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Morphological Diversity and Source Separation
Jérôme Bobin, Yassir Moudden, Jean-Luc Starck, and Michael Elad

Abstract—This letter describes a new method for blind source
separation, adapted to the case of sources having different mor-
phologies. We show that such morphological diversity leads to a
new and very efficient separation method, even in the presence
of noise. The algorithm, coined multichannel morphological com-
ponent analysis (MMCA), is an extension of the morphological
component analysis (MCA) method. The latter takes advantage
of the sparse representation of structured data in large overcom-
plete dictionaries to separate features in the data based on their
morphology. MCA has been shown to be an efficient technique in
such problems as separating an image into texture and piecewise
smooth parts or for inpainting applications. The proposed exten-
sion, MMCA, extends the above for multichannel data, achieving
a better source separation in those circumstances. Furthermore,
the new algorithm can efficiently achieve good separation in a
noisy context where standard independent component analysis
methods fail. The efficiency of the proposed scheme is confirmed
in numerical experiments.

Index Terms—Blind source separation, morphological compo-
nent analysis (MCA), sparse representations.

I. INTRODUCTION

ACOMMON assumption in signal or image processing is
that measurements made typically using an array of

sensors often consist of mixtures of contributions from various
possibly independent underlying physical processes . The sim-
plest mixture model is linear and instantaneous and takes the
form , where and are random matrices of
respective sizes and , and is an matrix. Mul-
tiplying by linearly mixes the sources into observed
processes. Thus, the rows of , are the sources, and the rows
of , are the mixture weights. An random matrix
is included to account for instrumental noise or model imper-
fections. The problem is to invert the mixing process so as to
separate the data back into its constitutive elementary building
blocks.

In the blind approach (where both the mixing matrix and the
sources are unknown), and assuming minimal prior knowledge
on the mixing process, source separation is merely about de-
vising quantitative measures of diversity or contrast. Classical
independent component analysis (ICA) methods assume that
the mixed sources are statistically independent; these techniques

Manuscript received December 5, 2005; revised February 2, 2006. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Prof. James E. Fowler.

J. Bobin and Y. Moudden are with the DAPNIA-SEDI-SAP, Service d’As-
trophysique, CEA/Saclay, 91191 Gif sur Yvette, France (e-mail: jbobin@cea.fr;
ymoudden@cea.fr).

J.-L. Starck is with the DAPNIA-SEDI-SAP, Service d’Astrophysique, CEA/
Saclay, 91191 Gif sur Yvette, France and also with Laboratoire APC, 75231
Paris Cedex 05, France (e-mail: jstarck@cea.fr).

M. Elad is with the Computer Science Department, Technion-Israel Institute
of Technology, Haifa 32000, Israel (e-mail: elad@cs.technion.ac.il).

Digital Object Identifier 10.1109/LSP.2006.873141

(for example, JADE, FastICA, and Infomax) have proven to be
successful in a wide range of applications (see [1]–[4] and ref-
erences therein). Indeed, although statistical independence is a
strong assumption, it is, in many cases, physically plausible.

An especially important case is when the mixed sources
are highly sparse, meaning that each source is rarely active
and mostly (nearly) zero. The independence assumption in
such a case implies that the probability for two sources to
be significant simultaneously is extremely low, so that the
sources may be treated as having nearly disjoint supports. This
is exploited, for instance, in sparse component analysis [5].
Indeed, it has been already shown in [6] that first moving the
data into a representation in which the sources are assumed to
be sparse greatly enhances the quality of the separation. Pos-
sible representation dictionaries include the Fourier and related
bases, wavelet bases, and more. Working with combinations of
several bases or with very redundant dictionaries such as the
undecimated wavelet frames or the more recent ridgelets and
curvelets [7] could lead to even more efficient representations.
However, finding the smallest subset of elements (that linearly
combine to reproduce a given signal or image) is a hard combi-
natorial problem. Nevertheless, several pursuit algorithms have
been proposed that can help build very sparse decompositions
[8], [9]. In fact, a number of recent results prove that these
algorithms will recover the unique optimal decomposition,
provided that this solution is sparse enough and the dictionary
is sufficiently incoherent [10], [11].

