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Cross-Modal Localization via Sparsity
Einat Kidron, Yoav Y. Schechner, and Michael Elad

Abstract—Cross-modal analysis is a natural progression beyond
processing of single-source signals. Simultaneous processing of
two sources can reveal information that is unavailable when
handling the sources separately. Indeed, human and animal
perception, computer vision, weather forecasting, and various
other scientific and technological fields can benefit from such a
paradigm. A particular cross-modal problem is localization: out
of the entire data array originating from one source, localize the
components that best correlate with the other. For example, audi-
tory and visual data sampled from a scene can be used to localize
visual events associated with the sound track. In this paper we
present a rigorous analysis of fundamental problems associated
with the localization task. We then develop an approach that
leads efficiently to a unique, high definition localization outcome.
Our method is based on canonical correlation analysis (CCA),
where inherent ill-posedness is removed by exploiting sparsity
of cross-modal events. We apply our approach to localization of
audio-visual events. The proposed algorithm grasps such dynamic
audio-visual events with high spatial resolution. The algorithm
effectively detects the pixels that are associated with sound, while
filtering out other dynamic pixels, overcoming substantial visual
distractions and audio noise. The algorithm is simple and efficient
thanks to its reliance on linear programming, while being free of
user-defined parameters.

Index Terms—Computer vision, cross-sensor fusion, mul-
timedia, multimodal analysis, multisensor fusion, overfitting,
regularization, stochastic analysis.

I. INTRODUCTION

THERE is a growing interest in cross-modal analysis, where
two different modalities are processed simultaneously.

Such processing often involves comparisons of vector arrays,
such as images. It may also use observation of the vectors
over time, where mutual correlation is sought. Examples for
temporal correlations of data arrays appear in various fields: in
climatology [1], [2], dynamic weather phenomena in a certain
place are correlated to synoptic meteorological data, acquired
over time and in several locations; in economy [3], correlations
are pursued between revenue performance of a market versus
a large set of economic and social criteria; in medical research
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[4], [5], correlations are sought between body reaction to
external stimuli, or between rates of contacting, or recovering
from a certain disease versus lifestyle data (consumption of
sugars, proteins, vitamins) and treatment parameters.

This paper deals with such cross-modal correlations. A par-
ticular task in this regard is localization: out of the entire data
array originating from one source, localize the components that
best correlate with the other. We perform a rigorous analysis
of fundamental problems associated with this task. As it turns
out, it is difficult to obtain high quality localization if only a
few samples exist for each variable vector. In the context of the
above-mentioned examples, such is the case when handling fast
changing events; having too few temporal samples of meteo-
rological events; or when only a few subjects participate in a
medical test. In such scenarios, we show that the localization
problem is ill-posed. As a case study for cross-modal correla-
tion, in this work we focus on visual motion that is associated
with audio. Nevertheless, the mathematical approach we de-
velop here is of a general nature, and can be applied to other
fields, such as those mentioned above.

Activity in audio-visual cross-modal analysis has various re-
search aspects, including lip reading [6]–[8], analysis and syn-
thesis of music from motion [9], audio filtering based on mo-
tion [10], source separation based on vision [11]–[15], and emo-
tion recognition [16]. We note that physiological evidence and
analysis of biological systems show that fusion of audio-visual
information is used to enhance perception [17]–[19]. In this
field, the localization task seeks to accurately pinpoint visual
features (image pixels) that are associated with audio sources.
These pixels should be distinguished from other moving objects.
We do not limit the problem to talking faces or other specific
classes of sources, but seek a general algorithm to achieve this
goal. Some existing methods use several microphones, where
stereo triangulation indicates the spatial location of the sources
[20]–[23]. In contrast, we seek a sharp spatial localization of the
sound source, using a single microphone (emulating monaural
hearing) and a video stream. Moreover, we wish good localiza-
tion performance, even if interfering sounds exist, unrelated to
the desired object.

As indicated in Fig. 1, audio and visual data are inherently
difficult to compare because of the huge dimensionality gap be-
tween these modalities. To overcome this, a common practice is
to project each modality into a one-dimensional (1-D) subspace
[8], [13], [15]. Thus, two 1-D variables represent the audio and
the visual signals. Localization algorithms typically seek 1-D
representations that best correlate [8], [12], [13]. However, as
we show, this approach has a fundamental flaw. The projection
of the visual data is controlled by many degrees of freedom.
Hence, a substantial amount of data is necessary to reliably learn
the cross-relationships. For this reason, some methods use a very
aggressive pre-pruning of visual areas or features to reduce the
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Fig. 1. The audio data is sequential, requiringO(10 ) samples/sec. Corresponding video frames are highly parallel (multipixel), requiringO(10 ) samples/sec.
Pinpointing the sound source in the images by correlation requires dimensionality reduction of the visual signal. This reduction involves of too many degrees of
freedom.

number of unknowns. Others consider acquisition of very long
sequences to ensure sufficient data quantities. Those approaches
result in a severe loss of either spatial or temporal resolutions,
or both.

Audio-visual association can also be performed by opti-
mizing the mutual information (MI) of the modal representa-
tions, as has been shown in the pioneering work by Fisher et
al. [11], [24]. MI indicates cross-modal statistical dependency
better than cross correlation does. However, estimating MI
using Parzen windows is complex, and there is no guarantee for
a unique solution, due to the nonconvexity of MI [25]. More-
over, such an approach suffers from the problem of insufficient
data, as indicated above, just as methods that are based on
cross-correlation.

