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Abstract Regularization plays a vital role in inverse problems, and especially in
ill-posed ones. Along with classical regularization techniques based on smoothness,
entropy, and sparsity, an emerging powerful regularization is one that leans on image
examples. In this paper, we propose an efficient scheme for using image examples
as driving a powerful regularization, applied to the image scale-up (super-resolution)
problem. In this work, we target specifically scanned documents containing written
text, graphics, and equations. Our algorithm starts by assigning per each location in
the degraded image several candidate high-quality patches. Those are found as the
nearest-neighbors (NN) in an image-database that contains pairs of corresponding
low- and high-quality image patches. The found examples are used for the definition
of an image prior expression, merged into a global MAP penalty function. We use
this penalty function both for rejecting some of the irrelevant outlier examples, and
then for reconstructing the desired image. We demonstrate our algorithm on several
scanned documents with promising results.

Keywords Regularization · Example-based · Nearest-neighbor · Bayesian
reconstruction · MMSE · MAP · Outliers · K-D tree

1 Introduction

Regularization plays a vital role in inverse problems, and especially in ill-posed ones.
Such is the case in recovering a single image f that has gone through a sequence
of degradations, including a blur, down-sampling, and additive noise — the image
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scale-up or super-resolution problem. In this case we model the formation of the
measurements g from the ideal image f by

g = Df + v. (1)

This is the problem we target in this paper, where we assume that the degradation
operator D and the noise characteristics are known. For simplicity we will assume
throughout this work that the noise is Gaussian, white, zero mean, and iid, with
variance σ 2.

In a broader context, regularization is more than just a way to stabilize such inverse
problems. Rather, it is a systematic method for adding more information to the recon-
struction system. The Bayesian point of view suggests that such a regularization
is tightly coupled with the desired-signal probability density function (PDF), often
referred to as the signal prior. Thus, the art of choosing a proper prior for an inverse
problem is really an educated guess as to the PDF of the signals in mind, P(f ). Once
chosen, the prior can be used for the formation of the posterior probability P(f |g).
Choosing the image f that maximizes this probability leads to the MAP estimate,
and choosing the expected value leads to the MMSE estimate — both considered as
Bayesian estimation techniques.

During the past 30 years, many attempts were made to describe image priors as
simple analytical expressions. The classical priors are attempts to claim how “good-
looking” images should behave. For example, the TV-expression, ‖|∇f |‖1, is built on
a smoothness assumption, suggesting that the image should tend to be piece-wise
constant (Rudin, Osher, & Fatemi, 1992; Sochen, Kimmel, & Bruckstein, 2001). Simi-
larly, an expression of the form f T log(f ) assumes that the scalar-entropy in the desired
signal should be brought to an extreme (Jaynes, 1982). A prior of the form ‖Wf‖1

(W being the wavelet transform) implies that we expect a sparsity of the wavelet coeffi-
cients for the desired signal (Chen, Donoho, & Saunders, 2001; Donoho & Johnstone,
1994).

Along with these classical smoothness-, entropy-, and sparsity-based priors, an
emerging powerful regularization that is drawing research attention in recent years is
one that leans on examples. Rather than guessing the image PDF and forcing a simple
expression to describe it, we let image examples guide us in the construction of the
prior. Examples can be used in a variety of ways, and the various proposed methods
can be roughly divided into two categories:

1. Learning prior parameters: If we are generally pleased with the above–described
analytical priors, those can be further improved by learning their parameters. For
example, in a Markov random field (MRF) prior that leans on a robust measure of
smoothness, the robust function and the derivative filters employed can both be
learned from image examples (Buccigrossi & Simoncelli, 1999; Haber & Tenorio,
2003; Roth & Black, 2005; Zhu & Mumford, 1997). Similarly, in a sparsity based
prior, the dictionary can be trained (Aharon, Elad, & Bruckstein, 2005a,b; Engan,
Aase, & Hakon-Husoy, 1999; Olshausen & Field, 1997).

2. Learning the posterior: Rather than learn the image prior P(f ) and then plug
it in a MAP/MMSE reconstruction penalty term, one can use the examples to
directly learn the posterior probability density function P(f |g). Due to dimen-
sionality problems, this would typically be done by forming a 1D function (his-
togram) for each pixel in f given the measurements in its vicinity. Alternatively,
the examples can be considered as drawn samples from P(f |g), and used as such.
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(Criminisi, Perez, & Toyama, 2004; Efros & Leung, 1999; Freeman, Jones, &
Pasztor, 2002; Freeman, Pasztor, & Carmichael, 2000; Nakagaki & Katsaggelos,
2003; Wei & Levoy, 2000; Weissman, Ordentlich, Seroussi, Verdu, & Weinberger,
2005)

In this paper, we follow the above line of works, and propose an efficient algorithm for
using image examples as driving a powerful regularization. We demonstrate the pro-
posed scheme on the above-described image scale-up problem, targeting specifically
scanned documents containing written text, graphics, equations, etc.. The approach
we take falls in between the above two categories, and in that respect, our algorithm
share some similarities with the methods presented in Baker and Kanade (2002) and
Freeman et al. (2000, 2002). More on these ties will be described throughout the paper.