In another context, the morphological component analysis
(MCA) described in [12] uses the idea of sparse representation
for the separation of sources from a single mixture. MCA con-
structs a sparse representation of a signal or an image consid-
ering that it is a combination of features that are sparsely repre-
sented by different dictionaries. For instance, images commonly
combine contours and textures: the former are well accounted
for using curvelets, while the latter may be well represented
using local cosine functions. In searching a sparse decomposi-
tion of a signal or image , it is assumed that is a sum of com-
ponents, , where each can be described as with
an over-complete dictionary and a sparse representation .
It is further assumed that for any given component, the sparsest
decomposition over the proper dictionary yields a highly sparse
description, while its decomposition over the other dictionaries,

, is highly non-sparse. Thus, the different can be seen
as discriminating between the different components of the ini-
tial signal. Ideally, the are the solutions of

subject to (1)

However, as the norm is nonconvex, optimizing the above
criterion is combinatorial by nature. Substituting the -norm
by an , as motivated by recent equivalence results [10], and
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Fig. 1. Experiment 1: Top left: Two initial source signals. Top right: Three
noisy observed mixtures. Bottom left: Two source signals reconstructed using
MMCA. Bottom right: Two source signals reconstructed with JADE.

relaxing the equality constraint, the MCA algorithm seeks a so-
lution to

with

(2)
A detailed description of MCA is given in [12] along with re-
sults of experiments in contour/texture separation in images and
inpainting. Note that there is no mixing matrix to be estimated
in the MCA model, and the mixture weights are absorbed by the
source signals .

The purpose of this contribution is to extend the MCA to
the case of multichannel data, as described in the next section.
In handling several mixtures together, the mixing matrix be-
comes an unknown as well, which adds some complexity to
the overall problem. On the other hand, having more than one
mixture is expected to help the separation, leading to better per-
formance compared to regular MCA. Section III illustrates the
performance of MMCA and demonstrates its superiority over
both MCA and several ICA techniques. We should note that our
method could also be considered as an extension of the algo-
rithm described in [6], with two major differences: 1) while [6]
uses a single transform to sparsify the data, our technique as-
sumes the use of different dictionaries for different sources, and
2) the numerical scheme that we lead to in the construction of
the algorithm is entirely different. Interestingly, a similar phi-
losophy has been employed by [13] for audiophonic signals.
Their method assumes that an audio signal is mainly made of a
“tonal” part (sparse in a discrete cosine dictionary), a transient
part (well sparsified by a wavelet transform), and a residual.
However, their decomposition algorithm is not based on an iter-
ative scheme, which is a major difference with MMCA. Indeed,
experiments show that such an iterative process is needed when
the considered transforms are far from being incoherent (for in-
stance, DCT and curvelet transform).

II. MULTICHANNEL MCA

We consider the mixing model (1) and make the additional as-
sumption that each source is well (i.e., sparsely) represented
by a specific and different dictionary . Assigning a Lapla-
cian prior with precision to the decomposition coefficients

of the th source in dictionary is a practical way to im-
plement this property. Here, denotes the array of the

th source samples. Classically, we assume zero-mean Gaussian
white noise. This leads to the following joint estimator of the
source processes and the mixing matrix :

(3)

where trace is the Frobenius norm. In the
above formulation, we define , implying that the trans-
form is applied in an analysis mode of operation, very much like
in the MCA [12]. Unfortunately, this minimization problem suf-
fers from a lack of scale invariance of the objective function:
scaling the mixing matrix by , and an inverse scaling
of the source matrix, , leaves the quadratic measure
of fit unchanged while deeply altering the sparsity term. This
problem can be alleviated by forcing the mixing matrix to have
normalized columns , implying that each of the source signals
is scaled by a scalar. Practically, this can be achieved by nor-
malizing these columns at each iteration
and propagating the scale factor to the corresponding source by

. We propose solving (3) by breaking into
rank-1 terms, , and updating one at a time.

Define the th multichannel residual
as corresponding to the part of the data unexplained by the other
couples . Then, minimizing the objective function
with respect to assuming is fixed as well as all and

leads to

Sign (4)

This is a closed-form solution, known as soft-thresholding,
known to be exact for the case of unitary matrices .

