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Why Simple Shrinkage Is Still Relevant for
Redundant Representations?

Michael Elad, Member, IEEE

Abstract—Shrinkage is a well known and appealing denoising tech-
nique, introduced originally by Donoho and Johnstone in 1994. The use of
shrinkage for denoising is known to be optimal for Gaussian white noise,
provided that the sparsity on the signal’s representation is enforced using
a unitary transform. Still, shrinkage is also practiced with nonunitary,
and even redundant representations, typically leading to very satisfactory
results. In this correspondence we shed some light on this behavior. The
main argument in this work is that such simple shrinkage could be inter-
preted as the first iteration of an algorithm that solves the basis pursuit
denoising (BPDN) problem. While the desired solution of BPDN is hard to
obtain in general, we develop a simple iterative procedure for the BPDN
minimization that amounts to stepwise shrinkage. We demonstrate how
the simple shrinkage emerges as the first iteration of this novel algorithm.
Furthermore, we show how shrinkage can be iterated, turning into an
effective algorithm that minimizes the BPDN via simple shrinkage steps,
in order to further strengthen the denoising effect.

Index Terms—Basis pursuit, denoising, frame, overcomplete, redundant,
sparse representation, shrinkage, thresholding.

I. INTRODUCTION

A commonly practiced approach toward the removal of additive
Gaussian white noise from a signal yyy is the minimization of the
function

f(xxx) =
1

2
� kxxx� yyyk22 + � � Prfxxxg: (1)

This expression can be shown to emerge from a Baysian point of view,
when deploying the maximum a posteriori probability (MAP) estima-
tion [4]. The first term is commonly referred to as the log-likelihood,
describing the relation between the desired (clean) signal xxx 2 IRN and
a noisy version of it yyy 2 IRN . We assume the model yyy = xxx + vvv, with
vvv 2 IRN a Gaussian zero-mean white noise.1 The term Prfxxxg stands
for a prior posed on the unknown signal xxx; numerous such expressions
have been used for various signal types, as can be found in the liter-
ature. Among the popular methods that are now considered as classic
methods in signal processing, we mention the following.

1. Energy minimization Prfxxxg = kxxxk22—the simplest to handle,
leading to x̂xx = yyy=(1 + �), which could be interpreted as a trivial
shrinkage operation, as the signal is attenuated as part of the
restoration.

2. Smoothness penalty Prfxxxg = kLLLxxxk22 using the Laplacian oper-
ator, leading to the Wiener filter x̂xx = (III + �LLLTLLL)�1yyy.
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1In most papers, when the noise characteristics are introduced, an accom-
panying “no-restriction” statement is added, suggesting that other models can
be easily handled similarly. In this work, this is not the case. The assumptions
about the noise being Gaussian and white are crucial and cannot be replaced
with alternatives such as colored noise or different distributions. In other words,
shrinkage, as will be discussed here, is tightly coupled with these assumptions.

3. Total variation (TV) handles smoothness while allowing for
sharp edgesPrfxxxg = kjrxxxjk1. This is done by an itera-
tive update rule of the form x̂xxk+1 = (1 � �)x̂xxk + �yyy �
��rT (rxxxk=jrxxxkj) [1].

4. Scalar entropy of xxx, defined by Prfxxxg = �xxxT log(xxx). This pro-
motes nonuniformity in xxx, while assuming nonnegative values
only. Here again one cannot have a closed-form solution, and an
iterative procedure of the form x̂xxk+1 = expf1 � (xxxk � yyy)=�g
can be used [2].

5. Sparsity of the unknown signal with respect to its transformed
representation Prfxxxg = kTTTxxxk1. Again, iterative solver should
be applied in general, giving an update of the form x̂xxk+1 =
(1� �)x̂xxk + �yyy � �� � TTT T sign(TTTxxxk) [25].

Formulations of the denoising problem as in (1) are commonly used,
and are the basis for many more general inverse problems. Using priors
such as TV and other robust methods, the above opens an opportunity
to the study of nonlinear filtering, typically formulated as partial differ-
ential equations (PDE). As we have seen in the above list (items 3, 4,
and 5), those are typically handled by iterative numerical solvers, that
are characterized as slow and cumbersome.2

In parallel to the progress made in the PDE directions, Donoho and
Johnstone pioneered a wavelet-based signal denoising algorithm in line
with the above list of priors (item 5). In a sequence of publications, they
advocated the use of sparsity of the wavelet coefficients as a driving
force in recovering the desired signal [5]–[10]. Later work in [11]–[13]
simplified these ideas and related them to the MAP formulation as pre-
sented above, using the prior Prfxxxg = kWWWxxxkp, with a unitary wavelet
transform matrix3 WWW 2 IRN�N , and 0 � p � 1.

Interestingly, using such a prior in (1) leads to a simple closed-form
solution, known as shrinkage (for the sake of completeness of the dis-
cussion, Section II establishes that). This solution amounts to a wavelet
transform on the noisy signal, a lookup table (LUT)4 function on the
coefficients (that depends on p), SfWWWyyyg, and an inverse wavelet trans-
form to produce the outcome x̂xx. Fig. 1 presents this appealing and
simple algorithm. Such a direct solution stands as a refreshing alter-
native to the iterative and slow methods mentioned above.

In Section II we follow [5]–[10], [12], [13] and present the analysis
that shows how the shrinkage algorithm becomes indeed the optimal
solver of (1). This optimality depends strongly on the `2-norm used
in evaluating the distance xxx � yyy, and this has direct roots in the white
Gaussianity assumptions on the noise. Also, crucial to the optimality
of this method is the orthogonality of WWW .

A new trend in recent years has been the use of overcomplete trans-
forms, replacing the traditional unitary ones—see [14]–[24], [28]–[32]
for representative works. This trend was partly motivated by the
growing realization that orthogonal wavelets are weak in describing
the singularities found in images. The sources of this weakness are
the loss of shift-invariance due to mandatory decimation, and the
separability forced, which implies a lack of directional treatment.
Another driving force in the introduction of redundant representations
is the sparsity it can provide, which many applications find desirable.

