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Abstract

The co-sparse analysis model for signals assumes that the signal of interest can be multiplied by an

analysis dictionary Ω, leading to a sparse outcome. This model stands as an interesting alternative to

the more classical synthesis based sparse representation model. In this work we propose a theoretical

study of the performance guarantee of the thresholding algorithm for the pursuit problem in the

presence of noise. Our analysis reveals two significant properties of Ω, which govern the pursuit

performance: The first is the degree of linear dependencies between sets of rows in Ω, depicted

by the co-sparsity level. The second property, termed the Restricted Orthogonal Projection Property

(ROPP), is the level of independence between such dependent sets and other rows in Ω. We show

how these dictionary properties are meaningful and useful, both in the theoretical bounds derived, and

in a series of experiments that are shown to align well with the theoretical prediction.
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I. INTRODUCTION

Signal models lie at the core of various processing tasks, such as denoising, solving inverse

problems, compression, interpolation, sampling, and more. One approach that has become very

popular in the past decade is the synthesis-based sparse representation model. In this model,

a signal x ∈ Rd is assumed to be composed as a linear combination of a few atoms (columns)

from a dictionary D ∈ Rd×n [1], [2]. We typically consider a redundant dictionary with n > d.

The vector α ∈ Rn is the sparse representation of the signal, i.e. ‖α‖0 = k � d.

Vast work on the synthesis model during the past decade has been invested in an attempt to

better understand it, and build practical tools for its use. The main activity concentrated on prob-

lems such as how to perform pursuit of the sparse representation from the possibly corrupted

signal, deriving theoretical success guarantees for such pursuit algorithms, and techniques to

learn the dictionary D from signal examples. Referring specifically to the theoretical success

guarantees, various measures were suggested along the years to formalize the notion of the

suitability of a synthesis dictionary D for sparse estimation. These include mutual coherence [3],

[4], the exact recovery condition (ERC) [5], the spark [4] and the restricted isometry property

(RIP) [6], [7], the capacity sets [8], the characteristics for “s-goodness” [9], and others.

Using these measures, theoretical performance guarantees were developed for various syn-

thesis pursuit algorithms in different setups. For example, the work presented in [10] provided

a coherence-based guarantee on the probability of success for the thresholding algorithm in

a noise-free setup, under certain assumptions on the representation coefficients. A later work,

[11], suggested coherence-based performance guarantees for a wide range of pursuit algorithms,

including the thresholding algorithm, in the presence of white Gaussian random noise. These

two contributions are mentioned here since both these papers and the work reported here

correspond to the simplest of all pursuit methods – the thresholding algorithm.

While the synthesis model has been extensively studied, there is a dual analysis viewpoint

to sparse representations that has only recently started to attract attention [12], [13], [14], [15],

[16], [17], [18], [19], [20], [21], [22]. The analysis model relies on a linear operator (a matrix)

Ω ∈ Rp×d, which we will refer to as the analysis dictionary, and whose rows constitute analysis

atoms. The key property of this model is our expectation that the analysis representation vector

Ωx ∈ Rp should be sparse with ` zeros. These zeros carve out the low-dimensional subspace

that this signal belongs to. We shall assume that the dimension of this subspace, which is
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denoted by r is indeed small, namely r � d.

While this description of the analysis model may seem similar to the synthesis counterpart

approach, it is in-fact very different when dealing with a redundant dictionary p > d. Until

recently, relatively little was known about this model, and little attention has been given to it in

the literature, compared to the synthesis counterpart model. Several recent works have already

started to treat some of the basic research questions arising from the analysis model, such as

how to perform pursuit with this model [16], [20], [22], what are the theoretical performance

guarantees for the suggested pursuit algorithms [13], [16], [17], [20], [21] and how to learn an

analysis dictionary from a set of signal examples [15], [18], [19], [22]. We shall return to some

of these contributions towards the end of this paper, and discuss their relation to our work.

The main goal of this paper is a theoretical study of the analysis thresholding pursuit

algorithm, deriving conditions for its success in recovering the co-support in the presence of

additive noise. A by-product of this study is an identification of two complementary measures of

goodness that characterize the analysis dictionary. The first is the degree of linear dependencies

between rows in Ω, which is depicted by the co-sparsity level. This property has already been

noticed and discussed in previous works on the analysis model [20], [22]. The second property,

termed the Restricted Orthogonal Projection Property (ROPP), is the level of independence

between such dependent sets and other rows taken from the analysis dictionary. To the best of

our knowledge, this is the first time that this property has been used in the published literature. In

this paper we derive an explicit relation between these properties and the expected performance

of analysis pursuit by means of thresholding. We demonstrate the goodness of our theoretical

findings by matching them versus empirical performance results.

This paper is organized as follows: In Section II we present the core concept of the analysis-

based model, characterize the signals that belong to it, and discuss the notion of linear de-

pendencies within the rows of the analysis dictionary. In Section III we present the analysis

pursuit problem of denoising a signal using the analysis model and suggest the thresholding

algorithm for solving this problem. We test the performance of this algorithm in a series of

synthetic experiments for different types of analysis dictionaries. A theoretical study of the

performance of the analysis thresholding algorithm is conducted in Section IV. We begin

by developing theoretical success guarantees for the thresholding algorithm and discuss the

dictionary properties arising from this theoretical analysis. Then we revisit the empirical results
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in light of the developed theoretical guarantees. Section V discusses the relation of this work

to existing contributions, and Section VI concludes this paper.

II. THE ANALYSIS MODEL AND ITS DICTIONARY

A. Basic Properties of the Analysis Model

This section begins with a brief review of the analysis-based model. The analysis model

for the signal x ∈ Rd uses the possibly redundant analysis dictionary Ω ∈ Rp×d, where

redundancy here implies p ≥ d. Throughout this paper the jth row in Ω will be denoted by

wT
j . A fundamental property of this model is the assumption that the analysis representation

vector Ωx should be sparse. In this work we consider specifically `0 sparsity, which implies

that Ωx contains many zeros. The co-sparsity ` of the analysis model is defined as the number

of zeros in the vector Ωx,

‖Ωx‖0 = p− `. (1)

In this model we put an emphasis on the zeros of Ωx, and define the co-support Λ of x as

the set of ` = |Λ| rows that are orthogonal to it. In other words, ΩΛx = 0, where ΩΛ is a

submatrix of Ω that contains only the rows indexed in Λ. We also define the co-rank of a signal

x with co-support Λ as the rank of ΩΛ. The signal x is thus characterized by its co-support,

which determines the subspace it is orthogonal to, and consequently the complement space

to which it belongs. Just like in the synthesis model, we assume that the dimension of the

subspace the signal belongs to, denoted by r, is small, namely r � d. The co-rank of such an

analysis signal is d− r. How sparse can the analysis representation vector be? The answer to

this question is directly related to the existence of linear dependencies within the rows of the

analysis dictionary. This will become more clear in the next subsection where we discuss in

detail the effect of having such dependencies on the possible co-sparsity levels.