Our algorithm starts by assigning per each location in the degraded image several
candidate high-quality patches. Those are found as the nearest–neighbors (NN) in
an image-database that contains pairs of corresponding low- and high-quality image
patches. This part of the algorithm is close in spirit to the methods that learn the
posterior, where NN examples are drawn and used. Similar to these works, a way
must be found to expedite the NN search – in this work we have used the K-D tree
algorithm (Friedman, Bentley, & Finkel, 1977).

Instead of using the examples to compute the reconstructed image directly (as
methods in this class do), the examples found are used for the formation of an image
prior. As such, the constructed prior in our method is not a classic Bayesian prior, as
it is based on the measurements. This prior is then used within a global MAP penalty
function. In this respect, at this stage our method resembles the methods that employ
learning prior parameters, and especially the work reported in Baker and Kanade
(2002). However, rather than working on features (e.g., derivatives) and pyramidal
structure, as done in Baker and Kanade (2002), in our algorithm plain gray-scale
examples are used as is, which leads to a much simpler algorithm.

As the NN examples found include many outliers, our algorithm proposes a way of
detecting and pruning them. Outliers cannot be avoided in the NN-search, because of
the non-negligible null-space of the degradation operator. Such a null-space implies
that many irrelevant patches are disguised as near-perfect matches. In our algorithm
we use the very same MAP penalty function both for rejecting some of the irrel-
evant examples, and then for reconstructing the desired image. By forcing coher-
ence between overlapping areas, both the rejection and the reconstruction stages
enjoy a global view of the outcome, in-spite of the inherent locality of the patches
used.

In the next section we describe the core scheme, and several intuitive reconstruc-
tion algorithms that emerge from it. In Sect. 3, we discuss how spatial coherence
between the chosen examples is taken into account, and how pruning of outliers can
be done within the MAP scope. Section 4 then demonstrates our algorithm on several
text, graphics, and equation images, showing promising results.

2 Proposed scheme : The basics

In this section, we discuss the basics of how image examples can and have been used
for the image scale-up problem, concentrating first on the database, and efficient
searches in it. Given the found examples, we show how a preliminary and intuitive
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Fig. 1 For a 5 × 5 patch in the
low-resolution grid, and
assuming a degradation that
includes a 3 × 3 footprint blur
and a 2 : 1 decimation in each
axis, the corresponding
maximal patch size in the
high-resolution grid is of size
11 × 11 pixels

11

11

A pixel in
the high-
res. grid

A pixel in the low-
res. grid

The footprint of
the blur operation

reconstruction is possible is several ways, starting with simple voting per pixel, and to
the formation of the 1D probability density function that describe the posterior.

2.1 The image database

Given a set of high quality images, we can produce form them a corresponding set
of degraded images, by applying the operator D on each. Given those image pairs,
we sweep through the low-quality image set, and extract all image patches of size
n × n (including overlaps). This gives us a very large set of examples, denoted as
Y = {y

k
}K
k=1.

Per each patch y
k

∈ Y , there is a corresponding patch of size m × m in the high-

quality images. We denote the corresponding patches as X = {xk}K
k=1. As for their

size, we consider first all the pixels in xk that are involved in the computation of y
k
.

For example, if n = 5, and the degradation includes a 3 × 3 blur, followed by 2 : 1
decimation in each axis, then m = 11, as Fig. 1 shows. This means that every pixel
in the low-resolution y

k
can be computed as a linear combination of a subset of the

pixels in the corresponding patch xk.
Since the border pixels in this window are of weaker reliability, being related

to fewer measurements, m could be chosen as 9, or 11 with down-weighting of the
borders.1 Choosing a smaller value for m wastes an information within the corre-
sponding measurements. Choosing a larger m implies that the high-resolution patch
relies on the spatial context, rather than the measurements alone, and as such, it may
be misleading. Interestingly, the various works reported in Efros & Leung (1999),

1 A weight mask can be created by accumulating the blur kernels in their proper locations. We
disregard this option for simplicity of the discussion.
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Wei & Levoy (2000), Freeman et al. (2000, 2002), Nakagaki & Katsaggelos (2003),
and Criminisi et al. (2004) all assume much smaller m. We will return to this point
in the experimental section, showing that indeed, choosing m = 9 leads to better
performance for the case described here.