2Speedup algorithms have been proposed (e.g., the AOS method by Weickert
[3] or the bilateral filter [4]), but those are still quite involved compared to sim-
plicity of shrinkage—see its description next.

3As will be shown hereafter, it is the unitarity ofWWW that makes this choice
so appealing, whereas the fact that this is specifically chosen as the wavelet
transform has to do with the type of signals handled.

4LUT means a one-dimensional memoryless function that operates on each
wavelet coefficient in the same way. Assuming that the input is discretized to a
finite number of bits, such operation can be done by considering the incoming
value as an address to a pre-organized table of output values, and thus the name
lookup table.
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In these methods, the transform is defined via a nonsquare full-rank
matrix TTT 2 IRL�N , with L > N . Such redundant methods, like
the un-decimated wavelet transform, curvelet, contourlet, steerable-
wavelet, and more, were shown to be more effective in representing
images, and other signal types. It is often assumed that TTT is a tight
frame, implying that �TTT TTTT = III . In such a case, the adjoint TTT T stands
for the Moore–Penrose pseudoinverse transform, up to the constant �.

Given a noisy signal yyy, one can still follow the shrinkage proce-
dure, by computing the forward transform TTTyyy, putting the coefficients
through a shrinkage LUT operationSfTTTyyyg, and finally applying the in-
verse transform5 to obtain the denoised outcome, TTT+SfTTTyyyg. Will this
be the solver of (1) when using the priorPrfxxxg = kTTTxxxkp? The answer
is negative. As we have said before, the orthogonality of the transform
plays a crucial role in the construction of the shrinkage as an optimal
procedure. Still, shrinkage is practiced quite often with nonunitary, and
even redundant representations, typically leading to results better than
in the nonredundant cases—see [15]–[24] for representative examples.
Naturally, we should wonder why this is the case.

In this correspondence, we shed some light on this behavior. Our
main argument, as will be composed in Section III, is that such a
shrinkage could be interpreted as the first iteration of a converging
algorithm that solves the basis pursuit denoising (BPDN) problem
[25]. The BPDN forms a similar problem to the one posed in (1),
replacing the analysis prior with a generative one. While the desired
solution of BPDN is hard to obtain in general, a simple iterative
procedure that amounts to stepwise shrinkage can be employed with
quite successful performance. Thus, beyond showing that shrinkage
has justified roots in solid denoising methodology, we show how
shrinkage can be iterated in a simple form, to further strengthen the
denoising effect. As a by-product, we get an effective algorithm that
minimizes the BPDN functional via simple shrinkage steps.

This correspondence is organized as follows: In Section II, we show
how shrinkage emerges as an optimal solution for the prior Prfxxxg =
kWWWxxxkp with any unitary matrix WWW . This is a well-known result, be-
longing now to the classics of signal processing. We bring it here for
completeness, and to set the stage for the redundant representation case,
whose analysis follows. In Section III, we generalize the prior to use
redundant transforms. We show first the BPDN formulation as the de-
sired denoising method, and then show how shrinkage could approxi-
mate it. In Section IV, we present some experimental results to support
the claims made in Section III.

II. SHRINKAGE FOR UNITARY TRANSFORMS

In this section, we consider the denoising problem with a general ad-
ditive prior that utilizes an orthonormal matrixWWW . The ideas presented
in this section can be traced back to [5], and also found in [6]–[13],
although they may appear different. We intend to minimize

f(xxx) =
1

2
� kxxx� yyyk22 + � � 1T � �fWWWxxxg: (2)

In our notations, �( � ) is an arbitrary scalar function. When applied to
a vector, it is producing an output vector obtained by operating on each
entry independently. The vector 1 2 IRN is a vector of ones. Thus, the
prior term amounts to

1
T � �fWWWxxxg =

N

n=1

�f[WWWxxx]ng (3)

and thus the name “additive prior.”

5There are infinitely many ways to define the inverse, and in most cases the
Moore–Penrose pseudoinverse is practiced.

Fig. 1. A block diagram of the shrinkage method for denoising.

We typically assume (for convenience, and those assumptions can
be relaxed) that �(z) is symmetric (�(z) = �(�z)) and monotonic
nondecreasing in the range z > 0, implying �0(z) � 0. As examples,
choosing �(z) = jzj2 leads to Prfxxxg = kWWWxxxk22, choosing �(z) = jzj
gives the `1 alternative—Prfxxxg = kWWWxxxk1, and �(z) = jzjp leads
to the `p option—Prfxxxg = kWWWxxxkpp, all being special cases of this
general additive form.

Defining xxxw = WWWxxx and similarly yyyw = WWWyyy, the function f(xxx) in
(2) can be rearranged to become a function of xxxw

f(xxxw) =
1

2
� kWWW�1(xxxw � yyyw)k

2
2 + � � 1T � �fxxxwg: (4)

Exploiting the unitary invariance property of the `2-norm,6 we can dis-
card of the multiplication by WWW�1 in the first term, and obtain

f(xxxw) =
1

2
� k(xxxw � yyyw)k

2
2 + � � 1T � �fxxxwg

=

N

n=1

1

2
(xw(n)� yw(n))

2 + ��(xw(n))

= f(xw(1); xw(2); . . . ; xw(N)): (5)

A consequence of the above simple manipulation is the fact that the
original problem with respect to the unknown xxxw is now decoupled. It
can be solved independently for each unknown entry xw(n) as a scalar
optimization procedure, and this is far easier than the N -dimensional
optimization task we embarked from.