B. Linear Dependencies in the Analysis Dictionary

To motivate our discussion on the advantage of having linear dependencies within the rows of

the analysis dictionary, let us first assume that the rows in Ω are in general-position, implying

that every subset of d or less rows are necessarily linearly independent. This is equivalent to

the claim that the spark of ΩT is full [2]. Naturally, for this case, ` < d, since otherwise there

would be d independent rows orthogonal to x, implying x = 0. Thus, in this case the analysis
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Figure 1. Three types of analysis dictionaries of size 18×9: Left - ΩDIF , Middle - ΩRAND , Right - ΩMIX . Each dictionary

atom is displayed as a 2D patch of size 3-by-3.

model leads necessarily to a mild sparsity, ‖Ωx‖0 > p−d, and for a highly redundant analysis

operator, the cardinality of the analysis representation vector Ωx is expected to be quite high.

In this case, the dimension of the subspace the signal belongs to is r = d − `. An example

for such a dictionary is a Gaussian random one, denoted ΩRAND, where the rows are drawn

identically and independently from a normal distribution.

A more interesting case is when ΩT has non-full spark, implying that linear dependencies

exist between the dictionary atoms. The immediate implication is that ` could go beyond d,

and yet the signal would not necessarily be nulled. An example of such a dictionary is the set

of cyclic horizontal and vertical one-sided derivatives, applied on a 2D signal of size
√
d×
√
d.

The corresponding analysis dictionary, denoted ΩDIF , is of size 2d× d, thus twice redundant.

This dictionary was discussed in detail in [20], showing that its rows exhibit strong linear

dependencies.

Note that if we perform right multiplication of an analysis dictionary B by an invertible square

matrix A then the resulting analysis dictionary Ω
.
= BA exhibits the same linear dependencies

between its rows as in B. To see that this is indeed true, let Λ ⊆ {1, . . . , p} and suppose

that there exists a vector γ ∈ R` such that γTBΛ = 0, namely the rows of BΛ are linearly

dependent. Then γ also satisfies γTΩΛ = γTBΛA = 0. For example, the rows of the analysis

dictionary that is generated as ΩMIX = ΩDIFA, where A is a square matrix consisting of d

Gaussian random rows, exhibit the same linear dependencies as ΩDIF .

Fig. 1 shows the three types of dictionaries mentioned above for p = 18, d = 9. Throughout
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this paper we will experiment with these three dictionaries. The reason for such low dimensional

matrices is the fact that the study of the properties of the analysis dictionary will require ex-

haustive computations over all possible 2p co-supports. In particular, these dictionary properties

will appear in the performance guarantees we are about to derive for the analysis thresholding

algorithm (see Section IV-A). Towards the end of this paper we will replace the exact dictionary

properties by approximate ones, which are obtained from a set of signal examples generated

from the dictionary. This will allow us to show theoretical results also for higher dimensions

and check how well they predict the empirical results (see the end of Section IV-C).

As mentioned above, when the rows in Ω are not in general-position, the co-sparsity ` can

be greater than d. This behavior is demonstrated in Fig. 2 showing the distributions of ` for the

three types of Ω shown in Fig. 1 and co-rank 7. For each type the exact co-sparsity distribution

is computed exhaustively for all possible co-supports corresponding to a co-rank of 7. We also

show an empirical normalized histogram, which is computed from 10, 000 analysis signals of

co-rank 7 that are generated using the process that will be described in the beginning of Section

III-C. As can be seen the distribution for ΩDIF and ΩMIX coincide, as should be expected

from the observation mentioned above (both dictionaries exhibit the same linear dependencies

between their rows). In both cases, though the signals have a fixed co-rank 7, their actual co-

sparsities are much higher, varying in the range 8 to 14. Interestingly, odd co-sparsity values

cannot lead to the chosen co-rank, as indeed seen in Fig. 2. Thus, we see that by allowing linear

dependencies between the rows in Ω, co-sparsities much higher than the signal dimension d

can be achieved.

An alternative measure for the linear dependencies between sets of rows in Ω is the signature

of the analysis dictionary, which is defined as the ratio of linearly independent sets of k rows

out of all possible sets of size k – this ratio is denoted by f(k) [23]. Since every set of size

at least d+ 1 is necessarily linearly dependent, it is sufficient to compute the ratios mentioned

above for k = 1, . . . , d. The spark of ΩT can be readily computed from the signature f(k) –

it is the smallest index k such that f(k) < 1. The signatures of the three analysis dictionaries

that were shown in Fig. 1 are depicted in Fig. 3. Clearly, ΩDIF and ΩMIX have the same

signature, as they exhibit the same linear dependencies. Their signature is much lower than for

ΩRAND whose signature equals 1 for all k = 1, . . . , d. We observe that the spark of ΩT
DIF and

ΩT
MIX is 3, whereas the spark of ΩT

RAND is d+ 1 = 10 (i.e. the spark is full). To conclude this
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Figure 2. The effective co-sparsities corresponding to each type of analysis dictionary of size 18× 9: Top - ΩDIF , Middle -

ΩRAND , Bottom - ΩMIX . For each type we show the exact co-sparsity distribution, which is computed exhaustively for all

possible co-supports corresponding to a co-rank of 7. We also show an empirical normalized histogram, which is computed

from 10, 000 analysis signals of co-rank 7 that were generated using the process described in the beginning of Section III-C.

The reference value of ` = 7 is indicated by the vertical dotted line. As can be seen, the effective co-sparsities are all strictly

higher for both ΩDIF and ΩMIX .
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Figure 3. The signatures for three types of analysis dictionary of size 18 × 9 that were shown in Fig. 1. As can be seen,

both ΩDIF and ΩMIX have the same signature, which is strictly lower than 1 for k ≥ 3. Therefore the spark of these

dictionaries is 3, namely it is non-full. For ΩRAND however the signature equals 1 for all k = 1, . . . , 9 and therefore its

spark is d+ 1 = 10.

section, note that a lower dictionary signature indicates that there are more linear dependencies

within its rows, and these allow for larger co-sparsity levels.

III. ANALYSIS THRESHOLDING

A. Analysis Pursuit

In this paper we assume that x is a co-sparse analysis signal with co-rank d − r, and this

signal is contaminated by additive noise, y = x + e. Starting with the oracle setup, where

the true co-support Λ is known, we can simply recover x by projecting y onto the subspace

orthogonal to ΩΛ:

x̂ =
(

I−Ω†ΛΩΛ

)
y. (2)

Assuming a deterministic signal x residing in a r-dimensional analysis subspace and white and

zero-mean Gaussian noise v with variance σ2, the mean denoising error in the oracle setup is

given by

E‖x− x̂‖2
2 = tr

(
I−Ω†ΛΩΛ

)
σ2 = rσ2, (3)

where tr(·) denotes the trace of a matrix. For more details see [22].
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In the general case the correct co-support is unknown and it should be estimated from y.

Recovering the noise-free signal x requires solving a problem of the form{
x̂, Λ̂

}
= Argmin

x,Λ
‖x− y‖2 Subject To ΩΛx = 0 (4)

Rank (ΩΛ) = d− r

We refer to this problem as the analysis sparse-coding or analysis-pursuit. This problem can be

readily reformulated as a two-step recovery process. To eliminate the dependency on x we can

place the oracle formula of (2) into the problem of (4). We get that recovering the co-support

Λ results in solving the problem

Λ̂ = Argmin
Λ

‖Ω†ΛΩΛy‖2 Subject To Rank (ΩΛ) = d− r (5)

Once the co-support has been recovered we can project y onto the orthogonal subspace (using

(2)), just as in the oracle setup.