As becomes a redundant transform, we keep this interpre-
tation as an approximate solution and update the source signal

by soft-thresholding the coefficients of the decomposition of
a coarse version with a scalar threshold

(see [14] for more details on the justification of
this step). Then, considering a fixed , the update on fol-
lows from a simple least-squares linear regression. The MMCA
algorithm is given at the top of the next page.

At each iteration, coarse (i.e., smooth) versions of the
sources are computed. The mixing matrix is then estimated
from sources that contain the most significant parts of the orig-
inal sources. The overall optimization proceeds by alternately
refining both the sources and the mixing matrix. The use of a
progressive thresholding scheme with a set of thresholds
decreasing slowly toward enforces a certain robustness
to noise. Indeed, both alternate projections and iterative thresh-
olding define a non-trivial path for the variables to estimate
(sources and mixing matrix) during the optimization. This
optimization scheme leads to a good estimation as underlined
in [12]. MMCA benefits from the potential of overcomplete
dictionaries for sparse representation. In comparison with the
algorithm in [6], which uses a single sparsifying transform and a
quadratic programming technique, our method considers more
than just one transform and a shrinkage-based optimization.
In the case where we have only one channel and the mixing
matrix is known and equal to , then we can see that
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1. Set number of iterations Lmax and
thresholds 8k, �k = Lmax � �k=2.

2. While �k >k =2,

For k = 1; . . . ; ns:

• Renormalize ak, sk, and �k

• Update sk assuming all sk 6=k and ak

are fixed:

— Compute �k = � (~skTk)T
T

k

where � is the soft-threshold
operator with threshold �k.

• Update ak assuming all sk and ak 6=k

are fixed:

— ak = (1=kskk
2

2
)Xks

T

k

Lower the thresholds: �k = �k � �k=2.

MMCA is equivalent to MCA. The next section will illustrate
the efficiency of the MMCA algorithm when the sources to be
separated have different morphologies.

III. RESULTS

A. Experiment 1: One-Dimensional Toy Example

We start by illustrating the performance of MMCA with
the simple BSS experiment on one-dimensional data. The two
source signals at the top left of Fig. 1 were linearly mixed to
form the three synthetic observations shown at the top right. A
Gaussian noise with was also added to the mixtures
(note that each channel has a unit variance). The two sources
are morphologically different: one consists of four bumps and
the other is a plain sine-wave. Source separation was conducted
using the above MMCA algorithm, using the Fourier and the
trivial basis as the representing dictionaries. For the sake of
comparison, a publicly available implementation of the JADE
algorithm was also tested. As can be seen, MMCA is clearly
able to efficiently separate the original source signals. Note that
denoising is an intrinsic part of the algorithm.

B. Experiment 2: Blind Separation of Images

We now turn to use MMCA to separate efficiently two-di-
mensional data. In Fig. 2, the two left pictures are the sources.
The first source image is composed of three curves, which are
well represented by a curvelet transform. We use the global dis-
crete cosine transform (DCT) to represent the second source
image. Although the resulting representation may not be ex-
tremely sparse, what is significant here is that contrastingly, the
representation of the first component using the global DCT is
not sparse. The mixtures are shown in the second image pair.
A Gaussian noise has been added to these mixtures, using dif-
ferent noise variances for the different channels. Finally, the two
images in the last column show the MMCA source estimates.
Visually, the MMCA performs well.

We compare the MMCA with two standard source separation
techniques: JADE and FastICA [1]. As the original JADE algo-
rithm has not been devised to take into account additive noise,
we apply denoising on its outputs (using a standard wavelet de-
noising technique assuming that the noise variances are known).
Note that we could denoise the data before separation; however,
the nonlinear wavelet denoising erases the coherence between
the channels, so an ICA-based method would fail to separate
the sources from the denoised data. We also compare MMCA

Fig. 2. Experiment 2 (using curvelet and DCT): First column: Original sources
of variance 1. Second column: Their mixtures (a Gaussian noise is added: � =
0:4 and 0.6 for channels 1 and 2, respectively. The mixtures are such that x =
0:5s � 0:5s and x = 0:3s +0:7s ). Third column: Sources estimated by
MMCA.