Note that the first stage to be done in solving (5) is to transform
the input signal yyy to obtain yyyw =WWWyyy. This aligns with the block dia-
gram described in Fig. 1. Once this is done, we faceN one-dimensional
(1-D) optimization problems of the general form

zopt = argmin
z
g(z; a) = argmin

z

1

2
(z � a)2 + ��(z) (6)

with a and � assumed known. The solution is an antisymmetric LUT
curve of the form zopt =  (a). Indeed, for an arbitrary a we have

g(z;�a) =
1

2
(z � (�a))2 + ��(z)

=
1

2
((�z)� a)2 + ��(�z) = g(�z; a)

where we have exploited the fact that � is symmetric. Thus, if for some
a > 0 we have that zopt =  (a), then necessarily,  (�a) = �zopt =

6This is where we exploit both the orthogonality ofWWW and the white Gaus-
sianity of the noise, as promised.
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Fig. 2. Several examples of the shrinkage LUT curves (a). In all these cases,
� = 1.

� (a), being antisymmetric as claimed. Thus, we can restrict our anal-
ysis to positive inputs a � 0. Assuming that � is continuously differ-
entiable,7 �( � ) 2 C1, the solution should satisfy

zopt = a� ��
0(zopt): (7)

This implicit equation can give the curve (a). An alternative approach
to obtain  (a) is via a direct numerical minimization of g(z; a), and
this can be done even if �( � ) is nonconvex, still leading to the global
minimum solution of the penalty function given in (2). Note that ad-
dressing this nonconvex penalty term in (2) using classical iterative op-
timizers (steepest descent, conjugate gradient, Newton methods, etc.) is
susceptible to local minima traps in general, and depend on the initial-
ization chosen. Here, not only iterations have been avoided, but finding
of the best solution is guaranteed.

As can be seen, if we assume that �( � ) is monotonic nondecreasing
for a � 0, (7) implies that the curve is sublinear, giving a shrinkage
of the input coefficient a, and thus the name given to this procedure.
Fig. 2 presents several such curves. Those where obtained by numeri-
cally finding the minimum of (6) for varying values of a.

After taking every coefficient yw(n) and passing it through the curve
 (yw(n)), the outputs are the representation coefficients of xxx. A final
stage of inverse transform provides the desired solution xxx, as Fig. 1
shows.

III. TREATING REDUNDANT TRANSFORMS

We turn now to the case where the prior term is given by Prfxxxg =
1
T � �(TTTxxx), with TTT being a nonsquare full rank matrix TTT 2 IRL�N ,

whereL > N . The following discussion will be mostly restricted to the
choice �(z) = jzj, although all the discussion can be easily generalized
to other choices of �( � ).

7Or can be presented as the limit of a sequence of such functions, which is a
more reasonable assumption.

Let us first describe the heuristic shrinkage algorithm that could be
done for denoising a signal under these circumstances. This algorithm
is described as Algorithm A.

Algorithm A—Heuristic Shrinkage
Task: Denoise yyy using a heuristic shrinkage, based on the
transform TTT .

Data and Parameters: �; TTT and yyy.

Step 1: Compute yyy
T
= TTTyyy.

Step 2: Apply shrinkage Sfyyy
T
g with threshold �.

Step 3: Compute the inverse transform x̂xx = TTT
+Sfyyy

T
g.

Finalize: The denoised output is x̂xx.

Note that in the above-described algorithm, it is unclear whether
using a fixed and equal threshold to all coefficients is the proper way
to go. We will see that this matter resolves as we relate this algorithm
to a solid Baysian objective. We thus turn now to define the Bayesian
objective for our denoising task.

A. The Generative Bayesian Objective

Following the preceding discussion, we intend to minimize a penalty
similar to the one posed in (2), with an updated prior term

f1(xxx) =
1

2
� kxxx� yyyk22 + � � 1T � �fTTTxxxg: (8)

Defining xxxT = TTTxxx, multiplying both sides by TTT T we get TTT TxxxT =
TTT
T
TTTxxx. In the general case, TTT TTTT is invertible (since TTT is full-rank),

and thus8

xxx = (TTTTTTT )�1TTT TxxxT = TTT
+
xxxT :

We can use these relations to rearrange (8) and obtain a new function
of the representation vector xxxT

f2(xxxT ) =
1

2
� kTTT+

xxxT � yyyk22 + � � 111T � �fxxxT g

=
1

2
� kDDDxxxT � yyyk22 + � � 1T � �fxxxT g (9)

where we denote DDD = TTT
+.

Denoising can be done by minimizing f1 and obtaining a solution
x̂xx1. Alternatively, we can minimize f2 with respect to xxxT and deduce
the denoised outcome by x̂xx2 = DDDx̂xxT . Interestingly, these two results
are not expected to be the same in the general case, since in the con-
version from f1 to f2 we have expanded the set of feasible solutions
by allowing xxxT to be an arbitrary vector in IRL, whereas the original
definition xxxT = TTTxxx implies that it must be confined to the column
space of TTT . Notice that this difference between the two formulations
disappears when TTT is a full-rank square matrix, which explains why
this dichotomy of methods did not bother us in the previous section.

Still, the formulation posed in (9) is a feasible alternative Bayesian
method that uses a generative prior. Indeed, for the choice �fzg = jzj,
this formulation is known as the basis pursuit denoising (BPDN). Re-
ferring toDDD as a dictionary of signal prototypes (atoms) as its columns,
we assume that the desired signal xxx is a linear construction of these
atoms, with coefficients drawn independently from a probability den-
sity function proportional to expf�Const � �fxT (j)gg. In the case of
�(z) = jzj this is the Laplace distribution, and we effectively promote
sparsity in the representation.

8If TTT is a tight frame (�TTT TTT = III), then the above leads to xxx = �TTT xxx .
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B. Our Objective

Our objective is now the optimization problem

min
zzz

1

2
� kDDDzzz � yyyk22 + � � 1T � �fzzzg (10)

and the denoised output is x̂xx = DDDẑzz. Although BPDN has been defined
for the specific choice �(z) = jzj, we shall refer hereafter to this more
general objective as BPDN as well.