The algorithm described here addresses these difficulties,
while being based on canonical correlation analysis (CCA).
It results in high spatio-temporal localization, and a unique
solution. We exploit the fact that typically visual cues that
correspond to audio sources are spatially localized, and thus
sparsity of the solution is an appropriate prior. This makes the
problem well-posed, even in analysis based on very short time
intervals. The sparsity does not compromise the full correlation
of audio-visual signals. The algorithm is essentially free of
user-defined parameters. The numerical scheme is efficient,
based on linear programming. We demonstrate the algorithm in
experiments using real data.

This paper is organized as follows. Section II describes CCA,
which is a useful tool in multimodal processing. In Section III,
we show an alternative yet equivalent formulation of CCA. This
formulation serves our analysis, as it highlights the ill-posedness
of the problem, revealing the need for regularization. Section IV
is dedicated to the exploration of several standard regularization
methods. We argue that while such regularization methods lead
to unique solutions, the results are far from satisfactory in gen-
eral. Section V presents the main contribution of this paper. It
describes how sparsity of the solution can lead to more effective
localization and fully correlated results. In Section VI we extend
the analysis to cases where full correlation is not possible. Sec-
tion VII unveils a fundamental chorus ambiguity. Section VIII
presents some experimental demonstrations based on real data.
We conclude with a brief discussion in Section IX. Partial re-
sults appear in [26].

II. CANONICAL CORRELATION AND ITS LIMITATIONS

An important tool for exploring the relationship between two
modalities is CCA. In this section we describe CCA, and the
reason for its importance and popularity in multimodal anal-
ysis [1]–[5]. We then expose a fundamental limitation of CCA
in the context of our problem. CCA deals with correlation be-
tween two random vectors. The vectors can be of different na-
ture and dimensions, such as audio and visual signals. Let rep-
resent an instantaneous visual signal corresponding to a single
frame, e.g., by pixel values or by its wavelet coefficients. Let

represent a corresponding audio signal, e.g., by the intensity
of different audio bands (temporal slices of the periodogram)
covering a temporal interval that matches a video frame. Both
signals are considered as random vectors, due to their temporal
variations.1 Each of these vectors is projected onto a one dimen-
sional subspace and , respectively. The result of these
projections is a pair of two scalar random variables, and

, where denotes transposition. The normalized corre-
lation coefficient of these two variables defines the canonical
correlation [27], [28] between and ,

(1)

where denotes expectation. Here and are the co-
variance matrices of and , respectively, while is the
cross-covariance matrix of the vectors.

Maximization of the correlation seeks the subspaces
and that optimize (1). Note that the solution is scale invariant
due to the normalization of (1). This optimization problem has a
closed form solution, based on its formulation as an eigenvalues
problem [27]

(2)

1Each of the vectors v and a is assumed to have zero expectation. Numeri-
cally, this can be achieved by removal of each vectors’ mean prior to application
of CCA.



1392 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 4, APRIL 2007

Maximizing is equivalent to finding the largest eigenvalue
and its corresponding eigenvectors. In the optimal , the com-
ponents that have the largest magnitude indicate the visual com-
ponents that best correlate with the projection of , and vice-
versa. Note that a correlation value and its opposite cor-
respond to the same eigenvalue and eigenvectors in (2). Hence,
the range is equivalent to .

At first sight, CCA may appear to be a good tool for cor-
relating audio and visual signals. The projection of feature
vectors can bridge the huge dimensionality gap between sound
and pictures. Moreover, CCA amounts to an eigensystem
solution. Owing to these attractive characteristics, methods
based on projections of feature vectors have been the core of
several audio-visual algorithms [8], [11]–[13]. However, CCA
and its related methods [13] have a serious shortcoming. The
fundamental problem is the scarcity of data available in short
time intervals, which is often insufficient for reliably estimating
the statistics of the signals. To see this, note that ,
and should be learned from the data. In practice, is
estimated as the empirical matrix

(3)

where is the vector of visual features at time (frame) and
is the total number of frames used for the estimation. For

a reliable representation of typical images, at least thousands
of visual features are needed. To reliably learn the statistics of

and get a full rank matrix to be inverted, as required in
(2), we must use at least that number of frames. This imposes
minutes-long sequences, while assuming stationarity.

To grasp dynamic events, short time intervals should be used
(small ), but then we run into a problem of data shortage. The
matrix becomes highly rank deficient, hence (2) cannot be
solved, making CCA ill-posed. Technically, the rank deficiency
of can be bypassed by regularization, e.g., by weighted av-
eraging of with an identity matrix [29]–[31]. Such opera-
tions do not overcome the fundamental problem of unreliable
statistics. They yield an arbitrary solution that compromises the
correlation . As we show in Section IV, such regularization suf-
fers from serious shortcomings, in the context of our problem.

The gap between the amount of data and degrees of freedom
is not limited to CCA. It affects optimization of MI just as well.
Hence, in some studies, very small images have
been used, out of which only a few dozen features were selected
by aggressive pruning or face detection algorithms (the latter
limiting audio analysis to speech). In contrast, we seek local-
ization of general sources, while handling intricate details and
dynamics.