Fig. 3. Experiment 2: Correlation between the true source signals and the
sources estimated by JADE (dotted line), denoised JADE (dashed line), Fas-
tICA (�), denoised FastICA (+), the relative Newton method (dashdot), and
MMCA (solid), as a function of the noise power �.

with a more recent method based on sparse representations that
is described in [15]. We also estimate the mixing matrix using
the relative Newton method after a 2-D-wavelet transform of the
mixtures. The graphs in Fig. 3 show the correlation between the
original sources and their estimates as the data noise variance
increases. One can note that both JADE and FastICA have sim-
ilar performance. As the data noise variance increases, MMCA
clearly achieves better source estimation and shows clear ro-
bustness compared to non-denoised ICA-based methods and to
the relative Newton method. We also observed that the relative
Newton method [15] seems rather unstable as the noise variance
increases. MMCA provides a similar behavior compared to de-
noised versions of the classical ICA-based algorithms.

As the noise variance increases, the mixing matrices esti-
mated using ICA-based methods are biased, and thus, these
methods fail to correctly estimate the sources. Moreover, de-
noising after the separation process softens the separation error.
Hence, the denoised versions of JADE and FastICA seem to per-
form as well as MMCA. As a consequence, a more efficient
criterion is needed. A natural way of assessing the separation
quality is to compare the estimated and original mixing ma-
trices. Quantitative results are shown in Fig. 4, where the mixing
matrix estimation error is defined as
(vector norm). is the true mixing matrix, is the estimated
one, and is a matrix that restores the right scaling and permu-
tation on the estimated matrix. If (i.e., is equal to
up to scaling and permutation), then ; thus, measures
a deviation from the true mixture. Contrasting with standard
ICA methods, MMCA iteratively estimates the mixing matrix
from coarse (i.e., smooth) versions of the sources and thus is not
penalized by the presence of noise. As a consequence, MMCA
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Fig. 4. Experiment 2: Mixing matrix error (defined via � ) for JADE (dotted
line), FastICA (�), the relative Newton method (dashdot), and MMCA (solid),
as a function of the noise power �.

Fig. 5. Experiment 3 (using curvelet and DCT). First column: Original
sources. They have been normalized to unit variance. Second column: Mixtures
of the initial sources. A Gaussian noise of variance � = 0:3 was added to each
channel. Third column: Sources estimated by MMCA from ten mixtures.

is clearly more robust to noise than standard ICA methods, even
in the case of very noisy mixtures. Indeed, it can be noticed in
Figs. 3 and 4 that when the noise variance increases, standard
ICA-based methods fail, whereas MMCA still performs well.
MMCA also performs better than a sparsity-based algorithm de-
scribed in [15].

C. Experiment 3: MMCA Versus MCA

MCA [12] has been devised to extract both texture and car-
toon components from a single image. We describe here an ex-
periment where we use MMCA for a similar purpose in order
to compare the two methods. Note that MCA is applied when
only one mixture is provided. Let us point out that the
main difference between these methods is the estimation of the
mixing matrix in MMCA, which is not needed in MCA. Fig. 5
features two original pictures: the first one is mainly a cartoon
well sparsified by a curvelet transform; the other is a texture
represented well by global 2-D-DCT. Two noisy mixtures are
shown in the second column. We applied MCA to the sum of
the two original sources and MMCA to a random number of
mixtures (between two and ten channels). The last column of
Fig. 5 features the two sources estimated by MMCA based on
ten mixtures. Quantitatively, Fig. 6 shows the correlation be-
tween the original sources and those estimated using MMCA
as the number of mixtures increases. Clearly, the amount of in-

Fig. 6. Experiment 3: Correlation between the true sources and the MMCA
estimates as the number of mixtures increases. Left: Cartoon component. Right:
Texture component. Note that the results for one mixture correspond to MCA.

formation provided by the multichannel data improves source
estimation, as expected.

IV. CONCLUSION

The MCA algorithm provides a powerful and fast signal
decomposition method, based on sparse and redundant repre-
sentations over separate dictionaries. The MMCA algorithm
described in this letter extends MCA to the multichannel case.
For blind source separation, this extension is shown to per-
form well, provided the original sources are morphologically
different, meaning that the sources are sparsely represented in
different bases. We also demonstrated that MMCA performs
better than standard ICA-based source separation in a noisy
context. We are currently working on improvements and gener-
alizations of MMCA where each source can be modeled as a
linear combination of morphologically different components.
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