Similar to the synthesis sparse approximation problem, the problem posed in Eq. (4) is

combinatorial in nature and can thus only be approximated in general. One approach for

approximating the solution is to use a relaxed `1 penalty function on the coefficients Ωx,

producing

x̂ = Argmin
x

‖x− y‖2 Subject To ‖Ωx‖1 ≤ T. (6)

This approach is parallel to the basis-pursuit approach for synthesis approximation [24]. A

second approach parallels the synthesis greedy pursuit algorithms [25], [26] and suggests

selecting rows from Ω one-by-one in a greedy fashion. The solution can be built by either

detecting the rows that correspond to the non-zeros in Ωx, or by detecting the zeros. The

GAP algorithm, described in [20], aims at detecting the non-zeros, whereas the BG and OBG

algorithms developed in [22] detect the zeros.

B. The Thresholding Algorithm

In this work we will take the alternative (and simpler) approach of thresholding. This

algorithm computes the analysis representation Ωy and chooses the smallest entries as the

estimated co-support. Thresholding will always obtain a perfect recovery of the co-support in

noise-free setups since ΩΛx = 0 and |wT
j x| > 0 for all j ∈ ΛC . We suggest using it also in
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Algorithm 1 ANALYSIS THRESHOLDING ALGORITHM

1: Input: Analysis dictionary Ω ∈ Rp×d, signal y ∈ Rd, and target co-rank d− r
2: Output: Signal x̂ ∈ Rd with co-rank d − r approximating the minimization of ‖y − x̂‖2

and its co-support Λ̂

3: Inner Products: zk := |wT
k y |, ∀k = 1, . . . , p

4: Sort: Set Γ to be the index set { 1, . . . , p } sorted by the value of zk in increasing order

5: Initialization: Set i = 0, Λ := ∅

6: while Rank (ΩΛ) < d− r do

7: i := i+ 1

8: Update Co-Support: Λ := Λ ∪ {Γi }
9: end while

10: Project: x̂ =
(

I−Ω†ΛΩΛ

)
y

11: Refine Co-Support Λ̂ = {k | 1 ≤ k ≤ p, |wT
k x̂ | < ε0}

the presence of noise. A detailed description of the analysis thresholding algorithm is given in

Algorithm 1.

The process begins by computing the inner products between all the rows in Ω and the signal

y and sorting the index set { 1, . . . , p } according to the magnitudes of these inner products

in increasing order, resulting in a new index set Γ. The co-support is initialized to be an

empty set. We then accumulate rows into the co-support, in a row-by-row fashion, according

to their order of appearance in the set Γ. This process repeats until the target co-rank is

achieved, namely Rank (ΩΛ) = d − r. The solution x̂ is then computed by projecting y onto

the subspace orthogonal to the selected rows. Finally, the co-support is refined by recalculating

the representation vector Ωx̂ and finding the additional coefficients that fall below some small

threshold ε0. This can reveal additional rows that are orthogonal to the signal estimate, namely

the rows that are spanned by the existing set of rows ΩΛ. Despite the fact that the last step

(“Refine Co-Support“) has no impact on the signal recovery, it is still significant for our

purposes, as our study checks the correctness of the found co-support.

In practice, the above algorithm can be implemented efficiently by accumulating an orthog-
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onalized set of the co-support rows using a modified Gram-Schmidt process. This process is

applied according to the order of appearance in the set Γ. Denoting by {qj}Jj=1 the orthogonal

set accumulated so far (as column vectors), the orthogonalization of a new row wT
Γi

is obtained

by

qi = wΓi
−

J∑
j=1

(qTj wΓi
)qj. (7)

If qi equals zero, it is not added to the orthogonal set, as it is already spanned by the existing

one. Otherwise, this vector is normalized, qi = qi/‖qi‖2.

The above-described orthogonalization process allows us first of all to avoid the computation

of the rank of the submatrix ΩΛ, since the number of vectors in the orthogonalized set (J)

equals the desired rank. Secondly, the orthogonalized set {qj}d−rj=1 can also be used to avoid

the matrix inversion in the “Projection“ step, which translates comfortably to

x̂i =
(

I−Ω†Λi
ΩΛi

)
y =

[
I−

i∑
j=1

qjq
T
j

]
y. (8)

C. Synthetic Experiments

We now demonstrate how the thresholding algorithm (see Algorithm 1) performs through a

series of synthetic experiments. Throughout this subsection we shall assume that the analysis

signals are generated by the following process: Choose randomly a set of row indices Λ ⊆
{1, . . . , p}, which will be the signal’s co-support. Starting with a random vector u, whose

entries are assumed to be drawn independently and identically from a zero-mean Gaussian

distribution with variance σ2
u, project it onto the subspace orthogonal to ΩΛ:

x = (I−Ω†ΛΩΛ)u, (9)

and x is an analysis signal that satisfies our co-sparsity assumption. For a general-positioned Ω

we choose exactly ` rows from Ω at random. Otherwise we choose d− r linearly independent

rows from Ω. Once a signal x has been generated, its analysis representation Ωx is re-computed,

possibly revealing additional rows that are orthogonal to this signal, due to linear dependence

on the chosen subset Λ.

We generate N = 10, 000 analysis signals in R9 residing in 2-dimensional subspaces for the

three types of analysis dictionaries shown in Fig. 1 – normalized histograms of their effective

co-supports are depicted in Fig. 2. These signals are contaminated with additive white Gaussian
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noise at different noise levels σ, resulting in a set of noisy signals {yj}Nj=1 for each dictionary

type and noise level. The thresholding algorithm is then applied on these signals with a target

co-rank of d− r = 7. Results are shown in Fig. 4 for various signal-to-noise ratios (SNR) in

the range 6dB to 74dB. Each SNR level is related to the ratio σ/σu by

SNR
.
= 10 log10

(
E‖x‖2

2

E‖y− x‖2
2

)
= −20 log10

(√
d

r

σ

σu

)
. (10)

where in the last equation we used the equation E‖x‖2
2 = tr

(
I−Ω†ΛΩΛ

)
σ2
u = rσ2

u, which holds

since x is a zero-mean Gaussian vector with a covariance matrix
(

I−Ω†ΛΩΛ

)
σ2
u (exhibiting

a similar form as in the oracle error – see Eq. (3)), and E‖y − x‖2
2 = dσ2. At this point we

should mention that the SNR levels shown on the right part of the figure are very high ones

(for example SNR=60dB means that the signal energy is 1000 times the noise energy). Setups

with such high SNR levels can be considered as almost noise-free. Therefore we expect that

the thresholding algorithm will obtain a perfect recovery of the co-support in these setups, just

like in the noise-free setup.