We have now a large set of pairs {X , Y} = {xk, y
k
}K
k=1, and this is the data that will be

used directly for the reconstruction. This data-set contains simple gray-scale images,
as opposed to features that have been commonly used in previous works (Baker and
Kanade, 2002; Freeman et al., 2000, 2002; Nakagaki & Katsaggelos, 2003). This choice
of features is tightly coupled with the type of images we target in this work – docu-
ment images that are obtained via scanning. Such images are not subject to degrading
illumination effects, their content is typically with high (and spatially fixed) contrast,
and self-similarity across different contrast and brightness levels is highly unlikely.

2.2 Nearest neighbor search and K-D tree

Consider a given low quality image g, known to be damaged by D and by an additive
white Gaussian noise of strength σ 2. We are interested in recovering it using the
above-constructed database. Per every location [i, j] in the image we extract a patch
of size n ×n, denoted2 as g[i,j]. At the heart of the reconstruction process lies the need

to find the nearest neighbors of g[i,j] from Y . We consider all the candidate examples

in Y satisfying

‖g[i,j] − y
k
‖2

2 ≤ T (2)

as possible matches. The threshold T depends on the patch size and the noise variance
(e.g., T = 4n2σ 2). Define �[i, j] as the set of indices of the found NN. Having found this
subset of examples, Y[i,j] = {y[i,j]

k }k∈�[i,j], their corresponding pairs X[i,j] = {x[i,j]
k }k∈�[i,j]

are the candidate patches to be used for the reconstruction.
Given the reference vector g[i,j] of length n2 and the database Y that contains K

examples, the above-described search is done in this work using the K-D tree algo-
rithm (Freeman et al., 1977). This algorithm organizes the database off-line to enable
a fast search, by defining a binary tree of thresholds on the input coordinates. This
pre-organization requires an O{n2 · K log K} in computations and O{K} in memory.
The thresholds in this algorithm are chosen optimally so as to expedite the search,
and indeed, the K-D tree algorithm leads to an O{log K} expected number of distance
evaluations in the quest for any pre-determined number of the closest neighbors. By
choosing a large number of neighbors, we guarantee to find all the relevant ones,
satisfying (2).

2.3 Pixel-based reconstructions

Assume that the entire image g has been scanned. This implies that for every location
[i, j] in g, a patch of size n×n has been extracted, and a set of candidate high-resolution

m×m patches X[i,j] = {x[i,j]
k }k∈�[i,j] has been found. There are several ways one can use

these results. Defining an output canvas f̂ as expanding the low-resolution image as

2 This patch is a lexicographic ordered column-vector of length n2.
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described in Fig. 1, we need to fill-in the pixel values. Every example found, x[i,j]
k , has a

known footprint on this canvas, and thus there are several intuitive ways to proceed:

1. Scalar MMSE estimate: Considering the pixel [I, J] in the output canvas f̂ , it has
many contributions, coming from all pathes in X[i,j] that overlap it. For example,
if every low-resolution patch gets 100 NN, and we consider the case described
in Fig. 1, then there are 25n2 values per each location [I, J] in the high-resolu-
tion canvas (disregarding image boundaries). By simply averaging these values
we essentially perform an approximate MMSE estimate. This is because these
values can be considered as samplings from the posterior P(f [I,J]|g). By creating a
histogram of these values, we get a 1D approximate description of this posterior,
and the expected value can be computed by a simple mean of the samples.

2. Scalar MAP estimate: The above procedure is susceptible to outliers. Using the
very same histogram of those values, one can seek it’s peak, and this will be the
MAP estimation for the desired output. From a practical point of view, it is likely
that this histogram is too poor to work with because of insufficient data, and curve
fitting or smoothing will be needed.

3. A special case : non-overlap and 1-NN: If this algorithm extracts only the nearest
neighbor, and if the patches used are taken with no overlap, we get only one value
per each location [I, J], and then the above two methods coincide, suggesting that
the output at this location is simply the candidate value.

All these are pixel-based reconstructions, and as such, they are easy to implement.
However, their simplicity comes with a price — the examples found contain many
outliers, and those may divert the desired result. As we shall see next, in some cases,
the number of outliers may exceed the number of proper ones, and in those cases,
even the MAP method may deteriorate.

The works reported in Freeman et al. (2000, 2002) and Nakagaki & Katsaggelos
(2003) employ both a non-overlapping option with 1-NN, and with overlaps, in the
spirit of the MMSE approach described above. We should also note that the work in
Freeman et al. (2000, 2002) considered a pruning of the found examples in order to
reject outliers. More on this would be mentioned in the next section.