The numerical method we shall use in later experiments to com-
pare against shrinkage is based on the iterative reweighed least-squares
(IRLS) as practiced by the FOCUSS algorithm [26], [27]. We out-
line it here very briefly: Define a new scalar function �0(z) to sat-
isfy �(z) = 0:5jzj2 � �0(z). For example, for �(z) = jzj, we have
�0(z) = 2=jzj (or better yet, �0(z) = 2=(jzj + �) with 0 < � � 1
so as to avoid divisions by zero). Now, the above formulation can be
rewritten as

min
zzz

1

2
� kDDDzzz � yyyk22 +

�

2
� zzzT � diagf�0fzzzggzzz: (11)

The term diagf�0fzzzgg is a diagonal weight matrix, and thus the second
term has a quadratic structure, if we assume this diagonal matrix to be
fixed. Minimization can be done iteratively by assuming that the term
�0fzzzg is fixed, being computed with the current solution zzzk . Then the
problem has a simple quadratic form, leading to the update equation

zzzk+1 = [DDDTDDD + �diagf�0fzzzkgg]
�1DDDTyyy: (12)

The IRLS algorithm is described as Algorithm B.

Algorithm B—The Iterative Reweighed Least Squares (IRLS)

Task: Denoise the signal yyy by

x̂xx = argmin
zzz

1

2
� kDDDzzz � yyyk22 + � � 1T � kzzzk1:

Data and Parameters: �;DDD, and yyy are given, K0 iterations.

Initialization: Set k = 0 and choose zzzk = 1.

Main Iteration: Set k = 1 and apply:

• Weights: Compute

WWW = diagf�0fzzzk�1gg = 2diagf1=jzzzk�1jg:

• Update: Compute zzzk = [DDDTDDD + �WWW ]�1DDDTyyy:

• Return: Set k = k + 1. If k � K0 return to “Weights.”

Finalize: The denoised output is x̂xx = DDDzzzK .

Notice that we have recommended an initialization with ones. Using
a zero initialization causes a slow start because thenDDDTDDD is negligible
compared to WWW . The choice of ones parallels a regularized pseu-doin-
verse start.

In the experiments to follow, we shall implement this algorithm to
minimize the function in (10), but it should be clear that in general this
is a daunting task for typical sizes used in image processing (N �
10e+4; L � 10e+6, and beyond). The need to invert a matrix of size
L�L, as the above update formula requires, is prohibitive, and should
be replaced with an iterative solver. In fact, this is why a shrinkage
method as in Algorithm A would be of interest in the first place.

C. Shrinkage Again? A Sequential Method

For a dictionary built as a union of J ortho-matrices, there is yet
another, more efficient, numerical solver, based on a block-coordinate-
relaxation (BCR) process. This algorithm, as introduced by Bruce et
al. [33] is using shrinkage in the spirit of Section II. The representation
vector zzz is broken into J parts, each referring to a unitary matrix inDDD.
The BCR algorithm addresses one set of representation coefficients at
a time, assuming all the others as fixed. We will imitate this idea here,
but consider a general dictionary, and treat scalar entries in zzz.

Assume that in an iterative process used to solve the above problem,
we hold the kth solution ẑzzk . We are interested in updating its jth entry
z(j), assuming all the others as fixed. Thus, we obtain a 1-D optimiza-
tion problem of the form

min
w

1

2
� k[DDDzzzk � dddjzk(j)] + dddjw � yyyk22 + � � �fwg: (13)

In the above expression, dddj is the jth column in DDD. The term DDDzzzk �
dddjzk(j) uses the current solution for all the coefficients, but discards
of the jth one, assumed to be replaced with a new value, w.

Since this is a 1-D optimization task, it is relatively easy to solve.
Assume, for example, that �(w) = jwj as was done in the previous
section. Taking a derivative with respect to w we get the equation

0 = dddTj ([DDDzzzk � dddjzk(j)] + dddjw � yyy) + � � signfwg (14)

leading to

w =
dddTj (yyy � [DDDzzzk � dddjzk(j)])

kdddjk22
�
� � signfwg

kdddjk22

= zk(j) +
dddTj (yyy �DDDzzzk)

kdddjk22
�
� � signfwg

kdddjk22

= v(DDD;yyy; zzzk; j)� �̂(j) � signfwg: (15)

Here we have defined

v(DDD;yyy; zzzk; j) =
dddTj (yyy �DDDzzzk)

kdddjk22
+ zk(j) and

�̂(j) =
�

kdddjk22
: (16)

Both v(DDD;yyy; zzzk; j) and �̂(j) are computable using the known dictio-
nary, noisy signal, current solution, the value of �, and the index in
question. Thus, the same reasoning as the one practiced in Section II
leads to a closed-form formula for the optimal solution for w, being a
shrinkage operation on v(DDD;yyy; zzzk; j)

wopt = Sfv(DDD;yyy; zzzk; j)g

=

v(DDD;yyy; zzzk; j)� �̂(j); for v(DDD;yyy; zzzk; j) > �̂(j)

0; for jv(DDD;yyy; zzzk; j)j � �̂(j)

v(DDD;yyy; zzzk; j) + �̂(j); for v(DDD;yyy; zzzk; j) < ��̂(j):

(17)

A similar LUT result can be developed for any other choice of the func-
tion �( � ).

It is tempting to suggest an algorithm that applies the above proce-
dure for j = 1; 2; . . . ; L, updating one coefficient at a time in a se-
quential coordinate descent algorithm, and cycle such process several
times. Such algorithm is described as Algorithm C.
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Algorithm C—Sequential Shrinkage

Task: Denoise the signal yyy by

x̂xx = argmin
zzz

1

2
� kDDDzzz � yyyk22 + � � 1T � kzzzk1:

Data and Parameters: �;DDD, and yyy are given, K0 iterations.

Initialization: Set k = 0 and choose zzzk = 0.

Main Iteration: Set k = 1 and apply:
• Sweep: Set j = 1.

1. 1. Compute v(DDD;yyy; zzzk; j) =
ddd (yyy�DDDzzz )

kddd k
+ zk(j).

2. Compute wopt = Sfv(DDD;yyy; zzzk; j)g using threshold
�=kdddjk

2
2.