In Fig. 4 we can see on the top the empirical probability of success for the thresholding

algorithm on each of the dictionaries. Note that “success” refers here to an exact recovery of

the true co-support. On the bottom we can see the denoising performance, measured as the

average SNR improvements (ISNR):

ISNR
.
= −10 log10

(
‖x̂− x‖2

2

dσ2

)
(11)

These are also compared with the oracle performance, which corresponds to an ISNR of

−10 log10 (r/d) = 6.53dB. We can see at the top right corner of the figure that threshold-

ing succeeds with probability one for all three types of dictionaries, which aligns with our

expectations for high SNRs that were mentioned before.

Several important observations can be drawn from the results shown in Fig. 4. First of all,

we can see that the probability of success decreases as the SNR deteriorates. This aligns with

the simple intuition that the higher the noise, the higher the chance of any pursuit algorithm

to make mistakes in the co-support detection. Second, the highest success ratio and ISNR are

obtained for ΩDIF at all noise levels; the second-best results relate to ΩMIX and the worse to

ΩRAND.
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Figure 4. Denoising experiments with analysis signals of co-rank 7 created from the three types of analysis dictionaries of

size 18× 9 that were shown in Fig. 1. Additive white noise is added to each of these signals for varying noise levels and then

the thresholding algorithm (see Algorithm 1) is applied on each signal to obtain a recovery of its co-support and its resulting

denoised signal. Top: The empirical probability of success in recovering the true co-support for the thresholding algorithm on

each of the dictionary types. Bottom: The noise attenuation performance obtained for the thresholding algorithm on each of

the dictionary types. These are compared with the oracle result, where denoising is obtained by projection onto the correct

analysis subspace (knowing the true co-support of the signals).
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The observation that ΩRAND exhibits the worst performance does not come as a surprise to

us. The fact that having many linear dependencies in an analysis dictionary Ω leads to better

denoising results has already been observed in a previous work [22]. However, the performance

gap between ΩDIF and ΩMIX is not obvious at all, if we recall that both exhibit the same linear

dependencies between their rows (and hence the same co-sparsity distribution). This calls for

a deeper theoretical study of the thresholding algorithm, which is the topic of the next section.

IV. THEORETICAL STUDY OF ANALYSIS THRESHOLDING

This section consists of the main contribution of this paper: A theoretical analysis of the

capability of the thresholding algorithm to recover the true analysis co-support in the presence

of additive noise, and the implications of this analysis. We start in Section IV-A with the

derivation of our main result – a lower-bound on the probability of successfully recovering the

co-support by the analysis thresholding algorithm. Section IV-B discusses the obtained results

and specifically the meaning of the measures proposed for the analysis dictionary. In Section

IV-C we revisit these results in an attempt to explain them further, and contrast them with the

empirical evidence we have just created. As this work focuses on the probability of the analysis

thresholding algorithm to recover the exact co-support, the relative denoising performance will

not be further explored in this paper and remains a topic for future research.

A. Theoretical Guarantees for Analysis Thresholding

Before we turn to the development of the theoretical guarantees for the analysis thresholding

algorithm, we would like to set some basic assumptions and notations. First, we assume that all

the rows in Ω have unit-norm. Secondly, we denote an index set of d− r linearly independent

rows taken from Λ by Λ̃ ⊆ Λ, namely Span
{
ΩΛ̃

}
= Span {ΩΛ}. Finally, given a noise-free

signal x and an analysis dictionary Ω, let us define

zmin
.
= Min

j∈ΛC

∣∣wT
j x
∣∣, (12)

where Λ is the co-support of Ωx and ΛC is the complementary index set. For the co-sparse

analysis signal x we have that ΩΛx = 0, implying that ΩΛCx 6= 0. The value of zmin is the

smallest of those non-zero inner-products with ΩΛC , and it plays a major role in the ability of

the thresholding algorithm to tell the right co-support rows from the rest in the noisy case. We

begin our performance study of this algorithm with a sufficient condition on zmin for success.
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Lemma 1. Let y = x + e, where x is a co-sparse analysis signal with co-support Λ on Ω.

If x and Ω satisfy zmin ≥ 2 Maxj∈Λ̃∪ΛC

∣∣wT
j e
∣∣, then the thresholding algorithm succeeds in

recovering the true co-support Λ of x from y.

Proof: We begin with the simple observation that the thresholding algorithm succeeds in

recovering the true co-support Λ of x when

Max
j∈Λ̃

∣∣wT
j y
∣∣ < Min

j∈ΛC

∣∣wT
j y
∣∣ . (13)

Since wT
j x = 0 for all j ∈ Λ̃ the left-hand side of (13) translates to

Max
j∈Λ̃

∣∣wT
j y
∣∣ = Max

j∈Λ̃

∣∣wT
j e
∣∣ . (14)

For the right-hand side of (13) we derive a lower bound

Min
j∈ΛC

∣∣wT
j y
∣∣ ≥ Min

j∈ΛC

∣∣wT
j x
∣∣− ∣∣wT

j e
∣∣ ≥ zmin −Max

j∈ΛC

∣∣wT
j e
∣∣ , (15)

where the first inequality holds from the triangle inequality and the second holds from the

properties of the minimum and maximum operators,

Min (f − g) ≥ Min f + Min (−g) = Min f −Max g. (16)

From (13)-(15) we get that a sufficient condition for success of the thresholding algorithm is:

Max
j∈Λ̃

∣∣wT
j e
∣∣ < zmin −Max

j∈ΛC

∣∣wT
j e
∣∣ , (17)

which can be comfortably replaced by the sufficient condition

zmin > 2 Max
j∈Λ̃∪ΛC

∣∣wT
j e
∣∣ , (18)

since

2 Max
j∈Λ̃∪ΛC

∣∣wT
j e
∣∣ ≥ Max

j∈Λ̃

∣∣wT
j e
∣∣+ Max

j∈ΛC

∣∣wT
j e
∣∣ . (19)

Note that so far we have made no specific assumptions on the signal generative model or

the noise. The only assumption is on the inner products between the signal x and rows in Ω

that are not indexed in the true co-support. An immediate observation arising from the above

lemma appears in the following corollary. Using the Cauchy-Schwarz inequality and the fact

that all rows in Ω are normalized, we get that
∣∣wT

j e
∣∣ ≤ ‖e‖2. Thus,
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Corollary 1. Let y = x+e, where x is a co-sparse analysis signal with co-support Λ on Ω and

‖e‖2 ≤ ε. If x and Ω satisfy zmin ≥ 2ε, then the thresholding algorithm succeeds in recovering

the true co-support Λ of x from y.

Note that we have referred to the noise as deterministic and bounded. This results in a very

pessimistic success condition, as should be expected for a worst-case performance analysis like

the one practiced here, in which an estimator must perform well even when the noise maximally

damages the measurements (the noise in this case is thus called adversarial). This should remind

the reader of the theoretical guarantees derived for synthesis-based pursuit algorithms under

adversarial noise [1], [2], [3], [4], [5].

To improve the theoretical guarantees, we turn to a setup where the noise is assumed to be

random. Specifically, we assume white and zero-mean Gaussian noise with variance σ2, and

derive a lower bound on the probability of success under a sufficient condition on zmin.

Theorem 1. Let y = x+e and e ∼ N (0, σ2I). If x is a co-sparse analysis signal with co-support

Λ on Ω, co-sparsity `, and co-rank d−r, and Ω and x satisfy zmin ≥ βσ, then the thresholding

algorithm succeeds in recovering the true co-support Λ of x from y with probability at least(
Max

{
0, 1−

√
8
πβ2 exp

{
−β2

8

}})p−`+d−r
.