III. CCA—AN EQUIVALENT FORMULATION

A. The Equivalent Formulation

Before approaching our suggested solution, let us first present
an equivalent formulation to CCA that provides more insight.
The motivation for this alternative formulation will become ev-
ident as we turn to the end of Sections IV and V, to handle
the ill-posedness of CCA. Let be the number of visual fea-
tures. Define the matrix , where row contains

the vector . Similarly, define , where row
contains the coefficients of the audio signal , and is the
number of audio features. Note that and are time se-
ries, so matrices and contain each time point in their rows.
Defining the empirical covariances matrices ,

and , the empirical canon-
ical correlation2 (1) becomes

(4)

CCA seeks to maximize . As we show next, maximizing
is equivalent to minimizing the penalty function

(5)

with respect to and , where is the -norm.3 To
prove this, we null the derivatives of

(6)

This leads to

(7)

(8)

hence

(9)

(10)

Using the empirical covariance matrices and the definition of
, we obtain

(11)

implying

(12)

An analogous derivation for (10) yields

(13)

Equations (12) and (13) yield

(14)

Note that (14) is equivalent to the CCA set of equations (2),
with . Thus, an extremum of is equivalent to

2Strictly speaking, the definition for C ,C and C should be normal-
ized by N . However, this constant is factored out in (4), and is thus discarded
throughout the paper.

3Note that 0 � G(w ;w ) � 2. The proof is given in Section A of the
Appendix.
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an extremum of . Moreover, finding the maximum correlation
(i.e., the largest eigenvalue ) is equivalent to minimizing4 .
It can be shown that the range of is equivalent to the
range , while is equivalent to

. As we discussed in Section II, these two ranges are equivalent.
Thus, the solution that maximizes in the domain
is equivalent to the one minimizing when . Hence,
in this paper we can focus on minimizing towards zero.

To gain intuition into the equivalence of (4) and (5), note that
(5) is minimized if the projected video is as close as pos-
sible to the projected audio , in the sense. Hence, we
seek linear dependency between and , as expected in
high correlation. The denominator in (5) serves to avoid trivial
solutions, and to properly use the energies of the two projec-
tions. This is analogous to the correlation normalization in (1).

Before proceeding, we note that there is an alternative formu-
lation to CCA, called principal angles [32]–[34]. For the prin-
cipal angles approach, an alternative formulation was proposed
in [34], which is the constrained optimization

(15)

We prefer working with the unconstrained optimization of (5),
rather than (15), since the former is exactly equivalent to CCA
in its classical form (2).

B. The Ill-Posedness of CCA

CCA has limitations when working with a rank deficient ma-
trix . In the wider context of cross modal analysis, this oc-
curs, for example, if too few temporal samples of meteorolog-
ical events are used, or if details of just a few subjects are known
in a multi-parameter medical study. In the context of audio-vi-
sual correlation, this occurs when short time intervals are used.
Here, the number of representation features (at each frame) is
expected to be much larger than the number of frames in the
time interval . Let us analyze this ill-posedness
using (5). We first focus on the cases where , i.e., the
audio is characterized by a single feature. The case of multiple
audio bands is treated in Section V-B.

When we may set (where is a scalar),
since the penalty function in (5) is scale invariant (multiplying

and by the same constant does not change the function’s
value). Thus, (5) becomes

(16)

The denominator of (16) is necessarily not zero. The reason is
that , otherwise audio does not exist and cross-modal
analysis is not possible. Define the numerator

(17)

Suppose that a vector exists5 such that . This
vector yields , since the denominator of (16) is nec-

4Note that G is real and nonnegative, by definition.
5The complementary cases are treated in Section VI.

essarily nonzero. Hence, this solution yields complete coher-
ence, , as desired. Requiring implies

(18)

Since , is a column vector of length . As discussed
in Section II, , where is the length of . There-
fore, in the set of linear equations (18), the number of equa-
tions is much smaller than the number of unknowns, yielding
an underdetermined linear set of equations. If is full rank, the
number of possible solutions is infinite. To conclude: due to the
scarce data, there are infinite number of combinations of visual
features that appear to completely correlate with the audio!

How probable is the scenario of having ? For
, most chances are that , since

is stochastic due to scene dynamics. This generally guarantees
that is in the span of the column space. Thus, it is highly
probable that has a zero. In fact, noise in the visual data
guarantees this outcome, as it causes the rank to become full.
However, visual noise implies strong correlation of “junk” fea-
tures to the audio.6

IV. ATTEMPTING STANDARD REGULARIZATIONS

Since CCA of scarce data is ill-posed, regularization should
be imposed. Regularization has the role of choosing the best
vector among the infinite space of potential solutions, according
to some criterion. Next, several types of standard regularization
techniques are discussed, as well as their drawbacks. Our alter-
native approach, which is stronger in the context of localization
is introduced in Section V.

A. Minimum Energy Regularization Using an Term

A common regularization of underdetermined problems is to
prefer the minimal energy solution [33], [35]. In our case, this
would be

(19)

The constraint nulls the numerator of (16), thus
leading to a solution having full correlation. The term in (19)
is the imposed regularization. The that solves (19) is well
known in the literature and may be found using one of several
possible techniques, such as the Moore-Penrose pseudoinverse,
SVD, or QR factorization [33].

In the context of the audio-visual problem, (19) results in poor
visual localization. The reason is that the criterion seeks to
spread the energy of over many small-valued visual com-
ponents, rather than concentrating energy on a few dominant
ones. To obtain some intuition, this phenomenon is depicted
in the left part of Fig. 2 for and . In this
figure, a straight line describes the linear constraint .
The minimum of the -norm is obtained in point , which has
substantial energy in all components. This nature is contrary to
common audio-visual scenarios, where visual events associated
with sound are often very local. They typically reside in small
areas (few components) of the frame. Indeed, the inadequacy of

6On the extreme, ifV is just a noise matrix, it has full rank, nulling g(w ),
but yielding meaningless results.
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Fig. 2. A 2-D example of optimization under [left] ` -norm [middle] ` -norm [right] ` -norm. The dashed contours represent iso-norm levels. On the linear
constraintVw = A (solid line), point B minimizes kw k , but it has substantial energy in all components. In contrast, point A on the solid line is the sparsest
(minimum kw k ), and also satisfied minimum kw k . The ` criterion is convex.

this criterion is further demonstrated in the experiments detailed
in Section VIII.