To conclude this section, we discuss briefly the parameters involved. Our experi-
ence shows that a typical database should contain at least K = 105 examples, and this
can grow to K = 108 and beyond when handling more complex content. The choice of
n dictates the complexity and the accuracy of the reconstruction algorithm, as well as
the required size of the database, K. As n grows, both the the reconstruction quality
and the complexity grow. This, however, is true with the assumption that the database
is rich enough. For too large values of n, the NN search may fail to provide neighbors
altogether, and then more examples are needed. Our experience, as will be demon-
strated in Sect. 4, shows that n in the range 3–10 is reasonable. We should note that
adopting a multi-scale approach, where n varies from one pixel to another, based on
content, availability of examples, and more, could lead to substantial improvement,
but we have not pursued this option in this work.

3 Exploiting spatial coherence

Figure 2 describes a low-resolution (the degradation details are as those described at
the beginning of Sect. 4) patch of size 5 × 5 taken from a text image. The Figure also
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Fig. 2 Top: the high quality image (left), and the corresponding measurements (right). Both 11 × 11
and 9 × 9 blocks are marked. Bottom: the 50 nearest neighbors found, their RMSE in the low-res-
olution and the high-resolution (9 × 9) domains. As can be seen, while all examples are close in the
low-resolution, many of them are in fact outliers

presents the original high-resolution corresponding patch. Searching in a database
with 197, 000 examples, taken from a similarly scanned printed page, Fig. 2 shows
the closest 50 examples. All are well within the required distance to assure a proper
proximity (in the low-resolution domain). However, when computing the root-mean-
squared-error (RMSE) between the chosen high-resolution patches and the original
content, we see that most of the chosen examples are outliers with irrelevant content.

The remedy to the above-described outliers problem is to exploit the coherence we
expect to have between adjacent patches. However, in order to exploit this potential,
we have to abandon the pixel-based methods. Previous work handled this task in sev-
eral ways. Freeman et al. (2000, 2002) suggested to model the inter-relations between
adjacent/overlapping patches by a random Markov network, and use of the Bayes-
ian-Belief-Propagation (BBP) for choosing the proper examples in the recovery. A
second approach used in their simulations is far simpler, using a raster-scan sequential
reconstruction, and requiring a compatibility between the already recovered areas,
and the newly considered and overlapping patches.

Addressing the same problem, we are suggesting a different and more intuitive
solution. Following (Baker and Kanade, 2002), we use the found examples to define a
global image prior. This by itself is not sufficient for robustness against outliers. Thus,
we use the emerging MAP penalty function to choose the problematic patches and
prune them out. As opposed to the work described in Freeman et al. (2000, 2002),
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we use gray-scale images directly, which simplifies the overall algorithm. Also, our
approach forces no causality in the image space, and the entire image is recovered as
a whole.

3.1 A global MAP penalty

Given the chosen examples, we can propose the following MAP penalty functional:

ε( f̂ ) = ‖Df̂ − g‖2
2 + λ

∑

i,j

∑

k∈�[i,j]

∥∥∥R[i,j] f̂ − x[i,j]
k

∥∥∥
2

2
. (3)

In this functional the first term stands for the log-likelihood, with the assumption that
the noise is white and Gaussian. The second term is the prior, and it is defined via
the use of the examples found. The operator R[i,j] extracts a block of m × m from the
image f̂ that matches the footprint of the corresponding examples. The inner sum-
mation is done over all found NN, their indices taken from the set �[i, j]. The outer
summation runs through all pixels in the high-resolution image, using the indices i, j.
Thus, this expression suggests that the reconstructed image should agree with every
found example and in every location. A similar concept appears in Baker and Kanade
(2002), were a multi-scale derivatives are matched, rather than direct gray-values, as
done here.

A note about the deviation from the classic Bayesian point of view is in order here.
One cannot claim that the above-proposed prior is indeed a prior for general images.
Rather, it is a much narrower prior that seeks the recovery of the specific image in
mind. Furthermore, this expression is heavily dependent on the measurements, from
which we have obtained the high-resolution NN, and as such, this expression “sees”
much more than just the ideal signal behavior. One could consider this prior term as
an attempt to model the true image prior in the vicinity of its true values, and as such
being local in the signal space.

Interestingly, the work reported in Freeman et al. (2000, 2002) also uses a MAP
point of view in defining the reconstruction objective. Both works define expressions
with similar forces that take into account the proximity between the low-resolution
measurements and the database patches, and the agreement between high resolu-
tion neighboring patches between themselves. However, there are several important
differences between the MAP expressions proposed that make the two methods dis-
tinct and substantially different. The expression posed in Eq. (3) is defined as a global
one, considering the unknown image as a whole. No such treatment is shown explicitly
in Freeman et al. (2000, 2002). Furthermore, the algorithm in Freeman et al. (2000,
2002) is targeting a search for the states of a network of probabilities that are assigned
per each candidate example. This way, rather than concentrating on the true unknown
f , the work in Freeman et al. (2000, 2002) focuses on the network interpretation of
the data. Discovery of the NN that survive a BBP algorithm leads to the formation
of their solution. Our work, on the other hand, defines the unknown f and defines
direct forces that should apply on it. Finally, we should note that while our expression
confronts the chosen examples against the unknown image f directly, the work in
Freeman et al. (2000, 2002) considers the inter-relations between pairs of overlapping
patch examples.

