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The cosparse analysis model has been introduced recently as an

interesting alternative to the standard sparse synthesis approach.

A prominent question brought up by this new construction is the

analysis pursuit problem – the need to find a signal belonging to

thismodel, given a set of corruptedmeasurements of it. Several pur-

suitmethodshave alreadybeenproposedbasedon�1 relaxation and

a greedy approach. In this workwe pursue this question further, and

propose a new family of pursuit algorithms for the cosparse analysis

model, mimicking the greedy-likemethods – compressive sampling

matching pursuit (CoSaMP), subspace pursuit (SP), iterative hard

thresholding (IHT) and hard thresholding pursuit (HTP). Assuming

the availability of a near optimal projection scheme that finds the

nearest cosparse subspace to any vector, we provide performance

guarantees for these algorithms. Our theoretical study relies on a

restricted isometry property adapted to the context of the cosparse

analysismodel.We explore empirically the performance of these al-

gorithmsbyadoptingaplain thresholdingprojection,demonstrating

their good performance.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Manynatural signals and images have beenobserved to be inherently lowdimensional despite their

possibly very high ambient signal dimension. It is bynowwell understood that this phenomenon lies at

the heart of the success of numerous methods of signal and image processing. Sparsity-based models

for signals offer an elegant and clearway to enforce such inherent low-dimensionality, explaining their

high popularity in recent years. Thesemodels consider the signal x ∈ R
das belonging to a finite union
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of subspaces of dimension k � d [1]. In this paper we shall focus on one such approach – the cosparse

analysis model – and develop pursuit methods for it.

Beforewe dive into the details of themodel assumed and the pursuit problem, let us first define the

following generic inverse problem that will accompany us throughout the paper: For some unknown

signal x ∈ R
d, an incomplete set of linear observations y ∈ R

m (incomplete implies m < d) is

available via

y = Mx + e, (1)

where e ∈ R
m is an additive bounded noise that satisfies ‖e‖2

2 � ε2. The task is to recover or

approximate x. In the noiseless setting where e = 0, this amounts to solving y = Mx. Of course, a

simple fact in linear algebra tells us that this problem admits infinitely many solutions (sincem < d).

Therefore,when allwehave is the observation y and themeasurement/observationmatrixM ∈ R
m×d,

we are in a hopeless situation to recover x.

1.1. The synthesis approach

This is where ‘sparse signal models’ come into play. In the sparse synthesis model, the signal x is

assumed to have a very sparse representation in a given fixed dictionary D ∈ R
d×n. In other words,

there exists α with few nonzero entries, as counted by the “�0-norm” ‖α‖0, such that

x = Dα, and k := ‖α‖0 � d. (2)

Having this knowledge we solve (1) using

x̂�0 = Dα̂�0 , and α̂�0 = argmin
α

‖α‖0 subject to ‖y − MDα‖2 � ε. (3)

More details about the properties of this problem can be found in [2,3].

Since solving (3) is an NP-complete problem [4], approximation techniques are required for re-

covering x. One strategy is by using relaxation, replacing the �0 with �1 norm, resulting with the

�1-synthesis problem

x̂�1 = Dα̂�1 , and α̂�1 = argmin ‖α‖1 s.t. ‖y − MDα‖2 � ε. (4)

For a unitary matrix D and a vector x with k-sparse representation α, if δ2k < δ�1 then∥∥x̂�1 − x
∥∥
2 � C�1 ‖e‖2 , (5)

where x̂�1 = Dα̂�1 , δ2k is the constant of the restricted isometry property (RIP) of MD for 2k sparse

signals, C�1 is a constant greater than
√

2 and δ�1 (� 0.4931) is a reference constant [5–7]. Note that

this result implies a perfect recovery in the absence of noise. The above statement was extended also

for incoherent redundant dictionaries [8].

Another option for approximating (3) is using a greedy strategy, like in the thresholding technique

or orthogonal matching pursuit (OMP) [9,10]. A different related approach is the greedy-like family of

algorithms. Among those we have compressive sampling matching pursuit (CoSaMP) [11], subspace

pursuit (SP) [12], iterative hard thresholding (IHT) [13] and hard thresholding pursuit (HTP) [14].

CoSaMP and SP were the first greedy methods shown to have guarantees in the form of (5) assuming

δ4k < δCoSaMP and δ3k � δSP [11,12,6,15]. Following their work, iterative hard thresholding (IHT)

and hard thresholding pursuit (HTP) were shown to have similar guarantees under similar conditions

[13,14,16,6]. Recently, a RIP based guarantee was developed also for OMP [17].