3. Update the solution at the jth location to be
zk(j) = wopt.

4. Set j = j + 1. If j � L, return to step 1.
• Return: Set k = k + 1. If k � K0 return to “Sweep.”
• Finalize: The denoised output is x̂xx = DDDzzzK .

While such algorithm necessarily converges, and could be effective
in minimizing the objective function using scalar shrinkage operations
only, it is impractical in most cases. The reason is the necessity to draw
one column at a time from DDD to perform this computation. Consider,
for example, the curvelet dictionary. While the transform and its inverse
can be interpreted as multiplications by the dictionary and its transpose
(because it is a tight frame), this matrix is never explicitly constructed,
and an attempt to draw basis functions from it or store them could be
devastating. Thus, we take a different route.

D. Shrinkage in a Parallel Method

Given the current solution zzzk , let us assume that we use the above
update formulation to update all the coefficients in parallel, rather than
doing this sequentially. Obviously, this process must be slower in min-
imizing the objective function, but with this slowness comes a much
desired simplicity that will be evident shortly.

First, let us convert the terms v(DDD;yyy; zzzk; j) in (16) to a vector form
that accounts for all the updates at once. Gathering these terms for all
j 2 [1; L], this reads

vvv(DDD;yyy; zzzk) =

v(DDD;yyy; zzzk; 1)

v(DDD;yyy; zzzk; 2)
...

v(DDD;yyy; zzzk; L)

= diag�1fDDDTDDDgDDDT (yyy �DDDzzzk) + zzzk: (18)

Notice that in the computation of vvv in the above equation, we do not
need to extract some columns from the dictionary, and need not use
these matrices explicitly in any other way. If the transform we use is
such that multiplication by DDD and its adjoint DDDT are fast, then com-
puting the above term is easy and efficient. The normalization by the
norms of the columns is simple to obtain and can be kept as fixed pa-
rameters of the transform, computed once off-line.9

In the case of tight frames, applying multiplications by DDDT and DDD
are the forward and the inverse transforms, up to a constant. For a non-
tight frame, the above formula says that we need to be able to apply the
adjoint and not the pseudoinverse of DDD.

There is also a natural weakness to the above strategy. One cannot
take a shrinkage of the above vector with respect to the threshold vector

9While storing the columns ofDDD may require huge memory volume, storing
a scalar per column is reasonable.

� � diag�1fDDDTDDDg � 1, and expect the objective function to be min-
imized well. While updating every scalar entry wj using the above
shrinkage formula is necessarily decreasing the function’s value, ap-
plying all those at once is likely to diverge, and cause an ascent in the
objective. Thus, instead of applying a complete shrinkage as (17) sug-
gests, we consider a relaxed step of the form

zzzk+1 = zzzk + �[Sfvvv(DDD;yyy; zzzk)g� zzzk] = zzzk + �hhhk: (19)

This way, we compute the shrinkage vector as the formula suggests,
and use it to define a descent direction. The solution is starting from the
current solution zzzk and updates it by “walking” toward the shrinkage
result. For � = 1, the shrinkage is adopted in full, and for � < 1 the
effect is a relaxed step. For a sufficiently small � > 0, this step must
lead to a feasible descent in the penalty function, because this direction
is a nonnegative combination of L descent directions.

We can apply a line search to find the proper choice for the value of
�. In general, line search seeks the best step size as a 1-D optimization
procedure that solves

min
�

1

2
� kDDD[zzzk + �hhhk]� yyyk22 + � � 1T � �fzzzk + �hhhkg (20)

where hhhk is a computable vector. The solution is given by solving the
equation

0 = hhhTkDDD
T (DDD[zzzk + �hhhk]� yyy) + � � hhhTk � �0fzzzk + �hhhkg: (21)

This again has a shrinkage-like structure. Finding an appropriate �
amounts to a multiplication by DDD and its adjoint to compute the first
term, and then seek optimal solution for � by a zero-crossing iterative
solver.

To summarize our findings so far, we desire a solution to the
optimization problem posed in (10). We do this iteratively, and
update the result by performing a shrinkage. Defining the so-
lution at the kth iteration by zzzk , it is updated by computing
zzzk + diag�1fDDDTDDDgDDDT (yyy � DDDzzzk), applying shrinkage to it
using the threshold vector � � diag�1fDDDTDDDg � 1, and finally applying
a line search on the line that connect zzzk and the new result to get the
best descent. This algorithm is described as Algorithm D.

Algorithm D—Parallel Shrinkage

Task: Denoise the signal yyy by

x̂xx = argmin
zzz

1

2
� kDDDzzz � yyyk22 + � � 1T � kzzzk1:

Data and Parameters: �;DDD;yyy and K0 (iterations) are given.
WWW = diag�1fDDDTDDDg is computed off-line.

Initialization: Set k = 0 and choose zzzk = 0.

Main Iteration: Set k = 1 and apply:
• Error: Compute eee = yyy �DDDzzzk�1.
• Project: Compute eeeT = WWWDDDTeee.
• Shrinkage: Compute eeeST = SfeeeT + zzzk�1g with

threshold � �WWW � 1.
• Line-Search: Find �0 to obtains a descent with
zzzk�1 + �(eeeST � zzzk�1).

• Relax: Update zzzk = zzzk�1 + �0(eee
S
T � zzzk�1).

• Return: Set k = k + 1. If k � K0 return to “Error.”
Finalize: The denoised output is x̂xx = DDDzzzK .
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E. The First Iteration—A Closer Look

Let us now concentrate on the first iteration, assuming that the algo-
rithm is initialized with zzz0 = 0. The term in (18) becomes

vvv(DDD;yyy; 0) = diag�1fDDDTDDDgDDDTyyy: (22)

The solution zzz1 is obtained by first applying shrinkage to the above
vector, using � diag�1fDDDTDDDg1 as the threshold vector, and then re-
laxing it, as in (19), giving

zzz1 = �Sfdiag�1fDDDTDDDgDDDTyyyg: (23)

As to the line search for choosing �, it is found by solving (19). For
the case of �(z) = jzj, this gives

0 = hhhT1DDD
T (�DDDhhh1 � yyy) + � � hhhT1 � �0f�hhh1g

= hhhT1DDD
T (�DDDhhh1 � yyy) + ��hhhT1 � signfhhh1g

= �kDDDhhh1k
2

2 � yyyTDDDhhh1 + ��khhh1k1: (24)

Thus, we choose

� =
yyyTDDDhhh1

kDDDhhh1k22 + �khhh1k1
(25)

and this can be computed by applying the multiplication by DDD only
once more. To conclude, the denoised result is obtained by computing

x̂xx = � �DDDSfdiag�1fDDDTDDDgDDDTyyyg (26)

where the threshold to use in the shrinkage is given by
� � diag�1fDDDTDDDg1.