The above-proposed penalty functional in Eq. (3) is using the local examples in
order to define a global prior for the unknown image. However, unfortunately this



Multidim Syst Sign Process (2007) 18:103–121 111

is not enough. In order to get an intuition for this expression, when λ → ∞, its
minimization leads to the simple pixel-based averaging algorithm described earlier.
Furthermore, for a general value of λ and when considering the denoising problem
(where D = I), the minimizing result is also a simple averaging, including the mea-
surement at this pixel. While it is an improvement over the MMSE algorithm we
had before, we have clearly failed to force spatial coherence between the patches, as
desired. In fact, this also implies that the algorithm described in Baker and Kanade
(2002) has no robustness to outliers as well.

Some degree of outlier-resistance can be achieved by replacing the �2 norm in the
prior terms with an �1 one. However, considering the denoising problem again, such
change replaces the mean by a median, and for too many outliers as often happens,
this method still fails. Furthermore, rather than discarding complete patches, upon
discovering that they are misleading, the outliers will be handled on a pixel-by-pixel
basis, which loses much of the existing potential.

The solution we propose is to assign a weight to every example, so that those exam-
ples “living in harmony” with their surroundings are weighted high, while others are
down-weighted. Thus, the alternative MAP penalty becomes

ε(f̂ ) = ‖Df̂ − g‖2
2 + λ

∑

[i,j]

∑

k∈�[i,j]
w[i,j]

k

∥∥∥R[i,j] f̂ − x[i,j]
k

∥∥∥
2

2
. (4)

There are many ways to estimate/choose these weights. Indeed, the work in Freeman
et al. (2000, 2002) offers a BBP as an attempt to weight the various examples. In this
work we concentrate on a simplified and yet very effective case, where the weights are
binary: ‘0’ for a bad example and ‘1’ for a good one. We have to make sure, however,
that not all the examples in a specific location get a zero weight, because then we may
get a hole in our reconstruction. As we shall show next, the MAP functional itself will
serve us in evaluating these weights.

3.2 Pruning irrelevant examples

Our algorithm starts with the assignment w[i,j]
k = 1 for all i, j, and k. In a sequential

process, we will prune one patch at a time, based on the following basic procedure:

1. For the current choice of weights, the minimizer of (4) is computed. We refer to
the value of ε(f̂ ) at the minimum as a reference value.

2. Per each patch x[i,j]
k with w[i,j]

k = 1 (that is still active), we compute the optimal
output image minimizing the modified MAP function

ε(f̂ ) − λ

∥∥∥R[i,j] f̂ − x[i,j]
k

∥∥∥
2

2

(i.e., the original MAP with the omission of this patch). Clearly, the value of this
penalty term is necessarily smaller than the reference one obtained in Step 1.

3. Among all these examined patches, we prune the one (by assigning w[i,j]
k = 0) that

gives the largest difference between the reference penalty value, and the modified
MAP penalty value. We denote those differences as �

[i,j]
k . The patch discarded is

considered to be the least compatible with the remaining patches.

While the above description implies a computationally heavy algorithm, several ways
to speed it up dramatically can be proposed. First, in assessing �

[i,j]
k per each patch,
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rather than re-compute the minimizer of the modified penalty term, it can be updated
only locally, in the vicinity of the removed patch. This local processing is based on
the assumption that the effect of a removed patch is local, and exponentially decreas-
ing outside its support, as empirically verified. Second, the update of the minimizer
can be obtained by applying 2–5 conjugate gradient iterations only on such reduced
support, using the previous image as initialization. Since the optimal solution changes
slightly, such a simple algorithm is sufficient. Finally, the same update of the solution
is applicable for updating the optimal output image after the removal of an outlier
patch.

A side benefit of this process is that we obtain a sequence of output images, one
after each pruning step. Thus, beyond the first step that computes the optimal output
image globally, all remaining steps are local and of low-complexity. As the punning
process proceeds, the value of the MAP penalty in (4) is consistently decreasing. An
efficient stopping rule for this process is the dynamic range found in the set �

[i,j]
k — we

consider the ratio between the maximal value of �
[i,j]
k to its median, and compare this

to a fixed threshold. When this ratio gets below C (chosen as 0.25 the initial value in
our experiments), all remaining patches are considered as positive contributors, and
the algorithm is stopped. Alternatively, the removal of patches can be stopped when
per each location [i, j] we have one example remaining. Since the algorithm prunes
sequentially patches from the found set, and since their number is finite, the proposed
process necessarily stops as some point.