Before turning to prove this result, a short discussion is in order. This theorem provides

a lower bound on the conditional probability of success given that zmin ≥ βσ. The derived

expression has an exponential form with a base in the range [0, 1] depending on β and a

power p − ` + d − r. The observant reader might ask at this stage: Why is the performance

guarantee of Theorem 1 better than the result of Corollary 1? To answer this question we

explore the dependence of this performance guarantee on β. The bound on this probability

increases exponentially from zero to one as β grows, but at the same time the condition on

zmin becomes stricter. This bound is shown in Fig. 5 for a setup with d = 9, p = 18, r = 2 and

` = 14. First, we can see that the exact co-support is recvovered with overwhelming probability

(i.e. near one) for zmin ≥ 6σ. This aligns with the guarantee of Corollary 1 requiring zmin ≥ 2ε,

where ε is of order
√
dσ = 3σ. More importantly, Theorem 1 provides probabilistic success

guarantees for weaker conditions on zmin, for which Corollary 1 cannot make any guarantee.

Next, we explore the dependence of the obtained lower bound on the number of atoms p and

the co-sparsity ` and the co-rank d− r. Clealry, the probability of success of the thresholding
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Figure 5. The dependence on β of the lower bound on the conditional probability of success given that zmin ≥ βσ (see

Theorem 1) for a setup with d = 9, p = 18, r = 2 and ` = 14.

algorithm improves (grows) when p − ` + d − r gets smaller. Such is the case, for example,

when the dictionary size (p, d) is kept fixed, the co-rank d − r is chosen as well, and the

level of dependencies, as depicted in `, grows. This manifests the surprising fact that strong

linear-dependencies within Ω lead to better performance. Adopting a different point of view,

when p (the dictionary’s redundancy) grows, the level of performance may remain the same

as long as ` grows with it such that their difference remains unchanged.

Proof: Let us first define the event

B =

{
e | Max

j∈Λ̃∪ΛC

∣∣wT
j e
∣∣ < τ

}
. (20)

A similar event was defined in [11] when developing success guarantees for the synthesis-based

thresholding and OMP algorithms. We start by deriving a lower bound on the probability of

this event:

Pr{B} ≥
∏

j∈Λ̃∪ΛC

Pr
{∣∣wT

j e
∣∣ < τ

}
=
[
1− 2Q

( τ
σ

)]p−`+d−r

≥

[
1−

√
2σ2

πτ 2
exp

{
− τ 2

2σ2

}]p−`+d−r
, (21)
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where Q(·) is the Gaussian distribution tail,

Q(t) =
1√
2π

∞∫
t

exp

{
−z

2

2

}
dz. (22)

The first inequality holds due to Ŝidák’s lemma [27] for a set of jointly Gaussian random

variables. The next equality holds due to the fact that Λ̃ and ΛC are disjoint sets of sizes d− r
and p−` respectively. In the last inequality we use a well-known upper bound on the Gaussian

distribution tail,

Q(t) ≤ 1

t
√

2π
exp

{
−t

2

2

}
. (23)

We set τ = 1
2
βσ, and thus the event B corresponds to all the noise vectors e satisfying

2Maxj∈Λ̃∪ΛC

∣∣wT
j e
∣∣ < βσ. Therefore, if zmin > βσ as this theorem states, then necessarily

zmin also satisfies the condition of Lemma 1, namely zmin > βσ > 2Maxj∈Λ̃∪ΛC

∣∣wT
j e
∣∣, which

guarantees the success of the analysis thresholding algorithm. The probability for this to happen

is bounded from below by the expression we have derived in Eq. (21), as claimed1.

Next, we would like to eliminate the dependence on zmin and derive a theoretical guarantee

in terms of the analysis subspace dimension r, the co-sparsity ` and possibly some internal

properties of the dictionary Ω. This will help to reveal what makes an analysis dictionary more

suitable for co-sparse estimation. To initiate such an analysis, we make an additional assumption

on the signal generative model. Given a dictionary Ω, a co-support Λ and a random Gaussian

vector u ∼ N (0, σ2
uI), x is generated by projecting u onto the subspace orthogonal to ΩΛ, as

described in Section III-C (see (9)). We further assume that u and e are statistically independent.

Using this generative model for x, we shall derive a theoretical guarantee for success of the

thresholding algorithm, based on a new property of Ω we shall refer to as ROPP:

Definition 1. Given an analysis dictionary Ω, the Restricted Orthogonal Projection Property

(ROPP) of this dictionary with a constant αr is defined as

αr = Min
Λ,j|Rank(ΩΛ)=d−r,j∈ΛC

‖(I−Ω†ΛΩΛ)wj‖2. (24)

1For values of β that lead to a negative argument in this expression we replace Eq. (21) by a trivial zero lower bound on

the probability.
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More on the meaning of this constant is brought in Section IV-B. Armed with this definition,

we now turn to improve Theorem 1, by removing the dependency on zmin.

Theorem 2. Let y = x + e, where u ∼ N (0, σ2
uI), x is a co-sparse analysis signal with co-

support Λ on Ω, obtained by x = (I − Ω†ΛΩΛ)u, and e ∼ N (0, σ2I) is the additive noise

statistically independent of u. If Ω satisfies the ROPP with a constant αr and x has co-rank

d− r and co-sparsity ` on Ω, then the thresholding algorithm succeeds in recovering the true

co-support Λ of x from y with probability at least(
Max

{
0, 1−

√
8
πβ2 exp

{
−β2

8

}})p−`+d−r (
2Q
(

βσ
αrσu

))p−`
for any constant β > 0.

Note that Q(·) appearing in this theorem is the Gaussian distribution tail (see (22)).

Just as we did for the conditional probability os success of Theorem 1, we start by exploring

the dependence of the resulting bound with respect to β. This is shown in Fig. 6 for a setup

with d = 9, p = 18, r = 2, ` = 14 (same as before – see Fig. 5), αr = 0.75 and σ/σu = 0.01.

We can see that the choice of β is crucial for the strictness of the resulting lower bound on

the probability of success. For the setup considred here the optimal value of β is 6, which

results in a lower bound of 0.744. The lower bound appearing in this theorem is a product of

two exponential terms. The first is the bound on the conditional probability that appeared in

Theorem 1 and the second terms is a bound on the probability that the condition zmin ≥ βσ

holds (this bound will be derived in the proof that follows). The first terms grows with β, while

the second decreases, thus explaining the peak between 0 and infinity.

Next, we explore the dependence of the obtained lower bound on the number of atoms p and

the co-sparsity `, fixing the noise ratio σ/σu, the signal dimension d and the analysis subspace

dimension r, and assuming that the dictionary satisfies the ROPP with a constant αr. Since

both the bases of the exponential terms are in the range [0, 1], we can see that the probability

of success of the thresholding algorithm improves when the difference p− ` becomes smaller.