As a side note, we mention that we can give a rough estimate to the
value of � under several simplifying assumptions. We assume that i)DDD
represents a tight frame, i.e., DDDDDDT = �III ; ii) its columns are `2-nor-
malized, i.e., diag�1fDDDTDDDg = III ; and iii) the shrinkage operation is
nearly transparent, i.e., SfDDDTyyyg � DDDTyyy, meaning that the shrinkage
almost does not change the data fed to it. Such is the case, for example,
for a dictionary built as a union of ortho-matrices. Under these assump-
tions we obtain

� �
yyyTDDDDDDTyyy

kDDDDDDTyyyk22 + �kDDDTyyyk1

=
� � kyyyk22

�2 � kyyyk22 + �kDDDTyyyk1
�

1

�
: (27)

F. Relation To Heuristic Shrinkage

How all this compares with the heuristic shrinkage we described in
Algorithm A? Recall that we have defined DDD = TTT+ = (TTTTTTT )�1TTT T ,
and thus DDDT = TTT � (TTTTTTT )�1. Going back to the final formula given
in (26) and using the relation between TTT and DDD, we have that the de-
noising obtained here amounts to

x̂xx = � � TTT+Sfdiag�1f[TTT+]TTTT+g[TTT+]T yyyg

= � � (TTTTTTT )�1TTT TSfdiag�1

� fTTT (TTTTTTT )�2TTT T gTTT (TTTTTTT )�1yyyg: (28)

For a general redundant transform, this formulation seems different
from the one proposed in Algorithm A is several ways.

• Instead of starting by applying the transform on the signal, TTTyyy,
the transposed inverse [TTT+]T yyy is applied.

• The outcome is scaled element-by-element, by the matrix
diag�1f[TTT+]TTTT+g, which does not appear in the heuristic
algorithm.

• The shrinkage is applied with respect to a varying threshold, de-
pending on the same diagonal matrix mentioned above. Thus, the
threshold comparison is independent of this scale.

• In the return to the signal domain, both methods employ a multi-
plication by TTT+, however, here we have also a scale � to take into
account.

Are these algorithms truly so different? Let us consider several spe-
cial cases.

Case 1:TTT is a tight frame, built with normalized columns of the dic-
tionary. In this case, �TTT TTTT = III and diag�1fTTT (TTTTTTT )�2TTT T g = III .
Thus, (28) becomes

x̂xx = � � (TTT TTTT )�1TTT TSfdiag�1fTTT (TTTTTTT )�2TTT T gTTT (TTTTTTT )�1yyyg

= �TTT+Sf�TTTyyyg: (29)

The shrinkage in this case is done with a threshold �. Assuming �(z) =
jzj, we have

Sf�[TTTyyy]jg =

�[TTTyyy]j � �; for [TTTyyy]j > �=�

0; for j[TTTyyy]j j � �=�

�[TTTyyy]j + �; for [TTTyyy]j < ��=�:

(30)

If we choose � = 1=� as previously suggested, this scales the above
equation to give

�Sf�[TTTyyy]jg =
1

�
Sf�[TTTyyy]jg

=

[TTTyyy]j � �=�; for [TTTyyy]j > �=�

0; for j[TTTyyy]j j � �=�

[TTTyyy]j + �=�; for [TTTyyy]j < ��=�

(31)

and this is the very same algorithm we presented in Algorithm A with
a threshold chosen as �=�.

Case 2: TTT is a general frame with normalized columns of the dictio-
nary. In this case, diag�1fTTT (TTT TTTT )�2TTT T g = III . Thus, (28) becomes

x̂xx = �TTT+Sf[TTT+]T yyyg: (32)

Given the matrix TTT , we can define a new forward transform as
~TTTyyy = [TTT+]T yyy. With this definition, the above operation amounts to an
application of the newly defined transform, application of shrinkage
with a constant threshold �, and then using the transform’s adjoint to
return to the signal domain. This stands as an interesting alternative to
Algorithm A, being similar in some respects, and different in others.
Specifically, we need to redefine how the transform operates, and we
do not use its inverse but adjoint.

Case 3:TTT is a tight frame, with nonnormalized columns. In this case,
�TTT TTTT = III , and thus (28) becomes

x̂xx = � � (TTT TTTT )�1TTT TSfdiag�1fTTT (TTTTTTT )�2TTT T gTTT (TTTTTTT )�1yyyg

= �� � TTT TSf
1

�
diag�1fTTTTTT T gTTTyyyg: (33)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 12, DECEMBER 2006 5565

The shrinkage in this case is done for the jth entry with a threshold
�
�
ktttjk

�2
2 , where ttti is the jth row in TTT . Assuming �(z) = jzj, we

have

S
[TTTyyy]j
�ktttjk22

=

[TTTyyy] ��=�

�kttt k
; for [TTTyyy]j > �=�

0; for j[TTTyyy]j j � �=�
[TTTyyy] +�=�

�kttt k
; for [TTTyyy]j < ��=�:

(34)

The multiplication after the shrinkage by �TTT T stands for a regular in-
verse transform, and thus the multiplication by � should be absorbed
in the shrinkage. This way we obtained a very similar algorithm to the
one presented in Algorithm A, with a regular forward transform, reg-
ular shrinkage with a constant threshold �=�, a scale of each entry by

�

�kttt k
, and finally an inverse transform. Thus, the only difference is

the element-wise scale of the transformed coefficients, prior to the re-
turn to the signal domain.