B. Regularization Using the Identity Matrix

As described in (2), CCA requires the inversion7 of . This
matrix is singular and highly rank-defficient. One way to over-
come this problem is to regularize by defining an invertible
version

(20)

where is the identity matrix and is an arbitrary small
number. This has been a common approach in CCA regular-
ization [29]–[31]. It makes the covariance matrix full rank and
invertible.8 However, as we show in this paper, this regular-
ization reduces the correlation value (destroying the complete
coherence) and has a resemblance to the regularization posed
earlier in (19).

To assess this regularization, we relate it to the penalty func-
tion in (5). Recalling that , we can obtain (20) by
defining a matrix of size , having the form

(21)

and then . Suppose we use and defined by
(20) and (21) instead of the original matrices and . Insert
matrix into (16), and define to be a zero-padded version of

. This leads to a regularized cost function

(22)
where

(23)

7Inversion ofC is not a problem in our audio-visual localization scenario.
The reason is that the number of audio features is comparable to the number of
temporal samples, i.e., N � N .

8The covariance matrix in its new formulation (20) can be inverted efficiently
using the Sherman-Morrison formula [33]. However, it still involves a huge
eigenproblem.

The number is small, while the audio data is assumed
to contain significant energy. We thus assume that

. Thus, can be omitted from the denominator of
(22). However, this term cannot be neglected in the numerator,
since is a small number (as we are close to full
correlation). The regularized cost function becomes

(24)

where is the penalty function of the nonregularized ma-
trices. Recall that maximizing the correlation is equivalent to
minimizing , rather than . On the other hand, minimizing
(24) tends to minimize as well. Thus, this method has a
strong resemblance to the regularization given in (19). It may,
thus, be prone to a similar energy spread drawback. Moreover, it
generally leads to a reduced correlation, as proved in Section B
of the Appendix.

V. SPARSITY AS A KEY

“Out of clutter, find simplicity.
From discord, find harmony.”

Albert Einstein

As we have shown in the previous section, solving the audio-
video correlation problem using the traditional -norm solu-
tion, leads to poorly localized results. We now describe our ap-
proach, which leads to a unique solution based on a spatial spar-
sity criterion. First, we look at cases where , i.e., the
audio is characterized by a single feature. In Section V-B we
extend the analysis to multiple audio bands.

A. A Single Audio Band

When using a single audio band, our goal is to minimize (16).
We first discuss cases where the minimum of this function is
zero. The case of a non-zero cost function value is discussed
in Section VI. As discussed in Section IV-A, (16) has infinitely
many possible solutions, all of which have the same correlation
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value. To overcome this ambiguity, we express locality as a re-
quirement that the sought solution is sparse,9 meaning that only
a small number of visual features are associated with the audio.
Thus, out of the entire space of possible correlated projections,
we may aim to solve

(25)

where is the -norm of a vector space (the number of
non-zero vector coefficients). In the simple example depicted
on the middle of Fig. 2, the optimal solution according to this
criterion (point ) has a single component.10 Unfortunately, this
criterion is not convex, and the complexity of its optimization
is exponential [36], [37] in . We bypass this difficulty by
turning the problem into a convex one and solving

(26)

where is used instead of . This idea is known by the name
basis pursuit [40]. In the right part of Fig. 2, the solution opti-
mizing this alternative criterion has a single component (point

), just as with the criterion. All other points in the linear
constraint have a larger -norm. Thus, there is an
apparent equivalence between and , since both lead to the
same optimal vector. Moreover, this figure illustrates the con-
vexity of the criterion.

In general, the equivalence of the and problems (25),
(26) has been studied in depth during the last couple of years
from a pure mathematical perspective. First contributions in this
direction considered deterministic sufficient conditions for this
equivalence [36], [37], [41]. More recently, a probabilistic ap-
proach has been introduced, showing that equivalence holds true
far beyond the limits determined by these sufficient conditions
[42], [43]. Further details about the equivalence and its condi-
tions are given in Section C of the Appendix. Owing to this the-
oretical progress, formulating sparsity using the -norm is ef-
fective. We note that there are other approaches for efficiently
minimizing (25). For example, the FOCUSS method [44] re-
places the -norm by an with . Such methods may
be used as well to solve our problem. Anyway, to benefit from
convexity we used basis pursuit.

Equation (26) can be given a statistical interpretation, ac-
cording to which the unknown is a random vector. Among
all possible solutions satisfying , one may seek the
solution with the highest probability. In this line of thought,
each element in is assumed to be a Laplacian random vari-
able, and is a combination of independent and identi-
cally distributed (i.i.d) such random variables. Such a model is
commonly practiced in image processing [40]. However, in this
paper we do not follow this interpretation, and rather use a de-
terministic point of view.

The newly defined formulation (26) can be posed as a linear
programming problem, and thus can be solved efficiently, even

9In video analysis, sparsity is enhanced using a wavelet representation of tem-
poral-difference images.

10This example should be viewed with caution: there are two intersections of
the linear constraint with the axes ofw , both considered as global minimizers
of ` . This lack of uniqueness is due to the low dimension (2–D of this example).
As the dimensions of the problem grow, uniqueness becomes possible. For de-
tails see [36]–[39].