This means that the same observations made before on p and ` for the conditional probability

also hold here: For a given dictionary of size (p, d) performance improves as ` grows, and

when the redundancy of the dictionary is increased the performance remain the same as long

as the difference p − ` remains unchanged. Finally, we observe that since Q(·) is monotonic

decreasing, the performance improves as the noise ratio σ/σu decreases or the ROPP constant

αr grows.
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Figure 6. The dependence on β of the lower bound on the probability of success of Theorem 2 for a setup with d = 9,

p = 18, r = 2, ` = 14, σ/σu = 0.01 and αr = 0.75. For this setup the optimal value of β is 6, which results in a lower bound

of 0.744 on the probabilty of success. For each value of β we also show the lower bounds on the conditional probability of

success of Theorem 1 and on the probability that the condition zmin ≥ βσ holds (see Eq. (25)). The final bound of Theorem

2 is a product of these two bounds.

Proof: We begin by observing that a signal x generated as an orthogonal projection of

a Gaussian i.i.d vector u is also Gaussian, x ∼ N
(

0, σ2
u(I−Ω†ΛΩΛ)

)
and so is any inner

product with x, wT
j x ∼ N

(
0, ‖(I−Ω†ΛΩΛ)wj‖2

2σ
2
u

)
. Using this observation, we now derive a

lower bound on the probability that the condition for success of Theorem 1 holds:

Pr {zmin > βσ} = Pr

{
Min
j∈ΛC

∣∣wT
j x
∣∣ > βσ

}
≥
∏
j∈ΛC

Pr
{∣∣wT

j x
∣∣ > βσ

}
=
∏
j∈ΛC

2Q

(
βσ

‖(I−Ω†ΛΩΛ)wj‖2σu

)
≥
[
2Q

(
βσ

αrσu

)]p−`
. (25)

The first inequality relies on Ŝidák’s lemma, as before2. In the next equality we use the fact

that wT
j x is Gaussian with the variance mentioned above. The last inequality holds from the

definition of the ROPP in (24) and since Q(·) is monotonic decreasing. The power p− ` comes

2In fact, we are not explicitly using Ŝidák’s lemma, but a related inequality resulting from this lemma. Let {vj}Mj=1 be a set

of jointly Gaussian random vectors. Then according to Ŝidák’s lemma, Pr {Max1≤j≤M |vj | < τ} ≥
M∏
j=1

Pr {|vj | < τ}.

Thus, turning to our expression, we observe that Pr {Min1≤j≤M |vj | > τ} = Pr {−Max1≤j≤M (−|vj |) > τ} =

Pr {Max1≤j≤M (−|vj |) < −τ} ≥
M∏
j=1

Pr {−|vj | < −τ} =
M∏
j=1

Pr {|vj | > τ}, leading to the relation we used.
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from the cardinality of the set ΛC .

Combining Theorem 1 and Eq. (18) we get that the final lower bound on the probability

of success for the thresholding algorithm is a direct multiplication of the two probability

expressions, leading to the claimed lower-bound probability posed in terms of the ROPP

constant αr and the co-sparsity `.

B. Discussion on the Properties of the Analysis Dictionary

We begin this subsection by taking a closer look at the ROPP. This is an internal property

of the analysis dictionary, indicating for a set of d− r+ 1 linearly independent rows from the

dictionary how much each row is spread away from the subspace spanned by the rest. At the

special case of a unitary dictionary Ω we have αr = 1 for all values of r since each row is

orthogonal to the subspace spanned by every possible set of rows not including it. How does

the ROPP compares to other dictionary properties? Starting with the RIP [6], [7],

(1− δk) ‖v‖2
2 ≤ ‖Dv‖2

2 ≤ (1 + δk) ‖v‖2
2, (26)

which holds for all k-sparse vectors v ∈ Rn, the ROPP also bounds an `2 norm related to the

dictionary. However, the ROPP looks at projection matrices constructed from the dictionary

instead of the dictionary itself as in the RIP, and applies these matrices on dictionary atoms not

used for the matrix construction instead of looking at all possible signals with a certain sparsity

as in the RIP. This should remind the reader of the ERC [5], which has a similar flavor. Turning

to the ERC [5], for a better comparison let us replace the ROPP by the sufficient condition

Max
j∈ΛC

‖Ω†ΛΩΛwj‖2 ≤ 1− αr (27)

for the same co-supports Λ as in (24). To see that this is indeed a sufficient condition, we

assume that (27) holds and show that

‖
(

I−Ω†ΛΩΛ

)
wj‖2 ≥ ‖wj‖2 − ‖Ω†ΛΩΛwj‖2 ≥ αr, (28)

where in the first inequality we used the well-known relation, ‖v1 − v2‖2 ≥ |‖v1‖2 − ‖v2‖2|,
which holds for any pair of vectors v1, v2, and in the second inequality we used the fact that

‖wj‖2 = 1 and the assumption of (27). The condition appearing in (27) has a similar structure

to the ERC,

Max
j /∈s
‖D†sdj‖1 ≤ 1. (29)
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However, there are two inherent differences: The pseudoinverse of the submatrix Ds is replaced

by a projection matrix onto the null space of ΩΛ and the `1 norm is replaced by `2. Conse-

quently, an upper bound of 1 is a trivial one and it is replaced by the stricter bound 1−αr for

some constant αr.

Next, we turn to the theoretical guarantee of Theorem 2 and observe that it gives rise to

two dictionary properties, which serve as two distinct forces dictating the ability to recover the

co-supports of analysis signals over the given dictionary. The first property, emanating from

the signature or the co-sparsity of Ω, determines which sets of rows and how many of them are

linearly dependent. However, this measure by itself does not provide us with any quantitative

relation between these sets and the rows that are linearly independent on them. The second

property focuses exactly on these missing relations, telling us how much a row is spread away

from the others, provided that it is linearly independent on them.

Are these two dictionary properties somehow related to each other? To provide an answer

to this question we explore the joint distribution of the two. For this purpose, we replace αr

by αΛ
r which has a similar definition, apart from a delicate modification: This is the largest

value sasifying (24) for a single co-support Λ corresponding to a co-rank d − r, rather than

for all possible co-supports leading to this co-rank, as in the definition of αr (see Definition

1). This means that αr can be obtained by taking the minimal value of αΛ
r over all of these

co-supports. Since αΛ
r is a continuous measure in the range [0, 1], and since we are about to

create histograms of possible values, we perform a uniform quantization of αΛ
r to T = 100

discrete levels. The joint distribution of ` and αΛ
r is represented by a p-by-T matrix with entries

P
(r)
km = Pr

{
` = k,

m− 1

T
≤ αΛ

r <
m

T

}
, (30)

Obtaining the entries of the matrix P(r) requires an exhaustive computation over all possible

co-supports with co-rank d − r. The joint distributions for the three dictionaries (shown in

Fig. 1) and a co-rank of 7 (i.e. r = 2) are depicted in Fig. 7. We can see that increasing

the co-sparsity level typically spreads αΛ
r towards higher values. This makes sense since the

minimization appearing in (24) is performed over smaller index sets.