G. Discussion

The fact that our algorithm differs from Algorithm A for nontight
frames or nonnormalized dictionaries should not be interpreted as a
statement that Algorithm A is wrong. It may well be that an alternative
justification could be developed, leading to Algorithm A as a first iter-
ation. As an example, one could consider DDD+yyy as an initialization to
our denoising process, based on the replacement of the `1-norm with an
`2 one. Using this initialization, followed by appropriate adjustments
after one iteration of some algorithm, it may be possible to give rise to
a different shrinkage algorithm than the one we have developed. In this
work we have not followed this line of reasoning.

An immediate benefit that can be drawn from the above results is
the ability to operate the heuristic shrinkage in a better setting. Also,
if we are willing to invest more computations, the above results give
us a way to further minimize the objective by more iterations that are
shrinkage-like, and this way possibly get stronger noise removal.

Also, from a different perspective, since BPDN is considered as an
important objective functional (e.g., as a nonlinear transform that pro-
motes sparsity), what we have obtained here (as described in Algorithm
D) could be an effective solver that uses only simple and fast operations.
Thus, when applying a complicated transform such as curvelet or con-
tourlet, instead of using the `2-based linear method for obtaining the
forward redundant transform, one can use the basis pursuit (or BPDN)
and get a sparser outcome (see [44] for such experiments on image de-
noising using the BPDN with contourlet). Algorithm D can perform this
task by applying the regular forward and adjoint transforms, coupled
with simple shrinkage steps. As such, this algorithm can be perceived
as a novel and effective pursuit algorithm.

IV. EXPERIMENTAL RESULTS

In this section, we present four experiments—the first three match
the cases discussed in Section III-F, illustrating the performance
of the various algorithms discussed on some signal examples. The
fourth experiment present the average denoising behavior of Algo-
rithm D as a function of the noise power and the cardinality of the
representation.

Experiment 1—A tight frame with normalized columns: We build
DDD as a union of 10 random unitary matrices of size 100 � 100. We
synthesize a sparse representation zzz0 with 15 nonzeros in random loca-
tions and Gaussian independent and identically distributed (i.i.d.) en-
tries, so as to match the sparsity prior we use. Thus, the clean signal is
defined as xxx0 = DDDzzz0. This signal is contaminated by a Gaussian i.i.d.

Fig. 3. Experiment 1: The objective in (10) as a function of the iteration—Al-
gorithms B–D.

noise � = 0:3 (parallels a signal-to-noise ratio (SNR) of � 1.3 dB).
We apply Algorithms A-D with �(z) = jzj, and the results are reported
in Figs. 3–5.

First, we show how effective are Algorithms B–D in minimizing the
objective in (10). Fig. 3 presents the value of the objective as a func-
tion of the iteration number. Here we have implemented Algorithm D
both with a fixed � = 1=� and with a line search. The IRLS (Algo-
rithm B) performs the best in terms of convergence speed at the first
five iterations, but then slows dramatically. The sequential and the par-
allel (with line search) coordinate descent are comparable to each other,
being somewhat inferior to the IRLS at the first five iterations, but show
a consistent decent in the function value afterwards.

When implementing Algorithms A–D, we sweep through the pos-
sible values of � to find the best choice. In this correspondence, we
have not treated the question of how to automatically find it. Also, in
assessing the denoising effect, we use the noise decay factor measure,
r(x̂xx; xxx0; yyy) = kx̂xx � xxx0k

2
2=kyyy � xxx0k

2
2, which gives the ratio between

the final reconstruction error and the error with yyy as our estimate. Thus,
a value smaller than 1 implies a decay in the noise, and the closer it is
to zero the better the result.

Using the IRLS (with few iterations due to its fast convergence) can
give us an evaluation of the denoising potential that exists in the objec-
tive function we use. We compare the IRLS results (after the first and
the fifth iterations) to the simple shrinkage Algorithm A. The simple
shrinkage in this case uses a threshold being �=� = 10�, based on
(30), so as to match to the objective function that uses � in its formula-
tion. Fig. 4 (top left) presents this comparison, showing the noise decay
factor versus �. Interestingly, it appears than the simple shrinkage man-
ages to utilize most of the denoising potential, and five iterations of the
IRLS give only slightly better results.

Fig. 4 also presents similar comparisons of the simple shrinkage with
the sequential coordinate descent (Algorithm C), and the parallel coor-
dinate descent with line search or with a fixed � chosen as � = 1=�.
First, we see that five iterations of the sequential coordinate descent
are as effective as five IRLS iterations, giving better results than the
simple shrinkage. Second, we see that the first iteration of the parallel
shrinkage aligns perfectly with the simple shrinkage when � = 1=�,
as predicted, and having five iterations gives a slight improvement. Fi-
nally, as line search is introduced in Algorithm D, the results hardly
change, implying that the choice � = 1=� is near-optimal.
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Fig. 4 Experiment 1 results—comparing denoising effects of the various algorithms. Top left: the IRLS versus simple shrinkage. Top right: the sequential
coordinate descent algorithm versus simple shrinkage. Bottom left: the parallel coordinate descent algorithm with fixed � = 1=� versus simple shrinkage.
Bottom right: the parallel coordinate descent algorithm with line-search versus simple shrinkage.

Fig. 5 presents the actual � found by the line search in Algorithm
D in the first iteration, as a function of the varying �. We see that for
small � (where our assumptions in Section III-F hold true), the value
found is close to 1=� as expected.

Experiment 2—A nontight frame with normalized columns: We
build DDD as a random matrix of size 100 � 1000 with entries drawn as
Gaussian i.i.d., and then normalize each column. The rest of the data
generation follows the same procedure described for Experiment 1.