1.2. The cosparse analysis model

Recently, a new signal model called cosparse analysis model was proposed in [18,19]. The model

can be summarized as follows: For a fixed analysis operator � ∈ R
p×d referred to as the analysis

dictionary, a signal x ∈ R
d belongs to the cosparse analysis model with cosparsity � if

�:=p − ‖�x‖0 . (6)
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The quantity � is the number of rows in � that are orthogonal to the signal. The signal x is said to be

�-cosparse, or simply cosparse. We denote the indices of the zeros of the analysis representation as

the cosupport � and the sub-matrix that contains the rows from � that belong to � by ��. As the

definition of cosparsity suggests, the emphasis of the cosparse analysis model is on the zeros of the

analysis representation vector �x. This contrasts the emphasis on ‘few non-zeros’ in the synthesis

model (2). It is clear that in the case where every � rows in � are independent, x resides in a subspace

of dimension d − � that consists of vectors orthogonal to the rows of ��. In the general case where

dependencies occur between the rows of �, the dimension is d minus the rank of ��. This is similar

to the behavior in the synthesis case where a k-sparse signal lives in a k-dimensional space. Thus, for

this model to be effective, we assume a large value of �.
In the analysis model, recovering x from the corrupted measurements is done by solving the fol-

lowing minimization problem [20]:

xA−�0 = argmin
x

‖�x‖0 subject to ‖y − Mx‖2 � ε. (7)

Solving thisproblem isNP-complete [18], just as in the synthesis case, and thusapproximationmethods

are required. As before, we can use an �1 relaxation to (7), replacing the �0 with �1 in (7), resultingwith

the �1-analysis problem [18,20–22]. Another option is the greedy approach. A greedy algorithm called

Greedy Analysis Pursuit (GAP) has been developed in [18,19,23] that somehow mimics Orthogonal

Matching Pursuit [9,10]with a formof iterative reweighted least Squares (IRLS) [24]. Other alternatives

for OMP, backward greedy (BG) and orthogonal BG (OBG), were presented in [25] for the case that M

is the identity. For the same case, the parallel to the thresholding technique was analyzed in [26].

1.3. This work

Another avenue exists for the development of analysis pursuit algorithms – constructing methods

that will imitate the family of greedy-like algorithms. Indeed, we have recently presented preliminary

and simplified versions of analysis IHT (AIHT), analysis HTP (AHTP), analysis CoSaMP (ACoSaMP) and

analysis SP (ASP) in [27,28] as analysis versions of the synthesis counterpart methods. This paper re-

introduces these algorithms in a more general form, ties them to their synthesis origins, and analyze

their expected performance. The main contribution of the paper is our result on the stability of these

analysis pursuit algorithms. We show that after a finite number of iterations and for a given constant

c0, the reconstruction result x̂ of AIHT, AHTP, ACoSaMP and ASP all satisfy∥∥x − x̂
∥∥
2 � c0 ‖e‖2 , (8)

under a RIP-like condition onM and the assumption that we are given a good near optimal projection

scheme. A bound is also given for the case where x is only nearly �-cosparse. Similar results for the �1
analysis appear in [21,22]. More details about the relation between these papers and our results will

be given in Section 6. In addition to our theoretical results we demonstrate the performance of the

four pursuit methods under a thresholding based simple projection scheme. Both our theoretical and

empirical results show that linear dependencies in � that result with a larger cosparsity in the signal

x, lead to a better reconstruction performance. This suggests that, as opposed to the synthesis case, strong

linear dependencies within � are desired.

This paper is organized as follows:

• In Section 2 we present the notation used along the paper.
• In Section 3 we define a RIP-like property, the �-RIP, for the analysis model, proving that it has

similar characteristics to the original RIP. In Section 4 the notion of near optimal projection is pro-

posed and some nontrivial operators for which a tractable optimal projection exists are exhibited.

Both the �-RIP and the near optimal projection are used throughout this paper as a main force for

deriving our theoretical results.
• In Section 5 the four pursuit algorithms for the cosparse analysis framework are defined, adapted

to the general format of the pursuit problem we have defined above.
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• In Section 6wederive the success guarantees for all the above algorithms in a unifiedway. Note that

the provided results can be easily adapted to other union-of-subspaces models given near optimal

projection schemes for them, in the same fashion done for IHT with an optimal projection scheme

in [29]. The relation between the obtained results and existingwork appears in this section as well.
• Empirical performance of these algorithms is demonstrated in Section 7 in the context of the

cosparse signal recovery problem. We use a simple thresholding as the near optimal projection

scheme in the greedy-like techniques.
• Section 8 discuss the presented results and concludes our work.

