X, using
any pursuit method, and allowing each coefficient vector to
have no more than 7j non zero elements. Then, we up-
date each dictionary element sequentially, changing its con-
tent, and the values of its coefficients, to better represent the
signals that use it. This is markedly different from the K-
Means generalizations that were proposed previously, e.g.,
[12, 13], since these methods freeze X while finding a bet-
ter D, while we change the columns of D sequentially, and

allow changing the relevant coefficients as well. This dif-
ference results in a Gauss-Seidel-like acceleration, since the
subsequent columns to consider for updating are based on
more relevant coefficients. The process of updating each
dj has a straight forward solution, as it reduces to finding a
rank-one approximation to the matrix of residuals,

E;=Y-) d;jx’ Q)
itk

where x7 is the j’th row in the coefficient matrix X. This
approximation is based on the singular value decomposition
(SVD). A full description of the algorithm is given below,
while a more detailed one can be found in [9].

Initialization : Set the random normalized dictionary matrix
D@ e R™* ¥, Set J = 1.

Repeat until convergence,

Sparse Coding Stage: Use any pursuit algorithm to compute x;
fort=1,2,...,N

min {||y; — Dx||§} subjectto ||x||o < To.

Codebook Update Stage: Fork =1,2,..., K
e Define the group of examples that use dy,
wr ={i| 1 <i <N, x;(k) # 0}
e Compute
E,=Y-) d;x,
J#k
e Restrict E; by choosing only the columns corresponding to

those elements that initially used dy, in their representation,
and obtain EfF.

e Apply SVD decomposition Ef = UAV7T. Update:
d; = uy, x]fg =A(1,1) vy

SetJ=J+1.

The K-SVD Algorithm

We call this algorithm “K-SVD” to parallel the name
K-Means. While K-Means applies K mean calculations to
evaluate the codebook, the K-SVD obtains the updated dic-
tionary by K SVD operations, each producing one column.

Similar to the K-Means, we can propose a variety of
techniques to further improve the K-SVD algorithm. Most
appealing on this list are multi-scale approaches, and tree-
based training where the number of columns K is allowed
to increase during the algorithm. We leave these matters for
future work.

Synthetic Experiments: In order to demonstrate the K-
SVD, we conducted a number of synthetic tests, in which
we randomly chose a dictionary D € R20*50 and mul-
tiplied it with randomly chosen sparse coefficient vectors

{x;}159°. Finally, we added white noise with varying strength
to those signals. The K-SVD was executed for a maximum
number of 80 iterations and generated a new dictionary D.
We then compared between those two dictionaries, using a
similar method to the one reported by [13]. The rate of de-
tected atoms was 92%, 95%, 96% and 96% for SNR levels
of 10dB, 20db, 30db and no noise case, respectively. These
results are superior than those achieved by both the MOD
and the MAP-based algorithm (See [9] for more details).

4. APPLICATIONS TO IMAGE PROCESSING

We carried out several experiments on natural image data,
trying to show the practicality of the proposed algorithm
and the general sparse coding theme. The training data was
constructed as a set of 11, 000 examples of block patches of
size 8 x 8 pixels, taken from a database of face images (in
various locations).

Working with real images data we preferred that all dic-
tionary elements except one has a zero mean. The same
measure was practiced by previous work [10]. For this pur-
pose, the first dictionary element, denoted as the DC, was
set to include a constant value in all its entries, and was not
changed afterwards. The DC takes part in all representa-
tions, and as a result, all other dictionary elements remain
with zero mean during all iterations.

We applied the K-SVD, training a dictionary of size
64 x 441. The choice K = 441 came from our attempt to
compare the outcome to the overcomplete Haar dictionary
of the same size (see the following section). The coefficients
were computed using the OMP with fixed number of coeffi-
cients, were the maximal number of coefficients is 10. Note
that better performance can be obtained by switching to FO-
CUSS. We concentrated on OMP because of its simplicity
and fast execution. The trained dictionary is presented in
Figure 1.

The trained dictionary was compared with the overcom-
plete Haar dictionary which includes separable basis func-
tions, having steps of various sizes and in all locations (total
of 441 elements). In addition, we build an overcomplete
separable version of the DCT dictionary by sampling the
cosine wave in different frequencies to result a total of 441
elements.

Filling in missing pixels: We chose one random full face
image, which consists of 594 non-overlapping blocks (none
of which were used for training). For each block, the follow-
ing procedure was conducted for r in the range {0.2,0.9}:
A fraction r of the pixels in each block, in random loca-
tions, were deleted (set to zero). The coefficients of the cor-
rupted block under the learned dictionary, the overcomplete
Haar dictionary, and the overcomplete DCT dictionary were
found using OMP with an error bound equivalent to 5 gray-
values. All projections in the OMP algorithm included only

[=

Fig. 1. K-SVD resulted dictionary

the non-corrupted pixels, and for this purpose, the dictio-
nary elements were normalized so that the non-corrupted
indices in each dictionary element have a unit norm. The
resulting coefficient vector of the block B is denoted xp.
The reconstructed block B was chosen as B = D - xg. The

reconstruction error was set to: /|| B — BJ|%,/64 (64 is the

number of pixels in each block. Notice all values are in the
range [0,1]).

RAMSE

02 03 04 05 06 07 08 09
Ratio of Corrupted Pixels in Image

Fig. 2. Filling in - RMSE versus the relative number of

missing pixels.

The mean reconstruction errors (for all blocks and all cor-
ruption rates) were computed, and are displayed in Figure
2. Two corrupted images and their reconstructions can be
seen in Figure 3. As can be seen, higher quality recovery is
obtained using the learned dictionary.