Fig. 3. A 2–D illustration of the faces of the ` -ball in the audio space.

for . This formulation influences the solution energy
to concentrate on few visual features which strongly correlate
with the audio. It penalizes for dispersed components, partic-
ulary the random “junk” features described earlier, e.g., image
noise. Moreover, the solution is unique, thanks to the convexity
of the -norm, except for special cases discussed in Section VII.

B. Multiple Audio Bands

We now generalize the analysis of Section V-A to audio sig-
nals that are divided into multiple bands. We postpone to Sec-
tion VI the analysis of scenarios in which the optimal value of
the cost function is nonzero. Here, we analyze cases where the
cost function can become zero. This allows us to concentrate on
the numerator of (5). The numerator is zero if and only if

(27)

As before, if , a zero solution of is guar-
anteed. As we have claimed in Section V-A, this is a highly
probable event. In the unlikely event that no intersection exists
between the subspace spanned by the columns of and the sub-
space spanned by , the cost function cannot be nulled (see
Section VI).

As aforementioned, (27) is prone to a scale ambiguity. To
overcome this problem and avoid the trivial solution ,
we use normalization. A way to achieve this is to limit the search
to the -ball of audio-weights, . The set
is not convex. To keep enjoying the benefits of convexity in our
problem formulation, we break the problem into separate
ones, where each handles a single face of the audio -ball and
is thus convex. As depicted in Fig. 3, the optimization over each
face can be posed as

(28)

where is a vector of length , and is a diagonal matrix
whose diagonal is . The vector set comprises the

different combinations of the -tuples binary sequences
with 1 as their entries. Since all the constraints are linear, (28)
is solved for each using linear programming.

Recall that for our audio-visual localization method, we
should optimize the visual sparsity over the audio -ball. This
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is done by running (28) over all11 values of , and then selecting
the optimal by

(29)

The unique vectors and that we seek are then derived by
using this specific in (28). We stress that our goal is to localize
visual events (based on audio cues), while processing of audio is
of secondary importance here. This distinction enables us to use
a coarse representation of the audio. Hence, only a small number
of audio bands is required. For this reason, the computations
are tolerable despite the complexity.

VI. A NON-ZERO COST FUNCTION VALUE

So far we considered solutions that null . This
nulling is very likely, by a full rank of , as explained in
Section III. However, there is a chance, even if it is low, that
is not full rank, hence, no solution is fully correlated. For the
sake of completeness, we show that this case can be handled
well by our approach.

A. A Single Audio Band

It follows from Section III that only if
, and if is not in the column span of . In

such cases, we can decompose as . Here
is in the subspace spanned by the columns of , while is
orthogonal to . Thus,

(30)

and (16) becomes

(31)

Note that the audio component does not correlate with any
of the visual features. As such, it can be discarded as irrelevant.
The remaining signal is a projected version of the original
audio for which the solution to exists. Thus, is
essentially projected to the column space of , as a “denoising”
preprocess. This suggests that we handle the rank-deficient
matrix case by such a projection, and then proceed as in (26)
where we use instead of .

As we show now, this line of reasoning is in fact optimal up to
a scale. We are interested in characterizing the set of minimizers

of (31). Recall that is not spanned by the columns of
. Thus, no matter what is, the term is necessarily

orthogonal to . In general, the solution satisfies the rela-
tion , where is a scalar, and is an arbitrary
vector perpendicular to both and . Thus, in (31)
becomes the function

(32)

11Actually, there is no need to scan all 2 values of q. Due to the scale
ambiguity mentioned above, h and �h yield the same results. Hence it is
sufficient to scan 2 nonequivalent values of q.

We need to find and that minimize this function. We thus
derive equations that null the partial derivatives of with
respect to and . Handling first, we rearrange

(33)

Here we have exploited the fact that the -norm is sepa-
rable when dealing with two orthogonal vectors ( and

in this case). To simplify this expression, let us define
and , hence

(34)

It follows that

(35)

where we used . We seek optimization
of . We, thus, require nulling of (35). Hence . Further-
more, handling yields

(36)

Hence

(37)

i.e.,

(38)

Since , then . To recap,
these values of and result from minimization of (31), when

. This means that the correlated audio-visual
features satisfy

(39)

To conclude, if cannot be nulled, then the set of minimizers
of (31) is given by (39). Since (39) minimizes , it maxi-

mizes the correlation. The scalar does not influence the local-
ization result, but only the overall scale of . Thus, the results
obtained using our algorithm are consistent, up to a scale.

B. Multiple Audio Bands

In the multiple audio band problem, the vector is un-
known. However, from the discussion leading to (39), the op-
timal should make the projected audio parallel to the pro-
jected visual signal. Thus, we force this parallelism by con-
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Fig. 4. The chorus ambiguity under the ` -norm. The top row is a two-pixels scene and the bottom shows a human chorus. (a) Detecting the left person. (b) Detecting
the right person. (c) Detecting both.

straining (28), and adapt the formulation to the case where the
penalty function is non-zero.

Let the space spanned by the columns of be denoted by
. Decompose this space into two orthogonal subspaces

and , where spans the projected audio subspace .
Define and as matrices whose columns span and

, respectively. Similarly to (39), parallelism means that

(40)

where is a scalar. Thus, the inner product between and
the orthogonal audio space (spanned by ) must be zero

(41)

We use (40) and (41) as new constraints. Combining these con-
straints, (28) becomes

(42)

Hence, the same algorithm introduced earlier can be used in the
general case discussed here.