2. Notations and preliminaries

We use the following notation in our work:

• σM is the largest singular value of M, i.e., σ 2
M = ‖M∗M‖2.• ‖·‖2 is the euclidian norm for vectors and the spectral norm for matrices. ‖·‖1 is the �1 norm that

sums the absolute values of a vector and ‖·‖0, though not really a norm, is the �0-norm which

counts the number of non-zero elements in a vector.
• Given a cosupport set �, �� is a sub-matrix of � with the rows that belong to �.
• For given vectors v, z ∈ R

d and an analysis dictionary�, cosupp(�v) returns the cosupport of�v

and cosupp(�z, �) returns the index set of � smallest (in absolute value) elements in �z. If more

than � elements are zero all of them are returned. In the case where the �th smallest entry is equal

to the � + 1 smallest entry, one of them is chosen arbitrarily.
• In a similar way, in the synthesis case DT is a sub-matrix of D with columns 1 corresponding to

the set of indices T , supp(·) returns the support of a vector, supp(·, k) returns the set of k-largest

elements and �·�k preserves the k-largest elements in a vector. In the case where the kth largest

entry is equal to the k + 1 largest entry, one of them is chosen arbitrarily.

• Q� = I − �
†
��� is the orthogonal projection onto the orthogonal complement of range(�∗

�).

• P� = I − Q� = �
†
��� is the orthogonal projection onto range(�∗

�).
• x̂AIHT/x̂AHTP/x̂ACoSaMP/x̂ASP are the reconstruction results of AIHT/AHTP/ACoSaMP/ASP respectively.

Sometimes when it is clear from the context to which algorithms we refer, we abuse notations and

use x̂ to denote the reconstruction result.
• A cosupport � has a corank r if rank(��) = r. A vector v has a corank r if its cosupport has a

corank r.
• [p] denotes the set of integers [1 . . . p].
• L�,� = {� ⊆ [p], |�| � �} is the set of �-cosparse cosupports and Lcorank

�,r = {� ⊆ [p], rank
(��) � r} is the set of all cosupports with corresponding corank r.

• W� = span⊥(��) = {Q�z, z ∈ R
d} is the subspace spanned by a cosparsity set �.

• A�,� = ⋃�∈L�,�
W� is the union of subspaces of �-cosparse vectors andAcorank

�,r = ⋃�∈Lcorank
�,r

W�

is the union of subspaces of all vectors with corank r. In the case that every � rows of � are

independent it is clear thatA�,� = Acorank
�,r . When it will be clear from the context, wewill remove

� from the subscript.
• x ∈ R

d denotes the original unknown �-cosparse vector and �x its cosupport.
• v, u ∈ A� are used to denote general �-cosparse vectors and z ∈ R

d is used to denote a general

vector.

3. �-RIP definition and its properties

We now turn to define the �-RIP, which parallels the regular RIP as used in [5]. This property is a

very important property for the analysis of the algorithms which holds for a large family of matrices

M as we will see hereafter.

1 By the abuse of notation we use the same notation for the selection sub-matrices of rows and columns. The selection will be

clear from the context since in analysis the focus is always on the rows and in synthesis on the columns.
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Definition 3.1. AmatrixM has the�-RIPwith a constant δ�, if δ� is the smallest constant that satisfies

(1 − δ�) ‖v‖2
2 � ‖Mv‖2

2 � (1 + δ�) ‖v‖2
2 , (9)

whenever �v has at least � zeroes.

Note that though δ� is also a function of � we abuse notation and use the same symbol for the

�-RIP as the regular RIP. It will be clear from the context to which of them we refer and what � is in

usewith the�-RIP. A similar property that looks at the corank of the vectors can be defined as follows.

Definition 3.2. A matrix M has the corank-�-RIP with a constant δcorankr , if δcorankr is the smallest

constant that satisfies

(1 − δcorankr ) ‖u‖2
2 � ‖Mu‖2

2 � (1 + δcorankr ) ‖u‖2
2 (10)

whenever the corank of u with respect to � is greater or equal to r.

The �-RIP, like the regular RIP, inherits several key properties. We present only those related to δ�,

while very similar characteristics can be derived also for the corank-�-RIP. The first property we pose

is an immediate corollary of the δ� definition.

Corollary 3.3. If M has the �-RIP with a constant δ� then

‖MQ�‖2
2 � 1 + δ� (11)

for any � ∈ L�.

Proof. Any v ∈ A� can be represented as v = Q�z with � ∈ L� and z ∈ R
d. Thus, the �-RIP in (9)

can be reformulated as

(1 − δ�) ‖Q�z‖2
2 � ‖MQ�z‖2

2 � (1 + δ�) ‖Q�z‖2
2 (12)

for any z ∈ R
d and � ∈ L�. Since Q� is a projection ‖Q�z‖2

2 � ‖z‖2
2. Combining this with the right

inequality in (12) gives

‖MQ�z‖2
2 � (1 + δ�) ‖z‖2

2 (13)

for any z ∈ R
d and � ∈ L�. The first inequality in (11) follows from (13) by the definition of the

spectral norm. �

Lemma 3.4. For �̃ � � it holds that δ� � δ
�̃
.

Proof. Since A� ⊆ A
�̃
the claim is immediate. �

Lemma 3.5. M has the �-RIP if and only if∥∥Q�(I − M∗M)Q�

∥∥
2 � δ� (14)

for any � ∈ L�.