C. Results of the Analysis Thresholding Revisited

We revisit the results shown in Section III-C and try to explain them in light of the theoretical

guarantees derived in Section IV-A. Note that the setup considered in Theorem 2 (projection
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Figure 7. The joint distribution of ` and αΛ
r for each type of the analysis dictionaries of size 18 × 9 that were shown in

Fig. 1 and for r = 2. Each of these distributions is obtained by an exhaustive computation over all possible subsets of rows

from the analysis dictionary with co-rank 7, and is displayed in the form of a matrix P(2), whose entries where defined in

Eq. (30). A darker bin corresponds to a higher value in the joint distribution.
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Figure 8. The values of the ROPP constant for each type of the analysis dictionaries of size 18× 9 that were shown in Fig.

1 and for varying analysis subspace dimensions r. Each of these values is obtained by an exhaustive minimization over all

possible subsets of rows from the analysis dictionary with co-rank 9− r.

of a white Gaussian vector u, additive white Gaussian noise) matches completely the one

used for the experiments of Section III-C. This will allow us to make the desired connections

between the empirical results and the theoretical guarantee. An immediate observation arising

from Theorem 2 is that the higher the co-sparsity level ` of x with respect to Ω, the better the

thresholding algorithm is expected to perform in recovering the true co-support. This implies

that linear dependencies within Ω are highly desired. This stands as a complete contradiction to

the intuition gained for the synthesis-based sparsity model, where such dependencies between

the atoms lead to a collapse of pursuit algorithms. We also observe that the results of the

analysis threshodling algorithm improve as αr grows. This is closer in spirit to the ERC/RIP

rationale, where independencies are encouraged.

Returning to the empirical results of Section III-C, we have already seen in Fig. 2 that

ΩDIF and ΩMIX have the same co-sparsity distribution, where the co-sparsity can be much

higher than the co-rank d−r. This can explain, at least in part, their superior performance over

ΩRAND, which allows only a constant co-sparsity level ` = d − r. We now turn to examine

the value of the ROPP constant for each type of dictionary, with a hope to reveal an additional

inherent difference between the dictionaries. These values are shown in Fig. 8 for the three

dictionary types and for varying analysis subspace dimensions r. To obtain each of these values

we performed an exhaustive minimization over all possible subsets Λ of rows from Ω such that
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Rank {ΩΛ} = d− r. We can see that ΩDIF corresponds to a much higher ROPP constant for

all the examined co-ranks, when compared to ΩMIX and ΩRAND. The two latter dictionaries

have very low ROPP constants (below 0.14 for r ≤ 5). Specifically, at a subspace dimension of

r = 2 that was considered in the experiments of Section III-C, the ROPP constant is 5.6 times

higher for ΩDIF compared to ΩMIX and 202(!) times higher compared to ΩRAND. We can

conclude that the value of the ROPP constant explains the superior behavior of the thresholding

algorithm with ΩDIF when compared to ΩMIX , as observed in Fig. 4. This dictionary property

also provides additional grounds for the inferior behavior with ΩRAND.

Next, we turn to examine the theoretical success guarantee provided in Theorem 2. Fig. 9

(top) displays this lower bound on the probability of success for the thresholding algorithm

for each of the dictionaries and for varying SNR levels in the range 6dB to 74dB 3. To obtain

each of the lower bounds that are shown in this figure, we find for each co-sparsity ` and each

noise ratio σ/σu a value of β such that the lower bound for the probability of success provided

in Theorem 2 is as tight (i.e. high) as possible. An example of how to choose an optimal value

of β was depicted in Fig. 6. Finally, we perform a weighted average of these lower bounds,

where the weights are simply the values of the co-sparsity distribution. This process can be

described by the following equation:

Pr{“Success”} =

p∑
k=1

Pr{` = k}Pr{“Success”|` = k}

≥
p∑

k=1

Pr{` = k}

[
Max

{
0, 1−

√
8

πβ2
k

exp

{
−β

2
k

8

}}]p−k+d−r [
2Q

(
βkσ

αrσu

)]p−k
, (31)

where βk is the value of β that is set for co-sparsity ` = k. These values are chosen such that

the arguments inside the sum are maximized for each k separately.

We can see that the resulting lower bounds can provide some insight into the actual perfor-

mance. They are capable of predicting success with high probability at high SNR levels for

ΩDIF and ΩMIX . Another useful property of these bounds is that they clearly predict which

dictionary the thresholding algorithm is expected to perform better with and which would

probably lead to failure. Note that in our quest for theoretical guarantees we have lost much

tightness with respect to the empirical results. This is typical for a theoretical analysis, but as

we shall see in a moment, the tightness of the derived bounds can be considerably improved

3See Eq. (10) for the definition of SNR and its dependence on σ/σu.
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Figure 9. Lower bounds on the probability of success for the thresholding algorithm on the three types of analysis dictionaries

of size 18× 9 that were shown in Fig. 1 and for varying SNR levels. Top: For each ratio σ/σu a lower bound is computed

using Eq. (31), where for each co-sparsity level ` we choose a value for β such that the resulting bound will be as tight as

possible. Bottom: For each ratio σ/σu a lower bound is computed using Eq. (32), where an optimal value for β is set for

each pair `, αΛ
r . As can be seen, the bounds appearing on the right are tighter than those shown on the left.
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if we take into account the fact that αΛ
r varies as a function of the co-support, and has a

spread of values. Specifically, we can modify the process described in Eq. (31) by replacing

the distribution of ` and the fixed worst-case value of αr with the joint distribution of ` and

αΛ
r , as depicted in Fig. 7. For each such pair and for each noise ratio σ/σu we set an optimal

value of β as described before, and use the values of the joint distribution as weights for the

final average. This means that the process of (31) is replaced by

Pr{“Success”} =

p∑
k=1

T∑
m=1

P
(r)
km Pr

{
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m− 1

T
≤ αΛ

r <
m

T

}

≥
p∑

k=1

T∑
m=1

P
(r)
km

[
Max

{
0, 1−

√
8

πβ2
km

exp

{
−β

2
km

8

}}]p−k+d−r [
2Q

(
βkmTσ

(m− 1)σu

)]p−k
.

(32)

The resulting lower bounds are shown on the bottom of Fig. 9 and as can be seen, they are

much tighter than the previous ones appearing in this figure on the top.

Before concluding this section, we bring several additional experiments, this time with higher

dimensional signals, in order to demonstrate the behavior of the thresholding algorithm, and the

comparison between empirical performance and the theoretical forecasts. We consider signals

of dimension d = 100 and three types of analysis dictionaries (same as before), each with

p = 200 atoms. We test denoising setups where the true analysis subspace dimension r varies

in the range [2, 25] and the SNR in the range 6dB to 75dB. For each pair of r and noise level

σ we generate N = 1000 signals. When evaluating the theoretical bounds, we cannot use the

value of αr as exhaustive search for its value is unfeasible. We therefore use the expression

given in Eq. (32), where we plug into it an empirical distribution of the values of ` and αΛ
r

that is computed from the signal examples, instead of the exact one we have used for the

low dimensional setups. The empirical ratios of success and their theoretical lower bounds are

shown in Fig. 10 for the three types of analysis dictionaries of size 200-by-100. Each of these

ratios is displayed as a matrix where white corresponds to one and black corresponds to zero.

Several observations can be made from Fig. 10. First, the general behavior of the three

dictionary types remain as before: The performance is best for ΩDIF , second best for ΩMIX

and the worse for ΩRAND, both in terms of the empirical and the theoretical success rates.