Generally speaking, the results of this experiment are similar to those
in Experiment 1, assuggested by Fig. 6. Here we cannot align the choice
of threshold in the simple shrinkage to the choice of � in the objective
function, simply because those two have not been related. We see that
five iterations of the IRLS or the sequential CD can give a substantial
improvement in denoising. Also, we see that the first iteration of Algo-
rithm D that parallels in complexity to the simple shrinkage perform as
good, and adding several iterations give further noise decay. Here we
have not tried a fixed � since the 1=� rule does not apply.

Experiment 3—A general frame: We buildDDD as a random matrix of
size 100 � 1000 with entries drawn as Gaussian i.i.d. We deliberately
change the scale of the columns to range linearly between 0:5 and 1. Fig. 5. Experiment 1: The line-search results for � in the first iteration.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 12, DECEMBER 2006 5567

Fig. 6. Experiment 2 results—comparing denoising effects of the various algorithms. Top left: the IRLS versus simple shrinkage. Top right: the sequential coor-
dinate descent algorithm versus simple shrinkage. Bottom: the parallel coordinate descent algorithm with line-search versus simple shrinkage.

The rest of the data generation follows the same procedure described
for Experiment 1. Fig. 7 presents how Algorithm D compares to the
simple shrinkage. As can be seen again, while the alternative shrinkage
formulation we get is different from the heuristic method, it has the
same complexity and a comparable (and slightly better) noise decay.
Performing five iterations further improves the performance slightly
more.

Experiment 4—Average performance: The results reported above
correspond to one specific signal and the denoising obtained for it, so
as to illustrate the relation between the various methods. We now in-
troduce a wider experiment, where a corpus of signals is generated,
contaminated by additive noise, and then denoised. Our objective here
is to show the average amount of better denoising that can be expected
when turning from the heuristic shrinkage (i.e., the first iteration of Al-
gorithm D) to several iterations of Algorithm D.

Using the same dictionary as in Experiment 1, the signals in this
experiment are generated by synthesizing a sparse representation zzz0

with L nonzeros, where 1 � L � 20. Each such signal is normalized,
and then contaminated by additive Gaussian noise with varying power
in the range � = [0:03; 0:96] (i.e., SNR in the range [0; 30] dB). Per
each L and �, we generate 50 random signals, and apply denoising
based on Algorithm D with 1 to 10 iterations. Per each experiment we

Fig. 7. Experiment 3: The denoising effect of the parallel coordinate descent
algorithm with line-search versus simple shrinkage.
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Fig. 8. Experiment 4: Average denoising obtained by Algorithm D with one iteration (left), 10 iterations (middle), and their difference in decibels (right). The
results are shown as images with gray values being proportional to the results. The bar on the right of each image shows the relation between brightness and
resulting values. For convenience, the equi-height contours of the results are overlayed.

choose the optimal �, as done in Experiment 1, so as to exclude its
influence.

Fig. 8 shows the average noise decay factors obtained per each L
and input SNR. Several conclusions can be drawn from the results:
i) The denoising results are roughly the same for cardinalities in the
range [1; 20], implying that all these signals are sparse enough and thus
handled similarly; ii) the denoising effect depends on the SNR, showing
better denoising results for a higher SNR; and iii) using more than one
iteration in Algorithm D we typically get better performance with up
to 2.5-dB improvement. In some cases, more iterations may cause a
deterioration in the denoising performance, but when this happens, it
is a very mild loss (less than 0.05 dB on average).

V. RELATED WORK

Interestingly, a sequence of recent contributions proposed a similar
sequential shrinkage algorithm. First, the work reported in [40], [41]
uses such an algorithm for finding the sparsest representation over re-
dundant dictionaries (such as the curvelet, or combination of dictio-
naries). These papers motivated such algorithm heuristically, relying
on the resemblance to the unitary case, on one hand, and the block-co-
ordinate-relaxation method, on the other [33].

Figueiredo and Nowak suggested a constructive method for image
deblurring, based on iterated shrinkage [42]. Their algorithm aims at
minimizing the penalty function

fB(xxx) =
1

2
� kKKKxxx� yyyk22 + � � 1T � �fWWWxxxg (35)

whereKKK is a (square) matrix representing the blur, andWWW is a unitary
wavelet transform. Their sequential shrinkage method is derived via
expectation–maximization (EM), and its structure is very similar to the
method proposed in this work. It turns out that their algorithm is not
restricted to the case of square matrixKKK , and as such can be generalized
to handle the minimization of the objective posed in (9) by defining
DDD = KKKWWW

H .
Similarly, the paper by Daubechies, Defrise, and De-Mol [43] ad-

dresses the same objective as posed above, leaning on the definition of
a sequence of surrogate functions, each minimized via shrinkage. This
leads to yet another iterated shrinkage algorithm, very much like the
one in [42].

While these two algorithms (EM-based and surrogate-based) are
similar to ours, they are not the same. The norms of the atoms play dif-
ferent roles in these algorithms; the thresholds chosen in the shrinkage
are somewhat different; and the choice of � is done entirely different.
Further work is required to clarify the relation between these methods.

VI. CONCLUSION

In this correspondence, we studied the heuristic shrinkage as is com-
monly practiced with redundant transforms. We have shown that such
method has origins in Bayesian denoising, being the first iteration of an
iterative denoising algorithm. This leads to several consequences: i) we
are now able to extend the heuristic shrinkage and get better denoising
if more computations are allowed; ii) we obtain alternative shrinkage
algorithms that use the transform and its adjoint, rather than its pseu-
doinverse; iii) the new interpretation may help in addressing the ques-
tion of choosing the threshold in shrinkage, and how to adapt it to the
various coefficients, and iv) the obtained algorithm can be used as an
effective approximate solver for the BPDN for other applications, such
as a nonlinear transform that promotes sparsity.

We should emphasize that these findings are not to be confused as
a recommendation to use shrinkage for denoising in its simple form.
Treating each transform coefficient alone is appealing because it is
simple. However, recent work has shown that by treating clusters of
coefficients, or exploiting the coefficients’ interdependencies in other
ways (e.g., hidden Markov models), could give a substantial improve-
ment in the denoising effect [28]–[32], [34]–[39].
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