Proof. The proof is similar to the one of the regular RIP as appears in [6]. As a first step we observe

that Definition 3.1 is equivalent to requiring∣∣∣‖Mv‖2
2 − ‖v‖2

2

∣∣∣ � δ� ‖v‖2
2 (15)
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for any v ∈ A�. The latter is equivalent to∣∣∣‖MQ�z‖2
2 − ‖Q�z‖2

2

∣∣∣ � δ� ‖Q�z‖2
2 (16)

for any set � ∈ L� and any z ∈ R
d, since Q�z ∈ A�. Next we notice that

‖MQ�z‖2
2 − ‖Q�z‖2

2 = z∗Q�M∗MQ�z − z∗Q�z = 〈Q�(M∗M − I)Q�z, z〉.
Since Q�(M∗M − I)Q� is Hermitian we have that

max
z

|〈Q�(M∗M − I)Q�z, z〉|
‖z‖2

= ∥∥Q�(M∗M − I)Q�

∥∥
2 . (17)

Thus we have that Definition 3.1 is equivalent to (14) for any set � ∈ L�. �

Corollary 3.6. IfM has the �-RIP then∥∥Q�1
(I − M∗M)Q�2

∥∥
2 � δ� (18)

for any �1 and �2 such that �1 ∩ �2 ∈ L�.

Proof. Since �1 ∩ �2 ⊆ �1 and �1 ∩ �2 ⊆ �2∥∥Q�1
(I − M∗M)Q�2

∥∥
2 �
∥∥Q�2∩�1

(I − M∗M)Q�2∩�1

∥∥
2 .

Using Lemma 3.5 completes the proof. �

As we will see later, we require the �-RIP to be small. Thus, we are interested to know for what

matrices this hold true. In the synthesis case, where � is unitary and the �-RIP is identical to the RIP,

it was shown for certain family of random matrices, such as matrices with Bernoulli or subGaussian

ensembles, that for any value of εk if m � Cεk k log(
m
kεk

) then δk � εk [5,8,30], where δk is the RIP

constant and Cεk is a constant depending on εk and M. A similar result for the same family of random

matrices holds for the analysis case. The result is a special case of the result presented in [29].

Theorem 3.7 (Theorem 3.3 in [29]). Fix � ∈ R
p×d and letM ∈ R

m×d be a randommatrix such that for

any z ∈ R
d and 0 < ε̃ � 1

3
it satisfies

P
(∣∣∣‖Mz‖2

2 − ‖z‖2
2

∣∣∣ � ε̃ ‖z‖2
2

)
� e−

CMmε̃
2 , (19)

where CM > 0 is a constant. For any value of ε� > 0, if

m � 32

CMε2
r

(
log
(∣∣∣Lcorank

r

∣∣∣)+ (d − r) log(9/εr) + t
)
, (20)

then δcorankr � εr with probability exceeding 1 − e−t .

The above theorem is important since it shows that a large family of random matrices – similar to

those having the RIP with high probability 2 – has a small �-RIP constant with high probability. In a

recent work it was even shown that by randomizing the signs of the columns in thematrices that have

2 Note that, depending on �, the family of random matrices that have the RIP with high probability may not coincide with the

family of randommatrices that have the�-RIP with high probability. For example, takeM a partial random Fourier matrix (known to

have RIP), � as the orthogonal Fourier basis and select any vector in the Fourier basis. With reasonably high probability, this vector

is not included in the selected rows and will be orthogonal to all rows ofM. Thus, the �-RIP will not hold with any constant smaller

than 1.
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the RIP we get newmatrices that also have the RIP [31]. A similar process can be carried also with the

�-RIPmatrices. Thus, requiring the�-RIP constant to be small, as will be done hereafter, is legitimate.

For completenesswe present a proof for Theorem3.7 in Appendix A based on [8,30,32].We include

in it also the proof of Theorem 3.8 to follow. In the case that � is in general position
∣∣∣Lcorank

r

∣∣∣ = (p
r

)
�

( ep

p−r
)p−r (inequality is by Stirling’s formula) and thus m � (p − r) log( ep

p−r
). Since we want m to be

smaller than d we need p − � to be smaller than d. This limits the size of p for � since r cannot be

greater than d. Thus, we present a variation of the theorem which states the results in terms of δ�

and � instead of δcorankr and r. The following theorem is also important because of the fact that our

theoretical results are in terms of δ� and not δcorankr . It shows that δ� is small in the same family of

matrices that guarantees δcorankr to be small.

Theorem 3.8. Under the same setup of Theorem 3.7, for any ε� > 0 if

m � 32

CMε2
�

(
(p − �) log

(
9p

(p − �)ε�

)
+ t

)
, (21)

then δ� � ε� with probability exceeding 1 − e−t .

Remark that when � is in general position � cannot be greater than d and thus p cannot be greater

than 2d [18]. For this reason, if wewant to have large values for pwe should allow linear dependencies

between the rows of �. In this case the cosparsity of the signal can be greater than d. This explains

why linear dependencies are a favorable thing in analysis dictionaries [25]. In Section 7 we shall see

that also empirically we get a better recovery when � contains linear dependencies.