Secondly, for ΩDIF and ΩMIX the best performance is obtained for low SNR levels and

low subspace dimensions r (the top left corner of the matrix). This is a desired behavior due
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Figure 10. Empirical ratios of success and their theoretical lower bounds for the thresholding algorithm on three types of

analysis dictionaries of size 200 × 100 for varying analysis subspace dimensions r and SNR levels. For each pair of r and

SNR we generate N = 1000 signals. The theoretical bounds are computed using Eq. (32) by plugging into it the empirical

distribution of ` and αΛ
r , which is computed from these signals. Left: The empirical ratios of success. Right: The theoretical

bounds.
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to the fact that we typically want a low subspace dimension, which improves the denoising

performance. For ΩRAND however, the best theoretical results are obtained for low SNR levels

and high values of r (the bottom left corner). The theoretical predictions for this dictionary are

less reliable, as we can see that the actual performance is quite similar for all values of r.

V. RELATION TO EXISTING RESULTS

There are several exiting contributions in the published literature on developing pursuit

algorithms for the co-sparse analysis model and studying their performance from a theoretical

stand-point. Here we mention several papers that are of relevance to this work. We provide a

brief review of their content, followed by a discussion on the relation to our results.

The first work we briefly refer to is [22], which concentrates on the analysis dictionary

learning problem. Two greedy analysis pursuit algorithms are developed for the denoising

problem, as part of the overall learning paradigm – these algorithms are the Backward Greedy

(BG) and the Optimized BG (OBG). Both these algorithms are constrcuted by imitating

synthesis based pursuit methods, and brought without a theoretical justification of any sort.

Interestingly, the work in [22] provides an empirical evidence for the positive effect that strong

linear dependencies within the analysis dictionary have on the success of pursuit algorithms.

The work of [16], [20] considers a noise-free measurement setup where the co-sparse analysis

signal is measured by y = Mx, from which we would like to recover x. The authors of [16],

[20] explore various uniqueness properties of this problem setup and suggest using either an

analysis `1-norm minimization or a Greedy-Analysis-Pursuit (GAP) algorithm (note that GAP is

different from the above mentioned BG and OBG - see more in [22]) for recovering the signal.

They analyze the performance of these pursuit algorithms for the noise-free setup, deriving a

sufficient condition for success of both algorithms in terms of the analysis dictionary Ω, the

true co-support Λ of x and the null-space of M. Due to its apparent similarity to the ERC for

the synthesis model, the derived condition is termed analysis ERC.

The theoretical study of analysis `1-norm based pursuit in a measurement setup is also the

main focus of another recent work [21]. This includes the derivation of conditions for noiseless

identifiability and robustness to bounded noise, in terms of the sign pattern of Ωx and assuming

that the null spaces of the measurement matrix M and the analysis dictionary Ω intersect only

at the zero vector. Note that all of the resulting conditions in [16], [20], [21] are somewhat
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implicit, especially in the latter work, where the condition involves an inner optimization stage

for a given sign pattern. This makes the derived conditions hard to interpret.

A different work altogether is proposed in [13]. The authors [13] suggest a hybrid viewpoint

to the synthesis and analysis models, where the signal of interest is a synthesis-and-analysis

signal, constructed as x = Dα with a sparse synthesis representation α. However, this signal is

also characterized as an analysis signal in the sense that it has a small `1 energy in the tail of

the analysis representation DTα. They suggest using an analysis-based approach for recovering

the signal from its undersampled and noisy measurements y = Mx+e. Their approach is based

on `1-norm sparsity of DTx deriving a theoretical upper bound on the denoising error obtained

by `1 analysis pursuit in this setup. To obtain the desired bound they require the measurement

matrix M to satisfy a certain property adapted to D, termed D-RIP, which is similar to the

well-known RIP aside from a delicate modification – instead of bounding the `2 norm of Mv

for all k-sparse vectors v, the norm of Mv is bounded for all vectors v that can be expressed

as a linear combination of k columns of D.

The work of [17] suggests a family of new pursuit algorithms for recovering co-sparse

analysis signals from their undersampled measurements. These algorithms are analogous to

the synthesis-based iterative hard thresholding algorithm, with a modification of the projection

step intended for adapting this framework to the analysis model. The authors of [17] present

theoretical recovery guarantees for these analysis pursuit algorithms in the noiseless setup,

assuming that the measurement matrix satisfies the Ω-RIP (an analysis counterpart for the

D-RIP of [13]).

In this paper we focus on a denoising setup, similar to [22] and assume no measurement

matrix. Our focus is the most simple analysis pursuit algorithm – the thresholding. This allows

us to remove some of the ambiguities that are present in previous works, where the resulting

theoretical conditions mix both the measurement matrix M and the analysis dictionary Ω; we

focus on internal properties of Ω only. Indeed, our derived theoretical guarantees are expressed

in terms of the noise level, the co-sparsity ` of the signal over Ω and internal properties of Ω.

Instead of using dictionary measures that mimick the synthesis counterpart model, as practiced

in [20], which uses analysis ERC, or [13], [17], which use RIP-like properties, we suggest a

novel measure, termed Restricted Orthogonal Projection Property (ROPP), which seems to be

more relevant to analysis dictionaries. This property is much more explicit than the one arising
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from the theoretical analysis of [21]. Our derived results are simple to interpret, and specifically

we see that strong linear dependencies improve the pursuit algorithm’s success rate.

VI. CONCLUSIONS

In this work we have made an initial attempt at addressing the question of what makes

an analysis dictionary suitable for co-sparse estimation. We have concentrated on a denoising

setup and considered the use of a thresholding algorithm for the corresponding analysis pursuit

problem. Our experiments show that this simple algorithm can perform quite well for certain

analysis dictionaries, while failing on others. To better understand this behavior we further

explored the performance of this algorithm in the presence of white Gaussian random noise,

developing theoretical guarantees for the ability of the algorithm to recover the true underlying

co-support. This study reveals two significant properties of an analysis dictionary that are key

in dictating whether the pursuit will succeed of fail: The degree of linear dependencies between

rows of Ω and the level of independence between subsets of rows and other atoms, a property

we termed ROPP. We have found that it is desired to have many linear dependencies, as they

increase the co-sparsity level. Similarly, the ROPP constant should be as high as possible.

Finally, we have shown how the developed theoretical guarantees can explain our empirical

results and predict them quite well. This work gives rise to various open questions that will be

the topics of future research. These include topics such as these:

1) While this work concentrated on the thresholding algorithm, a similar theoretical study

should be given to other pursuit algorithms. Perhaps the quality measures we identified

in this work could be of help in such study.

2) This work defines the success of the pursuit algorithm by the complete identification of

the co-support. However, this algorithm may perform rather well (in denoising terms)

even in situations where only part of the support has been found. Extending this work to

cover such cases would improve our prediction for the range of success of the thresholding

algorithm.

3) How could we incorporate the proposed quality measures for Ω directly into the dictionary

learning process? By doing so we may design better analysis dictionaries, which will

ultimately lead to performance improvement and make the analysis model and its learned

dictionary suitable for a wide range of processing applications.
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