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Informative Data — Inner Structure

Heart Signal

Stock Market

.ong Term Market Timing Model
ent Investment Strategies )

Still Image

Voice Signal

Radar Imaging

CT & MRI

It does not matter what is the data you are working on —if it
carries information, it must have an inner structure.

Traffic info

 This structure = rules the data complies with.

[ Signal/image processing relies on exploiting these “rules” by adopting

dA = mathematical construction describing the properties of the signal.
O In the past decade, sparsity-based models has been drawing major attention.



Sparsity-Based Models

Sparsity and Redundancy can be
Practiced in (at least) two different ways

Synthesis * Analysis

The co-sparse analysis model is a very
appealing alternative to the synthesis
model; it has a great potential for signal
modeling; BUT there are many things
about it we do not know yet
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Recalling the
Synthesis Sparse Model



The Sparsity-Based Synthesis Model

d We assume the existence of a synthesis
dictionary De R*™" whose columns are the D

[ Signals are modeled as sparse
of the dictionary atoms:

x =Da

d We seek a of a, meaning that
it is assumed to contain mostly zeros.

I
[
O
Q

d We typically assume that n>d:

1 This model is typically referred to as the
sparse and redundant
representation model for signals.




The Synthesis Model — Basics

A

d The synthesis representation is expected

to be sparse: ”QLHO —k<<d

d Adopting a Bayesian point of view:

\

= Draw the support T (with k non-zeroes) at random;  Dictionary

= Choose the non-zero coefficients D
randomly (e.g. iid Gaussians); and

= Multiply by D to get the synthesis signal.

 Such synthesis signals belong to a Union-of-Subspaces (UoS):
xe |Jspan{D;} wnere D a; =X
Tj=k
M This union contains [E] subspaces, each of dimension k.
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The Synthesis Model — Pursuit

d Fundamental problem: Given the noisy measurements,

y=x+v=Do+y, v~N{0,c

recover the clean signal x — This is a denoising task.
VN - 2 VN
 This can be posed as: o= Arngn”Y—Dgc”2 s.t. ||gc||o =k X=Dq

O While this is a (NP-) hard problem, its approximated solution
can be obtained by

\
= Use L, instead of L, (Basis-Pursuit)

Pursuit

= Greedy methods (MP, OMP, LS-OMP) Algorithms

= Hybrid methods (IHT, SP, CoSaMP).

1 Theoretical studies provide various guarantees for the success of these
techniques, typically depending on k and properties of D.



The Synthesis Model — Dictionary Learning
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Engan et. al. ('99)

Gribonval et. al. ('04)

Aharon et. al. ('04)

The Co-Sparse Analysis Model:

Recent Results
By: Michael Elad
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1.

2.

Turning to the
Analysis Model

S. Nam, M.E. Davies, M. Elad, and R. Gribonval, "Co-sparse Analysis
Modeling - Uniqueness and Algorithms" , ICASSP, May, 2011.

S. Nam, M.E. Davies, M. Elad, and R. Gribonval, "The Co-sparse Analysis
Model and Algorithms" , ACHA, Vol. 34, No. 1, Pages 30-56, January 2013.
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The Analysis Model — Basics

* spark{QT}: d+1

d The analysis representation z is expected to be sparse , *
o], =], =~

O Co-sparsity: £ - the number of zeros in z. D Q

[ Co-Support: A - the rows that are orthogonal to x X

Q,x=0 ! -

—_ —_ “ o

IN

. . i Analysis Dictionary
[ This model puts an emphasis on the zeros in z for

characterizing the signal, just like zero-crossings of
wavelets used for defining a signal

O Co-Rank: Rank(Q,)</( (strictly smaller if there are linear dependencies in Q).

Q If Qisin general position®, then the co-rank and the co-sparsity are the same,
and 0</<d , implying that we cannot expect to get a truly sparse analysis.
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The Analysis Model — Bayesian View

d

L Analysis signals, just like synthesis ones, b — -
can be generated in a systematic way: SEERSRnsees | | :
Synthesis Signals = - Bl
p :EE::-....-....- E i
Support:  Choose the e | X
support T (| T|=k) v \ SESSsEssissacac ) L

at random Analysis Dictionary

Coef. : Choose a; at
random

Generate: Synthesize by:
D o=X

 Bottom line: an analysis signal x satisties: 4A | |A]= /st Q,x=0.

v

The Co-Sparse Analysis Model:
Recent Results
By: Michael Elad
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The Analysis Model — UoS

d

O Analysis signals, just like synthesis ones, P -
leads to a union of subspaces: EEEEEEEEEEEEEE : :
Synthesis EE;E?I“FI = E — :

Sign a IS p EEEEEIIIIIIIIII- E E

What is the Subspace EEit ol X :
Dimension: e A

V \EEEEEEEEEEEEEEEN J —_— .i‘

How Many Subspaces: Analysis Dictionary

Who are those Subspaces:

O The analysis and the synthesis models offer both a UoS construction, but
these are very different from each other in general.