VII. THE CHORUS AMBIGUITY

Consider a chorus of identical people singing in synchrony
the same song. In this case, the audio track corresponds well
to several spatially distinct clusters of pixels (faces of the
chorus members). Which pixels would you choose as the
ones achieving successful localization? This scenario poses
a fundamental ambiguity for any localization algorithm: the
result could pinpoint any single person or several of them. In
this special scenario all these results are equally acceptable. We
term this phenomenon as the chorus ambiguity, and it stands
for the loss of the localization uniqueness. Such scenario can
also occur in events which are not audio-visual.

Our algorithm as posed in (26), (28), and (29) has this charac-
teristic, just as well. Referring to Fig. 2, this case occurs when

Fig. 5. The chorus ambiguity under the ` -norm. There are only exclusive de-
tections, which correspond to points A and B in Fig. 4.

the linear constraint aligns with a face of a visual
ball. Mathematically, the implication is that for this special

scenario, the problem in (26) does not have a unique solution,
but rather a set of them. This case is demonstrated in Fig. 4 for
a two-pixels scene (top row) and for a chorus of two people
(bottom row). In this illustration, three solution types in the
two-pixels scene are represented, denoted by , and . Types
and represent exclusive detection of only a single pixel, while
type represents all solutions that are a convex superposition of

and . Analogously, in the two people chorus, types and
represent an exclusive detection of a single person, while type

represents detection of the entire chorus (with some weight
ratio between members).

We can see that the problem of (25) has only one type of solu-
tion, as demonstrated in Fig. 5—that of exclusive detection. In
the general chorus case, the criterion can lock into any single
person in the chorus, while the result can spread the detec-
tions between several of them. Thus, in this case the equivalence
between and breaks down. A mathematical insight to this
phenomenon can be found in [36], [37]. Still, this effect does not
hinder the optimization process that we have posed: the linear
programming converges to one of these solutions, depending on
the initialization.
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Fig. 6. Movie #2 includes a talking face and a moving wooden horse. [Left] The audio signal. [Right] A sample frame.

VIII. EXPERIMENTS

The algorithm described is of a wide scope, handling localiza-
tion of cross-modal correlations using insufficient data. In this
section we demonstrate it for audio-visual analysis. In this do-
main, the signals are represented by some visual and audio fea-
tures. Once the problem is solved, the results should be trans-
ferred from the feature space back into the image domain (pixels
domain). The output of the localization algorithm is a weight

for each component of the vector . The weights are
transformed into an image . For example, if wavelets are
the domain of , then an inverse wavelet transform

brings to the pixel domain. Note that the image
can have positive and negative components. We thus

display the energy of the components, ,
where is the pixel coordinate vector. Based on this energy
distribution one can derive a measure of localization success.
Details about such a criterion can be found in [26].

We now detail our experiments. Had we had only a single
moving object in the field of view, its detection would have
been trivial: standard image processing tools of motion detec-
tion would suffice. It would not require cross-modal analysis.
Thus, to challenge the algorithm we deliberately based each of
our experiments on two moving objects: only one of them is
associated with the audio, while the other is a strong visual dis-
traction (a rocking wooden-horse). Additional moving objects
are expected to yield similar results. Moreover, in some experi-
ments we added strong audio noises SNR , in the form of
unseen talking people, broadband noise, or background beats.

Our video sequences were sampled at 25 frames/s at resolu-
tion of 576 720 pixels.12 The audio was sampled at 44.1 KHz.
Movie #1 features a hand playing a guitar and then a synthesizer.
Such an example gives a good demonstration of dynamics. The
hand playing motion is distracted by a rocking wooden-horse.
Some raw data of this sequence appears in Fig. 1. Movie #2
features a talking face and a distracting rocking wooden-horse
as well. The audio plot and a representative frame of this se-
quence are shown in Fig. 6. Both movies can be linked through
http://www.ee.technion.ac.il/~yoav/AudioVisual.html.

The experiments had the following features, aimed at demon-
strating some capabilities of our approach:

• Handling dynamics. Each sequence was 10 s long.
However, analysis was performed on intervals of

( 1 second).

12We used only the pixel intensities, and discarded the chromatic channels.

Fig. 7. Dynamic pixels expressed by the wavelet components in [left] Movie #1
and [right] Movie #2. Gray levels indicate the temporal average of pixel values.
Black regions represent static pixels.

• High spatial resolution (localization). In some of the
prior work, pruning of visual features had been very
aggressive, greatly decreasing spatio-temporal resolution.
Our algorithm does not need this, thanks to the sparsity
criterion. Nevertheless, memory limits currently restricted
the number of visual features to . The dy-
namic pixels in our frames were effectively represented
by wavelet coefficients of such dimensions, as described
below. The dynamic pixels are shown in Fig. 7. It is
stressed that pruning was done only for reducing the
computational load. However, we observed in experiments
that using a larger number of features has a diminishing
return. We aim to demonstrate high spatial resolution in
the resulting visual localization.

• No parameters to tweak. The implementation has essen-
tially no parameters. The selection of represents
our desire to localize brief events, but longer time intervals
can be used as well. The selection of stems
from hardware limits, but the results of our experiments
observed robustness to this choice.

• Simple audio representation. Our experiments did not at-
tempt to filter sounds, but rather to filter the visual signals.
Hence, only a few audio bands were used. We analyzed the
sequences using a single wide band , averaging
sound energy at each frame (1/25th second). We then rean-
alyzed the data using audio bands, selected as the
strongest periodogram coefficients.