4 Results

We demonstrate the various reconstruction methods discussed above by showing the
results on four experiments involving scanned documents with different content types
— text, equations, and graphics. On the first example we intend to demonstrate various
aspects of the algorithm, including the parameters chosen and the choice of features.
On the remaining examples we show the reconstruction results and the stopping rule
adopted.

Experiment #1 shows the reconstruction obtained for a text image. A database
of scanned patches, containing K = 197, 000 examples has been used, based on the
image shown in Fig. 3. The degradation in this case includes a separable 3-tap blur
with the kernel [0.25, 0.5, 0.25], a decimation by factor 2, and an additive Gaussian
noise with σ = 8. In the various reconstructions demonstrated we have used n = 5
and m = 9. The NN are defined by the threshold T = 6400 in Eq. (2).

Figure 4 shows a test done on a portion of a text image. This figure show the original
high-resolution image, the degraded one, and several reconstruction results. As can
be seen, the pixel-based MMSE and MAP results are reasonably good, with some
advantage to the MAP result due to its ability to handle outliers better. When turning
to the proposed global scheme, the initial result should be similar to the pixel-based
MMSE one, but due to the introduction of λ = 1e − 3 (chosen manually and fixed
throughout the experiments), it is somewhat better. As pruning takes place, the result
improves substantially, due to the removal of 940 outlier examples out of the original
15, 000 patches.

The stopping rule used here is the one described above (testing the dynamic range
of �

[i,j]
k ). Figure 5 presents the reconstruction RMSE as a function of the pruning
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Fig. 3 Experiment #1 — a text image: patches of size 9 × 9 taken form this image form the example
database for Experiment 1 of text image reconstruction. The image pairs are obtained by creating a
degraded image using a separable 3-tap blur with the kernel [0.25, 0.5, 0.25], a scale factor of 2, and
using patches of size 5 × 5 in the low-resolution image. Overall, there are K = 197, 000 examples in
the DB

Fig. 4 Experiment #1 — a text
image: (a) Original image; (b)
degraded image - bi-cubic
interpolation; (c) MMSE
reconstruction (MSE = 314);
(d) MAP reconstruction
(MSE = 300); (e) initial
proposed reconstruction,
m = 9, 15,000 candidate patches
(MSE = 313); (f) reconstruction
after 940 pruning iterations
(MSE = 258)

stages. Overlayed on this graph is the stopping rule curve, showing the dynamic range
of �

[i,j]
k as a function of the pruning stages, and the threshold it meets in the stopping

rule. As can be seen, while not perfect, the proposed stopping rule does succeed in
stopping the algorithm in the vicinity of the best MSE.

Figure 6 shows how the results are affected by the change of the patch sizes in
the low-resolution (n) and the high-resolution (m). Per each choice of (n, m) the
basic algorithm (forming the initialization) is run and the resulting MSE is recorded.
Instead of presenting the performance as a function of n and m, it is described as
several curves parameterized by n, and as a function of the relative value of m. Each
value of n implies a maximal patch size in the high-resolution, which contains all the
high-resolution pixels influencing the low-res. patch. This size is defined as patchSize.
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Fig. 5 Experiment #1 — a text
image: the pruning effect on
the reconstruction MSE
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Fig. 6 Experiment #1 — a text
image: performance
comparison for different high-
and low-resolution patch sizes.
The value of n defines the
low-resolution image patch
size, patchSize stands for the
maximal high quality patch size
with respect to n. The various
graphs show the influence of
the number of pixels used from
the high quality patch on the
overall MSE
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As anticipated, for the case n = 5 used in the above experiments, the choice m = 9 is
the best option.

The next experiment relies on the same database, and also deals with text content,
handling a different portion of the test image. Figures 7 and 8 show the reconstruction
results and the stopping rule behavior for this different portion of a test image. As
can be seen, the results and the conclusions from these figures are generally the same
as above.

Figures 9–11 show the results of the third experiment, involving an image con-
taining a formula portion. Figure 9 gives the image from which examples have been
drawn. In this experiment there are K = 82, 000 such examples. The degradation
assumed in this experiment includes the same blur, followed by a scale-down factor of
3. The reconstruction results are shown in Fig. 10. In this experiment the pixel-based
MMSE estimate is substantially better than the MAP one, which may be explained
by a lack of string outliers. As before, the pruning algorithm leads to a better MSE
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Fig. 7 Experiment #2 — (a)
text image: (a) original image;
b Degraded image — bi-cubic
interpolation; c MMSE
reconstruction (MSE = 420);
(d) MAP reconstruction
(MSE = 407); (e) initial
proposed reconstruction,
m = 9, 2,948 candidate patches
(MSE = 419); (f) reconstruction
after 300 pruning iterations
(MSE = 339)

Fig. 8 Experiment #2 — a text
image: the pruning effect on
the reconstruction MSE
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Fig. 9 Experiment #3 — an
image with formula:
K = 82, 000 patches taken
form this image form the
examples database for formula
image reconstruction. The
scale factor used is 3, and the
patch sizes are n = 5, m = 15

result. Figure 9 presents the stopping rule, again successfully leading to near optimal
MSE performance.