4. Near optimal projections

As we will see hereafter, in the proposed algorithms we will face the following problem: Given a

general vector z ∈ R
d, we would like to find an �-cosparse vector that is closest to it in the �2-norm

sense. In other words, we would like to project the vector to the closest �-cosparse subspace. Given

the cosupport � of this space the solution is simply Q�z. Thus, the problem of finding the closest

�-cosparse vector turns to be the problem of finding the cosupport of the closest �-cosparse subspace.
We denote the procedure of finding this cosupport by

S∗
� (z) = argmin

�∈L�

‖z − Q�z‖2
2 . (22)

In the representation domain in the synthesis case, the support of the closest k-sparse subspace is

found simply by hard thresholding, i.e., taking the support of the k-largest elements. However, in the

analysis case calculating (22) is NP-complete with no efficient method for doing it for a general �

[33]. Thus an approximation procedure Ŝ� is needed. For this purpose we introduce the definition of

a near-optimal projection [27].

Definition 4.1. A procedure Ŝ� implies a near-optimal projection QŜ�(·) with a constant C� if for any

z ∈ R
d

∥∥∥z − QŜ�(z)
z
∥∥∥2
2

� C�

∥∥∥z − QS∗
� (z)z
∥∥∥2
2
. (23)

A clear implication of this definition is that if Ŝ� implies a near-optimal projection with a constant C�

then for any vector z ∈ R
d and an �-cosparse vector v ∈ R

d∥∥∥z − QŜ�(z)
z
∥∥∥2
2

� C� ‖z − v‖2
2 . (24)
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Similarly to the �-RIP, the above discussion can be directed also for finding the closest vector with

corank r defining Scorank∗
r and near optimal projection for this case in a very similar way to (22) and

Definition 4.1 respectively.

Having a near-optimal cosupport selection scheme for a general operator is still an open problem

and we leave it for a future work. It is possible that this is also NP-complete. We start by describing a

simple thresholding rule that can be used with any operator. Even though it does not have any known

(near) optimality guarantee besides the case of unitary operators, the numerical section will show it

performswell in practice. Thenwe present two tractable algorithms for finding the optimal cosupport

for two non-trivial analysis operators, the one dimensional finite difference operator �1D-DIF [34] and

the fused Lasso operator �FUS [35].

Later in the paper, we propose theoretical guarantees for algorithms that use operators that has an

optimal or a near-optimal cosupport selection scheme. We leave the theoretical study of the thresh-

olding technique for a future work but demonstrate its performance empirically in Section 7 where

this rule is used showing that also when near-optimality is not at hand reconstruction is feasible.

4.1. Cosupport selection by thresholding

One intuitive option for cosupport selection is the simple thresholding

Ŝ�(z) = cosupp(�z, �), (25)

which selects as a cosupport the indices of the � smallest elements after applying� on z. Asmentioned

above, this selectionmethod is optimal for unitary analysis operators where it coincides with the hard

thresholding used in synthesis. However, in the general case this selection method is not guaranteed

to give the optimal cosupport. Its near optimality constant C� is not close to one and is equal to the

fraction of the largest and smallest eigenvalues (which are not zero) of the submatrices composed of

� rows from � [27].

One example for an operator for which the thresholding is sub-optimal is the 1D-finite difference

operator �1D-DIF. This operator is defined as:

�1D-DIF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 · · ·
... −1 1

. . .

−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (26)

In this case, given a signal z, applying �1D-DIF on it, result with a vector of coefficients that represents

the differences in the signal. The thresholding selectionmethodwill select the indices of the � smallest

elements in�z as the cosupport�z . For example, for the signal z ∈ R
201 in Fig. 1(a) that contains 100

times one, 100 timesminus one and 1.5 as the last element, the thresholding will select the cosupport

to be the first 199 coefficients in �1D-DIFz that appears in Fig. 1(b) and thus the projected vector will

be the one in Fig. 1(c). Its error in the �2-norm sense is
√

200. However, selecting the cosupport to

be the first 99 elements and last 100 elements result with the projected vector in Fig. 1(d), which has

a smaller projection error (2.5). Thus, it is clear that the thresholding is sub-optimal for �1D-DIF. In a

similar way it is also sub-optimal for the 2D-finite difference operator�2D-DIF that returns the vertical

and horizontal differences of a two dimensional signal. Though not optimal, the use of thresholding

with this operator is illustrated in Section 7 demonstrating that also when a good projection is not at

hand, good reconstruction is still possible.