Since a sparse representation is desired, we worked on tem-
poral-difference images, applying a wavelet transform to each of
these difference-frames [45], [46]. We choose to use a wavelet
decomposition of up to level 3. Coarser levels may incline the
algorithm to choose coarser features. This reduces the value
but expands the spatial spread in the image domain.
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Fig. 8. The algorithm results, when run on Movie #1. For visualization, we overlayed the detected energy distribution with the corresponding sample raw frames.
Localization concentrates on the playing fingers, which dynamically move from the guitar to the synthesizer. Sporadic detections exist in other areas, usually with
much lower energies.

Fig. 9. Sample frames resulting from the algorithm, when run on Movie #2. The visualization is as described in Fig. 8. Localization in the mouth area is consistent.
Sporadic detections exist in other areas, usually with much lower energies.

Fig. 8 shows sample frames resulting from the analysis of
Movie #1. At each frame, we overlaid the energy distribution
of the detected pixels with the corresponding raw image.
The algorithm pinpointed the source of the sound on the mo-
tion of the fingers, demonstrating both high spatial accuracy
and temporal resolution. Compared to the large area occupied
by dynamic pixels in Fig. 7, the detected pixels in Fig. 8 are
concentrated in much smaller areas. Thus, high localization is

achieved. Note that the algorithm handles dynamics. First, the
guitar is detected, corresponding to its audio tones. When the
hand played the synthesizer, the algorithm managed to shift its
focus accordingly. The motion distractions (rocking horse) were
successfully filtered out by our localization algorithm.

Similarly, Fig. 9 shows sample frames resulting from the
analysis of Movie #2. Here pixels in the mouth were predom-
inantly detected as correlated with the audio. Similarly to the



1400 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 4, APRIL 2007

Fig. 10. Typical results of using ` as a criterion. Compared to the corresponding frames shown in Figs. 8 and 9, the detected energy is much more spread,
particularly in irrelevant areas (see the wrong detection of the horse on the right frame).

TABLE I
LOCALIZATION VALUES

results of Movie #1, the motion distractions are successfully
filtered out.

To judge the results, we compare our algorithm to the results
of regularization (19). Typical sample frames are shown in
Fig. 10. They suffer from very poor localization and detection
rate: there are many false-positives (especially detection of the
moving horse), while the energy spreads over a large area. Note
that in both experiments, the and the regularizations lead to
full empirical correlation (4), . Hence, the detected sets of
features in Figs. 8 and 10 (say, in frame 146) are both considered
as optimal CCA results. This is an example for the fact that
CCA does not have a unique solution when data is insufficient.
This example shows that the -norm leads to a sparse solution,
which is consistent with our subjective expectation.

Table I reports the temporal mean and standard deviation of
the empirical localization [26] values , resulting from the
use of either the or -based localization algorithms. These
quantitative results indicate that the -based solution achieves
poor localization, compared to the -norm counterpart. As
mentioned above, we repeated our experiments by sequentially
adding three types of audio disturbances. The results were
very similar to the ones reported in Table I, as well as visually.
Moreover, we tested a multi-band audio representation using

. The performance was very similar to that described in
Figs. 8 and 9.

The experiments demonstrated elimination of irrelevant
distractions (the rocking horse). If we had stationary sequences
that were long enough, this elimination would have been
achieved simply by CCA: the lack of correlation between the
visual distraction and the audio would have been exposed.
However, in the experiments, many irrelevant pixels may alias
as correlated, since there is not enough data to reject them. The
desired rejection of such irrelevant measurements was enabled
by the sparsity-based regularization. In particular, the rejection
of the rocking horse would occur also if it was spatially smaller,
as long as it is not correlated to the guitar’s audio. Had it been
considered as part of the detected set in conjunction to the

audio generating object, it would have increased and
without increasing . On the other hand, if the guitar

was strummed with the same rhythm as the rocking horse, then
correlation might have existed between them. In such a case,
the algorithm might detect pixels on the rocking horse, as well
as on the hand area.

Interestingly, if increases, the solution may be less sparse.
This is typical to optimization problems: as data fitting becomes
more reliable and prominent with added data, regularization ef-
fects become weaker.13 Our priority is full correlation of the
data, rather than sparsity. Hence, full empirical correlation is
a constraint in our formulation. The sparsity prior only serves
to regularize the solution.

IX. POSTPROCESSING FOR VISUALIZATION

The algorithm described above hardly exploits spatial coher-
ence and temporal consistency, which are typical to audio-visual
events. Still, it yields good results. Nevertheless, performance
can be improved by further development of these aspects. This
can be done by reformulating the optimization problem using
priors expressing spatial coherence and temporal consistency.
We opted for an alternative option, in which postprocessing is
applied to the results of our algorithm, to filter out inconsistent
behavior in time and space. This option is simpler and faster,
since it involves concatenation of two relatively simple stages.
As the post processing stage, we performed temporal median
filtering (in windows of 10 frames), followed by spatial convo-
lution with a 5 5 Gaussian kernel. The first step deletes tem-
poral outliers, while the second stabilizes spatial positions and
filters out fluctuations. Samples of resulting frames are shown
in Fig. 11 and Fig. 12.

X. DISCUSSION

The algorithm presented here is parameter-free, and is thus
robust to scenario variability. Nevertheless, the principles posed
here can become the base for more elaborate localization ap-
proaches, that uses spatio-temporal consistency as a prior, as
done in tracking methods. To enhance sparsity, it is possible to
look for partial correlation, rather than full correlation. Such

13The other extreme is when data is almost nonexistent (say, only a single data
point exists). Then, regularization dominates, leading to a meaningless solution
to any optimization problem. In our problem, this would occur if N = 1.
Then, the result would be a detection of an arbitrary single visual feature.
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Fig. 11. Results of post processing of the algorithm output when the input is Movie #1. Compared to Fig. 8, the detected regions are much more stable and contain
much less false-positives. Movie results are linked via http://www.ee.technion.ac.il/~yoav/AudioVisual.html.