The Co-Sparse Analysis Model:
Recent Results
By: Michael Elad

13

¥



The Analysis Model — Count of Subspaces

d Example: p=n=2d:
= Synthesis: k=1 (one atom) — there are 2d subspaces of dimensionality 1.

= Analysis: (=d-1 leads to [dz_dJ»O(Zd) subspaces of dimensionality 1.

O In the general case, for d=40 and
p=n=80, this graph shows the
count of the number of subspaces.
As can be seen, the two models
are substantially different, the analysis
model is much richer in low-dim.,
and the two complete each other.

— Synthesis
Analysis

0
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O The analysis model tends to lead to

a richer UoS. Are these good news? Sub-Space dimension
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The Low-Spark € Case

U

U

What if spark(QT7)<<d ?

For example: a TV-like operator for image-
patches of size 6x6 pixels (Q size is 72x36). 0

Here are analysis-signals generated for co-

i - IHEESEEEESENEENREEEE
sparsity w) of 32: SENEAEEENEEANEEEENEN
ANSENEEIENONEENRENNS
HESERSNPEENRFAENEaNE
ANNIEESEINSENRNEEENE
HENEFFAEEREENSNEENSNEE
HEFEENSNENENEEFaENOE

IS 5 X I I
SEEENENENERREEEEEERER
HEENESEESEEENNFENSERE

Their true co-sparsity is higher — see graph:

In such a case we may consider (> d, and thus

... the number of subspaces is smaller.
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The Analysis Model — Pursuit

[ Fundamental problem: Given the noisy measurements,
y=x+v, 3JA|=(st Q,x=0, \_/"‘N{Q,GZI}
recover the clean signal x — This is a denoising task.

[ This goal can be posed as:

)_?:ArgMin”y—g”j st. Q,x=0 & |A|=p—{ orrank(Q,)=d-r
x,A N

1 Thisis a (NP-) hard problem, just as in the synthesis case.

d We can approximate its solution by L, replacing L, (BP-analysis), Greedy
methods (BG, OBG, GAP), and Hybrid methods (AIHT, ASP, ACoSaMP, ...).

[ Theoretical study providing pursuit guarantees depending on the co-sparsity
and properties of Q. See
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The Analysis Model — Backward Greedy

‘N o — _ Stop condition?

1=0,X, =y A, = |
R {}» (e.g.Rank<nA>=d—r>h Dutput
i=i+1, Ai:Ai_luArgMin‘w,IXi_1 » )_“(i:[|_Q*AiQAi]X

keAi 4

The Co-Sparse Analysis Model:
Recent Results
By: Michael Elad
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The Analysis Model — Backward Greedy

Is there a similarity to a :
_ . . Synthesis
synthesis pursuit algorithm? OMP

Other options:

=0 < Optimized BG pursuit (OBG) [Rubinstein, Peleg & Elad ('12)]

* Greedy Analysis Pursuit (GAP) [Nam, Davies, Elad & Gribonval (*11)]
* |terative Cosparse Projection [Giryes, Nam, Gribonval & Davies ('11)]
R relaxation using IRLS [Rubinstein (112)]

* CoSAMP/SP like algorithms [Giryes, et. al. ('12)]

* Analysis-THR [Peleg & Elad ('12)]
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Synthesis vs. Analysis — Summary

d The two align for p=n=d : non-redundant. r (- ; .
d Just as the synthesis, we should work on: d D
= Pursuit algorithms (of all kinds) — Design. |
= Pursuit algorithms (of all kinds) — Theoretical study.i
= Dictionary learning from example-signals.
= Applications ...
—

 Our work on the analysis model so far touched
on all the above. In this talk we shall focus on:

= A theoretical study of the simplest pursuit method: p
Analysis-THR.

= Developing a K-SVD like dictionary learning method
for the analysis model. v i

| R

i~

19



Revealing Important
Dictionary Properties

20



The Analysis-THR Algorithm

Compute z= ‘QX‘ & sort

(increasing) — {v,}

Stop condition?
Rank(QAi ) =d-r

p Output
X = [I - Qj\iQAi }X

i=i+1, A, =A_, LY,

The Co-Sparse Analysis Model: 21
Recent Results
By: Michael Elad
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The Restricted Ortho. Projection Property

min
Rank(Q, )=d-r
/) .

and jgA

Q
I

(1-9,0, )w,

J

2

 INEEEEEEEEEEEEEE Y

( ROPP aims to get near
ENEEEEEEEEEEEEEN orthogonality of rows

\ it l outside the co-support

ENEEEEEEEEEEEEEE ( EEEEEEEEEEEEEEE (Ie , O should be as close
EEEEEEEE | a5 possible to 1),
EEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEE D This should remind of the
Er | BEEEEEREENEEESEE | (synthesis) ERC
\ J Q max |D.d| <1
Q A S,J[S|=k & jes >=] Hl
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Theoretical Study of the THR Algorithm

o, Choose A
ChoospeXd‘ Such that Genergte , @ Co-Rank
.
9]