The fourth experiment shows reconstruction results related with an image con-
taining a portion of a graph. Fig. 12 shows the training image, Fig. 13 shows the
reconstruction results in this case, and Fig. 14 demonstrate the stopping rule behavior.
The results are generally the same as in previous experiments, showing the strength
of the pruning technique proposed.

We conclude the results section with an experiment that returns to the text content
images, and the database as defined for experiments #1 and #2. Our aim is to show that
for the content dealt with here, the best approach is the use of the raw information
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Fig. 10 Experiment #3 — an
image with formula: (a)
Original image; (b) Degraded
image - bi-cubic interpolation;
(c) MMSE reconstruction
(MSE = 435); (d) MAP
reconstruction (MSE = 587);
(e) Initial proposed
reconstruction, 16, 000
candidate patches
(MSE = 433); (f)
Reconstruction after 4,710
pruning iterations (MSE = 319)

Fig. 11 Experiment #3 — an
image with formula: the
pruning effect on the
reconstruction MSE
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and not high/medium frequencies, as often deployed on natural images. Figure 15
shows how the training is done, when aiming to use a pre-process of removing the
low-frequencies. The low-pass filter we have used here is a simple 5×5 Gaussian filter
of width σ = 1.5. Figure 16 presents the way this database is deployed to the actual
reconstruction. Figure 17 shows the reconstruction results with a low-pass filter and
without it (our method), for a noisy case and noiseless one. As can be seen, while
all results are good, better performance is obtained using the plain raw data, as we
recommend.

5 Conclusions

The concept of using image examples in reconstruction problems is appealing because
of its ability to bypass the need for guessing the image prior. There are many ways to
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Fig. 12 Experiment #4 — a
portion of a graph: patches
taken form this image form the
example database for the
graph image
reconstruction,with a scale
factor of 3, patch sizes
n = 5, m = 15, and with
K = 110, 000 examples

Fig. 13 Experiment #4 – a
portion of a graph: (a) Original
image; (b) Degraded image -
bi-cubic interpolation; (c)
MMSE reconstruction
(MSE = 312); (d) MAP
reconstruction (MSE = 392);
(e) Initial proposed
reconstruction, with 22, 000
candidate patches
(MSE = 305); (f)
Reconstruction after 1, 100
pruning iterations (MSE = 268)
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Fig. 14 Experiment #4 — a
portion of a graph: the pruning
effect on the reconstruction
MSE
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Fig. 15 A block diagram of the training algorithm when using the higher frequencies as features

incorporate examples in such inverse problems. In this work, we concentrated on a
simple yet effective algorithm that uses plain gray-scale image patches. This algorithm
sweeps through the low quality image, finding per each location several high-resolu-
tion patches that may fit it. Those are pruned by a global MAP penalty functional,
that is used also for the reconstruction. We have described a computationally effective
pruning method that consistently improves the outcome, and we have demonstrated
this algorithm on scanned document images successfully.



Multidim Syst Sign Process (2007) 18:103–121 119

Fig. 16 A block diagram of the reconstruction algorithm using the high-frequencies features

Fig. 17 Comparison between an algorithm that operates on raw data and one that uses high frequen-
cies only: (a) Scale factor is 2, noise power is σ = 8, using high frequencies (MSE = 406); (b) Scale
factor is 2, noise power is σ = 8, using raw data (MSE = 367); (c) Scale factor is 2, no noise, using high
frequencies (MSE = 354); (d) Scale factor is 2, no noise, using raw data (MSE = 322)

References

Aharon, M., Elad, M., & Bruckstein, A. M. (2006a). The K-SVD: An algorithm for designing of over-
complete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11),
4311–4322.

Aharon, M., Elad, M., & Bruckstein, A. M. (2006b). On the uniqueness of overcomplete dictionaries,
and a practical way to retrieve them. Journal of Linear Algebra and Applications, 416(7), 48–67.

Baker, S., & Kanade, T. (2002). Limits on super-resolution and how to break them. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(9), 1167–1183.

Buccigrossi, R. W. & Simoncelli, E. P. (1999). Image compression via joint statistical characterization
in the wavelet domain. IEEE Transactions on Image Processing, 8(12), 1688–1701.