Fig. 12. Results of post processing of the algorithm output when the input is Movie #2. Compared to Fig. 9, the detected regions are much more stable and contain
much less false-positives.

an algorithm may introduce parameters. Moreover, it is pos-
sible to solve the problem using other norms than those men-
tioned in this paper, to improve convergence. There are still open
questions in this research, such as the nature of the method’s
breaking point. As in other computer vision and pattern recog-
nition algorithms, introducing more complex scenarios would
reveal new theoretical questions, which may lead to more com-
plex methods.

It is possible to extend this approach, e.g., by a kernel ver-
sion for treating nonlinear relations between the modalities [29],
[31], [34]. In addition, time-lag between the modalities can be
introduced as a variable in the optimization. In audio-visual
analysis, this would enable estimation of object distances from
the camera, based on the speed of sound. One may go further and
generalize the problem formulation to multiple simultaneous
events to be localized.
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Our algorithm has dealt with correlation between two modal-
ities, while one of the modalities has high dimensions (visual
data) and the other has low dimensions (audio data). It is desir-
able to extend the approach, so that both modalities can be high
dimensional. In addition, it would be interesting to consider ex-
tensions to more than two modalities. This may be based on
generalized CCA [47]. This would be useful, for example, for
correlating several synchronous cameras (multiple video chan-
nels) to audio. Furthermore, it is worth considering the applica-
tion of our sparsity-based approach in other scientific domains
that aim to correlate arrays of measurement vectors. These may
include climatology, economy, sociology and medical research.

APPENDIX

A. Bounds of

In this section of the appendix we prove that the penalty func-
tion given by (5) is bounded to the range [0,2]. Clearly (5) is non-
negative by definition. It may become zero when ,
and hence the lower bound of is zero as claimed. For the upper
bound, we use the inequalities and

(relation between geometric mean
and algebraic mean). This yields

(A-1)

This upper bound is tight, and is realized when .
Thus, our claim that is proven. As explained in
Section III, the range is equivalent to .

B. Regularization by an Identity Matrix

In this section of the appendix we prove that regularization
based on addition of the identity matrix, as posed in (24), leads
to reduced correlation. Recall that for small enough , this reg-
ularization leads to the new penalty function

(B-1)

where is the original penalty function of the non-regu-
larized matrices. Let us define as the minimizer of the regu-
larized cost function . This minimizer must lead to a zero
derivative, implying

(B-2)

leading to

(B-3)

Using the derivative of given in (7) we obtain

(B-4)

Let us assume first, that the solution leads to complete co-
herence, and then show that this leads to a contradiction. Com-
plete coherence (i.e., maximal correlation) implies ,
which is obtained if . Plugging this into (B-4), and
using the fact that , yields

(B-5)

Multiplying (B-5) by , we get

(B-6)

Using again, we obtain

(B-7)

The last equation implies that the arbitrary audio data vector
is an eigenvector of the matrix . However, as and
stem from distinct sources, they do not, in general, satisfy this
property. Thus, the solution that minimizes does not null ,
i.e., the absolute correlation value is reduced.

C. Sparsity Using

Suppose we seek to solve (25). This task is highly com-
plex (known to be NP-hard) [36], [37], being a combinatorial
problem whose complexity grows exponentially with the
number of columns in . Fortunately, we may use an approx-
imation method that replaces the -norm with an norm,
yielding (26). This convex approximation is known as the basis
pursuit algorithm [40]. The advantage of such a change is that
it can be cast as a linear programming problem and be solved
by modern interior point methods, even for very large [40].

Recent studies have established that if the solution of (25) is
sparse enough, then: i) no other solution exists with the same
or lower cardinality (uniqueness); and ii) solving (26) yields a
solution which is identical to the solution of (25) (equivalence)
[36], [37]. Both the uniqueness and the equivalence results are
derived from the properties of the matrix . Defining as the

th column in this matrix, the mutual coherence is defined as

(C-1)

for . The work reported in [36]–[39] shows
that uniqueness and equivalence of (25) and (26) hold true if the
solution satisfies14

(C-2)

14It can be shown [38] that (N �N )=(N (N � 1)) �M � 1.
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In this case, the solution is considered to be a highly sparse
solution, and solving (26) can replace (25).

The bound in (C-2) is rather restrictive. It is very conserva-
tive since it relates to worst-case scenarios. There are, however,
cases where this restriction in meaningless. Consider an extreme
case where the matrix includes two identical columns. In this
case, (C-1) yields , implying that uniqueness and equiva-
lence hold true for vectors having less than a single nonzero
component (i.e., the entire vector is zero). Such an observation is
useless. Apparently, empirical tests show that basis pursuit (26)
recovers the solution of (25) for cases far exceeding the afore-
mentioned bound.

Encouraged by these empirical observations, very recent the-
oretical analysis [42], [43], [48] addressed the above questions
from a probabilistic point of view. This analysis has replaced a
deterministic claim of “guaranteed uniqueness and equivalence”
with a claim of “guaranteed uniqueness and equivalence with
probability one.” These studies establish a much higher bound
on the cardinality of the solution to guarantee success.15 These
new results stand as supporting evidence to our experiments
(Section VIII), where basis pursuit succeeded in locking on very
sparse solutions.
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