PrOjeCt The Analysis
I Q Q ‘: h THR

Algorithm
Generate ’ u

g~N(O,I)e]Rd

Pr{sucess(i.e. A= A)}
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Implications
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Analysis Dictionary-Learning
and Some Results



Analysis Dictionary Learning — The Signals
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We are given a set of N contaminated (noisy)
analysis signals, and our goal is to recover their
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T

analysis dictionary, Q
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The Co-Sparse Analysis Model:

Recent Results
By: Michael Elad
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Analysis Dictionary Learning — Goal

Svynthesis

We shall adopt a similar approach to the K-SVD for
approximating the minimization of the analysis goal

The Co-Sparse Analysis Model: 27
Recent Results
By: Michael Elad
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Analysis K-SVD — Outline ruwinstein, peieg & £ad (12

9.

Initialize Q

X

Z

Sparse Code

Dictionary
Update

S
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Analysis K-SVD — Sparse-Coding Stage

r N ¢ y
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
lllllllllllllllllllllllllllllllllllllllllllllllllllll
AEEEEEEEEEEEE IIIIIIIIIIIIIIII== ==== lllllllllllllll===

IIIIIIIIIIIIIIIII
lllllllllllllllllllllllllllllllllllllllllllllllllllll
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
lllllllllllllllllllllllllllllllllllllllllllllllllllll
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
lllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllll
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
lllllllllllllllllllllllllllllllllll
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

2
{)_?j = Arg)_(Min H)—(_YJ st lax|| < p—f}

N

=1

The Co-Sparse Analysis Model: 29
Recent Results
By: Michael Elad
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Analysis K-SVD — Dictionary Update Stage

Min X[ st.Vi=1,2,..N ] <p-¢

The Co-Sparse Analysis Model:
Recent Results
By: Michael Elad

=
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Analysis Dictionary Learning — Results (1)

Experiment #1: Piece-Wise Constant Image

O We take 10,000 6x6 patches (+noise 6=5) to train on
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Analysis Dictionary Learning — Results (2)

Experiment #2: denoising of the piece-wise constant image.

256x256
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Analysis Dictionary Learning — Results (2)

Learned dictionaries for o=5

Analysis Dictionary Synthesis Dictionary

AHAEAN =L dRaFTN =
L F11- 11 e 1M
LR C L A M
HEBAN BEFL=AFMalk™
HEAEE FRLEF AN Al
EEEEE ErEFAY-REF
EREFEN HOLFENTN YENF
1. ] oy |Tha®
38 atoms I L e ' -
(again, promoting b [N ] ]

sparsity in Q) 100 atoms
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Analysis Dictionary Learning — Results (2)

Average subspace
dimension

Patch denoising:

error per element

Image PSNR [dB]

Synthesis
BM3D K-SVD
2.03
1.69
n/a 5.37
10.29
40.66 35.44 38.13

32.23 30.32 32.02

Cell Legend: | 6=5 o=10

Sparse Analysis
K-SVD

1.75
1.51
1.97
6.81

46.02
35.03
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Analysis Dictionary Learning — Results (3)

Experiment #3: denoising of natural images (with o=5)

EEcsilsn B B o
RiREEEs o pammss O mIsNEES PP
T N 8 R 1 s NN R BRRENNER
B e [ e EANNSER ]
NN EN= INS=E=SEWN NN
AT S=m=lIas SAnESFEN
SNl mrFEREN HEChsTYL"
L B | Ol mE) N e"ldD
Method Barbara House Peppers

Fields of Experts (2009)

Synthesis K-SVD
Analysis K-SVD

37.19dB
38.08 dB
37.75 dB

38.23 dB
39.37 dB
39.15dB

27.63 dB
37.78 dB
37.89 dB

How to “Inject” linear

dependencies into the learned dictionary?
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Summary and
Conclusions
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Today ...

and
are
practiced mostly in
the context of the
synthesis model

 The differences between
the two models,

* Atheoretical study of
the THR algorithm, &

* Dictionary learning for
the analysis model.

Yes, the analysis model is
a very appealing (and
different) alternative,

worth looking at

In the past few years
there is a growing
interest in this model,
deriving pursuit
methods, analyzing
them, designing
dictionary-learning, etc.

These slides and the relevant papers can be found in
http://www.cs.technion.ac.il/~elad
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Thank you for your time,
and ...
Thanks to the organizers:
Gitta Kutyniok and Otmar Scherzer

Questions?
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The Analysis Model — The Signature

Consider two possible dictionaries:

QDIF

Spark(QT) =4

Random Q

=
; o
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n
n
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Spark(QT) =37

1

= Random Q
QD|

0.8 F
Relative

X} number of
linear
dependencies

0.4

0.2

0
0 10 20 30

The Signature of a matrix is more
informative than the Spark.
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