4.2. Optimal analysis projection operators

As mentioned above, in general it would appear that determining the optimal projection is com-

putationally difficult with the only general solution being to fully enumerate the projections onto all

possible cosupports. Here we highlight two cases where it is relatively easy (polynomial complexity)

to calculate the optimal cosparse projection.
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4.2.1. Case 1: 1D finite difference

For the 1D finite difference operator the analysis operator is not redundant (p = d− 1) but neither

is it invertible. As we have seen, a simple thresholding does not provide us with the optimal cosparse

projection. Thus, in order to determine the best �-cosparse approximation for a given vector z we

take another route and note that we are looking for the closest (in the �2-norm sense to z) piecewise

constant vector with p − � change-points. This problem has been solved previously in the signal

processing literature using dynamic programming (DP), see for example: [34]. Thus for this operator

it is possible to calculate the best cosparse representation in O(d2) operations. The existence of a DP

solution follows from the ordered localized nature of the finite difference operator. To the best of our

knowledge, there is no known extension to 2D finite difference.

4.2.2. Case 2: Fused lasso operator

A redundant operator related to the 1D finite difference operator is the so-called fused Lasso oper-

ator, usually used with the analysis �1-minimization [35]. This usually takes the form:

�FUS =
⎛⎝�1D-DIF

εI

⎞⎠ . (27)

Like �1D-DIF this operator works locally and therefore we can expect to derive a DP solution to the

approximation problem. This is presented below.

Remark 4.2. Note that in termsof the cosparsitymodel theε parameterplaysno role. This is in contrast

to the traditional convex optimization solutions where the value of ε is pivotal [22]. It is possible to

mimic the ε dependence within the cosparsity framework by considering a generalized fused Lasso

operator of the form:

�εFUS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1D-DIF

�1D-DIF
...

�1D-DIF

I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (28)

where the number of repetitions of the �1D-DIF operator (and possibly the I operator) can be selected

to mimic a weight on the number of nonzero coefficients of each type. For simplicity we only consider

the case indicated by (27).

4.2.3. A recursive solution to the optimal projector for �FUS

Rather than working directly with the operator �FUS wemake use of the following observation. An

�-cosparse vector v (or k-sparse vector) for �FUS is a piecewise constant vector with k1 change points

Fig. 1. Comparison between projection using thresholding cosupport selection and optimal cosupport selection. As it can be seen the

thresholding projection error is much larger than the optimal projection error by a factor much larger than 1.
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and k2 non-zero entries such that k1 + k2 = k = p − �, where p = 2d − 1. To understand better the

relation between k1 and k2, notice that k1 = 0 implies equality of all entries, so k2 = 0 or d, hence

� = p or d − 1. Conversely, considering d � � < p or 0 � � < d − 1 implies k1 �= 0. It also implies

that there is at least one nonzero value, hence k2 �= 0.

Thus, an �-cosparse vector v for �FUS can be parameterized in terms of a set of change points,

{ni}i=0:k1+1, and a set of constants, {μi}i=1:k1+1, such that:

vj = μi, ni−1 < j � ni (29)

with the convention that n0 = 0 and nk1+1 = d, unless stated otherwise. We will also make use of

the indicator vector, s, defined as:

si =
⎧⎨⎩ 0 if μi = 0,

1 otherwise
for 1 � i � k1 + 1. (30)

Using this alternative parametrization we can write the minimum distance between a vector z and

the set of k-sparse fused Lasso coefficients as:

Fk(z) = min
1�k1�k

min{ni}i=1:k1{μi}i=1:k1+1

nk1<d

k1+1∑
i=1

ni∑
j=ni−1+1

(zj − μi)
2,

subject to
k1+1∑
i=1

si(ni − ni−1) = k − k1.

(31)

Although this looks a formidable optimization task we now show that it can be computed recursively

through a standard DP strategy, modifying the arguments in [34].

Let us define the optimal cost, Ik(L, ω, k1), for the vector [z1, . . . , zL]T with k1 change points and

sk1+1 = ω, as:

Ik(L, ω, k1) = min{ni}i=1:k1{si}i=1:k1+1

nk1<L,nk1+1=L
sk1+1=ω

k1+1∑
i=1

ni∑
j=ni−1+1

(zj − μi)
2,

subject to
k1+1∑
i=1

si(ni − ni−1) = k − k1

and μi = si
ni−ni−1

ni∑
l=ni−1+1

zl

(32)

where we have set μi to the optimal sample means. Notice that calculating Ik(L, ω, k1) is easy for

k1 � k � 1. Thus, we calculate it recursively considering two separate scenarios:

Case 1: ω = 0 where the last block of coefficients are zero. This gives:

Ik(L, 0, k1) = min
nk1<L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
L∑

j=nk1+1

(zj)
2 + min{ni}i=1:k1−1

{si}i=1:k1−1
nk1−1<nk1

sk1=1

k1∑
i=1

ni∑
j=ni−1+1

(zj − μi)
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

subject to
k1∑
i=1

si(ni − ni−1) = (k − 1) − (k1 − 1)

and μi = si
ni−ni−1

ni∑
l=ni−1+1

zl,

(33)
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(noting that if sk1+1 = 0 then sk1 = 1 since otherwise nk1 would not have been a change point).