Compression: A compression comparison was conducted
between the three dictionaries mentioned before, all of size
64 x 441. In addition, we compared to the regular (unitary)
DCT dictionary (used by the JPEG algorithm). The resulted
rate-distortion graph is presented in Figure 4. In this com-

Learned OverComplete DCT

Haar i
Average # coeffs: 4.0202 Average # coeffs: 4.7677 Average # coeffs: 4.7694
MAE: 0.012977 MAE: 0.022833 MAE: 0.015719
RMSE: 0.029204

50 % missing pixels
N e

RMSE: 0.071107 RMSE: 0.037745

Fig. 3. Filling in Results.

pression test, the face image was partitioned (again) into
594 disjoint 8 x 8 blocks. All blocks were coded in various
rates (bits-per-pixel values), and the PSNR was measured.
Let I be the original image and I be the coded image, com-
bined by all the coded blocks. We denote e? as the mean
squared error between I and I, and calculate PSNR =
10 - logyg ().

In each test we set an error goal ¢, and fixed the num-
ber of bits-per-coefficient). For each such pair of param-
eters, all blocks were coded in order to achieve the desired
error goal, and the coefficients were quantized to the de-
sired number of bits (uniform quantization, using upper and
lower bounds for each coefficient in each dictionary based
on the training set coefficients). For the overcomplete dic-
tionaries, we used the OMP coding method. The rate value
was defined as

a - tBlocks + fcoefs - (b+ Q)
ipizels

R= : (6)
where a holds the required number of bits to code the num-
ber of coefficients for each block. b holds the required num-
ber of bits to code the index of the representing atom. Both a
and b values were calculated using an entropy coder. §f Blocks
is the number of blocks in the image (594). fcoefs is the
total number of coefficients required to represent the whole
image, and fipizels is the number of pixels in the image
(= 64 - §Blocks).

In the unitary DCT dictionary we picked the coefficients
in a zig-zag order, as done by JPEG, until the error bound e
is reached. Therefore, the index of each atom should not be
coded, and the rate was defined accordingly.

By sweeping through various values of € and) we get
per each dictionary several curves in the R-D plane. Figure
4 presents the best obtained R-D curves for each dictionary.
As can be seen, the K-SVD dictionary outperforms all other
dictionaries, and achieves up to 1 — 2d B better for bit rates
less than 1.5 bits-per-pixel (where the sparsity model holds
true).

5. CONCLUSIONS

In this paper we have presented the K-SVD — an algorithm
for designing an overcomplete dictionary that best suits a

—e—KSVD

as}| =2~ Overcomplete Haar|

- Overcomplete DCT]| <
46 Complete DCT

PSNR

2
Rate - BPP value

Fig. 4. Compression results in a Graph.

set of given signals, giving a sparse representation per each.
We have shown how this algorithm could be interpreted as a
generalization of the K-Means algorithm for clustering. We
have demonstrated the K-SVD in both synthetic and real
images tests.

We believe this kind of dictionary design could success-
fully replace popular representation methods, used in image
enhancement, compression, and more.

6. REFERENCES

[1] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approxi-
mations. Journal of Constructive Approximation, 13:57-98, 1997.

[2] S.Mallat and Z. Zhang. Matching pursuits with time-frequency dic-
tionaries. /EEE Trans. Signal Processing., 41(12):3397-3415, 1993.

[3] J.A. Tropp. Greed is good: Algorithmic results for sparse approx-
imation. [EEE Trans. Inform. Theory, 50(10):2231-2242, October
2004.

[4] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition
by basis pursuit. SIAM Review, 43(1):129-159, 2001.

[5]1 B.D. Rao and K. Kreutz-Delgado. An affine scaling methodology
for best basis selection. IEEE Transactions on Signal Processing,
47(1):187-200, 1999.

[6] D.L. Donoho and X. Huo. Uncertainty principles and ideal atomic
decomposition. IEEE Trans. On Information Theory, 47(7):2845-62,
1999.

[7] D.L. Donoho and M. Elad. Optimally sparse representation in gen-
eral (non-orthogonal) dictionaries via /1 minimization. Proceedings
of the National Academy of Sciences, 100(5):2197-2202, 2003.

[8] R. Gribonval and M. Nielsen. Sparse decompositions in unions of
bases. [EEE Transactions on Information Theory, 49(12):3320—
3325, 2003.

[91 M. Aharon, M. Elad, and A.M. Bruckstein. K-svd: An algorithm for
designing of overcomplete dictionaries for sparse representation. to
appear in the IEEE Trans. On Signal Processing, 2005.

[10] B.A. Olshausen and D.J. Field. Natural image statistics and efficient
coding. Network: Computation in Neural Systems, 7(2):333-9, 1996.

[11] M.S. Lewicki and T.J. Sejnowski. Learning overcomplete represen-
tations. Neural Comp., 12:337-365, 2000.

[12] K. Engan, S.O. Aase, and J.H. Hus¢y. Multi-frame compression:
Theory and design,. EURASIP Signal Processing, 80(10):2121-
2140, 2000.

[13] K. Kreutz-Delgado, J.F. Murray, B.D. Rao, K. Engan, T. Lee, and T.J.
Sejnowski. Dictionary learning algorithms for sparse representation.
Neural Computation, 15(2):349-396, 2003.

[14] A. Gersho and R.M. Gray. Vector Quantization and Signal Compres-
sion. Kluwer Academic Publishers, Norwell, MA, USA, 1991.