Chen, S. S., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by basis pursuit. SIAM
Review, 43(1), 129–159.

Criminisi, A., Perez, P., & Toyama, K. (2004). Region filling and object removal by exemplar-based
image inpainting. IEEE Transactions on Image Processing, 13(9), 1200–1212.

Donoho, D. L., Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika,
81(3), 425–455.



120 Multidim Syst Sign Process (2007) 18:103–121

Efros, A. A., & Leung, T. K. (1999). Texture synthesis by non-parametric sampling. In Proceedings of
the IEEE International conference on computer vision (ICCV’99), Corfu, Greece.

Engan, K., Aase, S. O., & Hakon-Husoy, J. H. (1999). Method of optimal directions for frame design.
IEEE Internationall Conference on Acoustics, Speech, and Signal Processing, 5, 2443–2446.

Freeman, W. T., Jones, T. R., & Pasztor E. C. (2002). Example-based super-resolution. IEEE Computer
Graphics And Applications, 22(2), 56–65.

Freeman, W. T., Pasztor, E. C., & Carmichael, O. T. (2000). Learning low-level vision. International
Journal of computer Vision, 40(1), 25–47.

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software, 3(3), 209–226.

Haber, E., & Tenorio, L. (2003). Learning regularization functionals. Inverse Problems, 19, 611–626.
Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. IEEE Proceedings, 70(9), 939–

952.
Nakagaki, R., & Katsaggelos, A. K. (2003). VQ-based blind image restoration algorithm. IEEE

Transcations on image Processing, 12(9), 1044–1053.
Olshausen, B. A., & Field. D. J. (1997). Sparse coding with an overcomplete basis set: A strategy

employed by V1? Vision Research, 37, 311–325.
Roth, S., & Black, M. J. (2005). Fields of experts: A framework for learning image priors. IEEE

Conference on Computer Vision and Pattern Recognition, 2, 860–867.
Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms.

Physica D, 60, 259–268.
Sochen, N., Kimmel, R., & Bruckstein, A. M. (2001). Diffusions and confusions in signal and image

processing. Journal of Mathematical Imaging and Vision, 14(3), 195–209.
Wei, L.-Y., & Levoy, M. (2000). Fast texture synthesis using tree-structured vector quantization.

Proceeding in SIGGRAPH 2000 (New Orleans, Louisiana, July 23–28, 2000). In Computer Graphics
Proceedings, Annual Conference Series, 2000. ACM SIGGRAPH, pp. 479–488.

Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S., & Weinberger, M. J. (2005). Universal discrete
denoising: Known channel. IEEE Transactions on Information Theory, 51(1), 5–28.

Zhu, S. C., & Mumford, D. (1997). Prior learning and Gibbs reaction-diffusion. IEEE Transactions on
Pattern Analysis and Machine Intelligences, 19(11), 1236–1250.

Biographical sketches

Dmitry Datsenko received the B.Sc. and M.Sc. degrees from the
Department of Computer Science in 2001 and 2006, respectively.
During his studies towards B.Sc. degree he worked at Intel. From
2001 to 2004, he served in the Israeli Air Force. Currently Dmitry
works at Mediguide, specializing in the fields of image processing
and computer vision for medical imaging.



Multidim Syst Sign Process (2007) 18:103–121 121

Michael Elad received his B.Sc, M.Sc. and D.Sc. from the depart-
ment of Electrical engineering at the Technion, Israel, in 1986, 1988
and 1997 respectively. From 1988 to 1993 he served in the Israeli
Air Force. From 1997 to 2000 he worked at Hewlett-Packard labo-
ratories as an R&D engineer. From 2000 to 2001 he headed the re-
search division at Jigami corporation, Israel. During the years 2001
to 2003 Michael was a research associate with the computer sci-
ence department at Stanford university (SCCM program). Starting
on September 2003, Michael is with the department of Computer
science, the Technion, Israel Institute of Technology (IIT) as an
assistant professor.

Michael Elad works in the field of signal and image process-
ing, specializing in particular on inverse problems, sparse repre-

sentations and over-complete transforms. Michael received the Technion’s best lecturer award four
times (1999, 2000, 2004, and on 2005). Michael is also the recipient of the Guttwirth and the Wolf
fellowships. He is currently serving as an associate editor for IEEE Trans. on image processing, and
EURASIP signal processing journals.


	Example-based single document image super-resolution: a global MAP approach with outlier rejection
	Abstract
	Introduction
	Proposed scheme : The basics
	The image database
	Nearest neighbor search and K-D tree
	Pixel-based reconstructions
	Exploiting spatial coherence
	A global MAP penalty
	Pruning irrelevant examples
	Results
	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