This simplifies to the recursive formula:

Ik(L, 0, k1) = min
nk1<L

⎛⎝ L∑
j=nk1+1

(zj)
2 + Ik−1(nk1 , 1, k1 − 1)

⎞⎠ . (34)

Case 2: ω = 1 when the final block of coefficients are non-zero we have:

Ik(L, 1, k1) = min
nk1<L

nk1+1=L
sk1

⎛⎜⎜⎜⎜⎜⎝
L∑

j=nk1+1

(zj − μk1+1)
2 + min{ni}i=1:k1−1

{si}i=1:k1−1
nk1−1<nk1

k1∑
i=1

ni∑
j=ni−1+1

(zj − μi)
2

⎞⎟⎟⎟⎟⎟⎠ ,

subject to

k1∑
i=1

si(ni − ni−1) = (k − L + nk1 − 1) − (k1 − 1)

and μi = si

ni − ni−1

ni∑
l=ni−1+1

zl. (35)

This simplifies to the recursive relationship:

Ik(L, 1, k1) = min
nk1<L
sk1

⎛⎝ L∑
j=nk1+1

(zj − μk1+1)
2 + Ik−L+nk1−1(nk1 , sk1 , k1 − 1)

⎞⎠
subject to μk1+1 = L∑

l=nk1+1

zl/
(
L − nk1

)
.

(36)

Eqs. (34) and (36) are sufficient to enable the calculation of the optimal projection in polynomial

time, starting with k1 � k � 1 and recursively evaluating the costs for k � k1 � 1. Finally, we have

Fk(z) = mink1�k,ω∈{0,1} Ik(d, ω, k1).

5. New analysis algorithms

5.1. Quick review of the greedy-like methods

Before we turn to present the analysis versions of the greedy-like techniques we recall their syn-

thesis versions. These use a prior knowledge about the cardinality k and actually aim at approximating

a variant of (3)

argmin
α

‖y − MDα‖2
2 subject to ‖α‖0 � k. (37)

For simplicitywe shall present the greedy-like pursuits for the caseD = I. In the general caseM should

be replaced with MD, x with α and the reconstruction result should be x̂ = Dα̂. In addition, in the

algorithms’ description we do not specify the stopping criterion. Any standard stopping criterion, like

residual’s size or relative iteration change, can be used. More details can be found in [11,12].

IHT and HTP: IHT [13] and HTP [14] are presented in Algorithm 1. Each IHT iteration is composed

of two basic steps. The first is a gradient step, with a step size μt , in the direction of minimizing
‖y − Mx‖2

2. The step size can be either constant in all iterations (μt = μ) or changing [36]. The result

vector xg is not guaranteed to be sparse and thus the second step of IHT projects xg to the closest k-

sparse subspace by keeping its largest k elements. The HTP takes a different strategy in the projection

step. Instead of using a simple projection to the closest k-sparse subspace, HTP selects the vector in

this subspace that minimizes ‖y − Mx‖2
2 [14,37].
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Algorithm 1 Iterative hard thresholding (IHT) and hard thresholding pursuit (HTP)

Require: k,M, y where y = Mx + e, k is the cardinality of x and e is an additive noise.

Ensure: x̂IHT or x̂HTP: k-sparse approximation of x.

Initialize representation x̂0 = 0 and set t = 0.

while halting criterion is not satisfied do

t = t + 1.

Perform a gradient step: xg = x̂t−1 + μtM∗(y − Mx̂t−1)

Find a new support: Tt = supp(xg, k)

Calculate a new representation: x̂t
IHT = (xg)Tt for IHT, and x̂t

HTP = M
†

Tty for HTP.

end while

Form the final solution x̂IHT = x̂t
IHT for IHT and x̂HTP = x̂t

HTP for HTP.

CoSaMP and SP:CoSaMP [11] and SP [12] are presented in Algorithm2. The difference between these

two techniques is similar to the difference between IHT and HTP. Unlike IHT and HTP, the estimate for

thesupportofx ineachCoSaMPandSP iteration is computedbyobserving the residualytresid = y−Mxt .

In each iteration, CoSaMP and SP extract new support indices from the residual by taking the indices

of the largest elements in M∗ytresid. They add the new indices to the estimated support set from the

previous iteration creating a new estimated support T̃ t with cardinality larger than k. Having the

updated support, in a similar way to the projection in HTP, an objective aware projection is performed

resulting with an estimate w for x that is supported on T̃ t . Since we know that x is k-sparse we want

to projectw to a k-sparse subspace. CoSaMP does it by simple hard thresholding like in IHT. SP does it

by an objective aware projection similar to HTP.

5.2. Analysis greedy-like methods

Given the synthesis greedy-like pursuits, we would like to define their analysis counterparts. For

this task we need to ’translate’ each synthesis operation into an analysis one. This gives us a general

recipe for converting algorithms between the two schemes. The parallel lines between the schemes

are presented in Table 1. Those becomemore intuitive and clear when we keep in mind that while the

synthesis approach focuses on the non-zeros, the analysis concentrates on the zeros.

For clarity we dwell a bit more on the equivalences. For the cosupport selection, as mentioned in

Section 4, computing the optimal cosupport is a combinatorial problemand thus the approximation Ŝ�

is used. Having a selected cosupport�, the projection to its corresponding cosparse subspace becomes

trivial, given by Q�.

Given two vectors v1 ∈ A�1 and v2 ∈ A�2 such that �1 = cosupp(�v1) and �2 = cosupp(�v2),
we know that |�1| � �1 and |�2| � �2. Denoting T1 = supp(�v1) and T2 = supp(�v2) it is clear

that supp(�(v1 + v1)) ⊆ T1 ∪ T2. Noticing that supp(·) = cosupp(·)C it is clear that |T1| � p − �1,

Table 1

Parallel synthesis and analysis operations.

Synthesis operation name Synthesis operation Analysis operation name Analysis operation

Support selection Largest k elements: Cosupport selection Using a near optimal

T = supp(·, k) projection:� = Ŝ�(·)
Orthogonal Projection of z zT Orthogonal projection of Q�z

to a k-sparse subspace z to an �-cosparse
with support T subspace with cosupport �

Objective aware projection M
†
Ty = argminv ‖y − Mv‖2

2 Objective aware projection to argminv ‖y − Mv‖2
2

to a k-sparse subspace s.t. vTC = 0 an �-cosparse subspace s.t. ��v = 0

with support T with cosupport �

Support of v1 + v2 where supp(v1 + v2) ⊆ T1 ∪ T2 Cosupport of v1 + v2 where

supp(v1) = T1 and cosupp(v1) = �1 and cosupp(v1 + v2)
supp(v2) = T2 cosupp(v2) = �2 ⊇ �1 ∩ �2

Maximal size of T1 ∪ T2 |T1 ∪ T2| � k1 + k2 Minimal size of �1 ∩ �2 where |�1 ∩ �2| � �1 + �2 − p

where |T1| � k1 and |T2| � k2 |�1| � �1 and |�2| � �2
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|T2| � p − �2 and cosupp(�(v1 + v2)) ⊇ (T1 ∪ T2)
C = TC

1 ∩ TC
2 = �1 ∩ �2. From the last equality

we can also deduce that |�1 ∩ �2| = p − |T1 ∪ T2| � p − (p − �1) − (p − �2) = �1 + �2 − p.

With the above observations we can develop the analysis versions of the greedy-like algorithms.

As in the synthesis case, we do not specify a stopping criterion. Any stopping criterion used for the

synthesis versions can be used also for the analysis ones.

Algorithm 2 Subspace Pursuit (SP) and CoSaMP

Require: k,M, y where y = Mx + e, k is the cardinality of x and e is an additive noise. a = 1 (SP),

a = 2 (CoSaMP).

Ensure: x̂CoSaMP or x̂SP: k-sparse approximation of x.

Initialize the support T0 = ∅, the residual y0resid = y and set t = 0.

while halting criterion is not satisfied do

t = t + 1.

Find new support elements: T	 = supp(M∗yt−1
resid, ak).

Update the support: T̃ t = Tt−1 ∪ T	.

Compute a temporary representation:w = M
†

T̃ ty.

Prune small entries: Tt = supp(w, k).

Calculate a new representation: x̂t
CoSaMP = wTt for CoSaMP, and x̂t

SP = M
†

Tty for SP.

Update the residual: ytresid = y − Mx̂t
CoSaMP for CoSaMP, and ytresid = y − Mx̂t

SP for SP.

end while

Form the final solution x̂CoSaMP = x̂t
CoSaMP for CoSaMP and x̂SP = x̂t

SP for SP.

AIHT and AHTP: Analysis IHT (AIHT) and analysis HTP (AHTP) are presented in Algorithm 3. As in

the synthesis case, the choice of the gradient stepsize μt is crucial: If μt ’s are chosen too small, the

algorithm gets stuck at a wrong solution and if too large, the algorithm diverges. We consider two

options for μt .

In the first we choose μt = μ for some constant μ for all iterations. A theoretical discussion on

how to choose μ properly is given in Section 6.1.

The second option is to select a different μ in each iteration. One way for doing it is to choose an

‘optimal’ stepsize μt by solving the following problem

μt := argmin
μ

∥∥∥y − Mx̂t
∥∥∥2
2
. (38)

Since �̂t = Ŝ�(x̂
t−1 + μtM∗(y − Mx̂t−1)) and x̂t = Q

�̂t (xg), the above requires a line search over

different values ofμ and along the search �̂t might change several times. A simpler way is an adaptive

step size selection as proposed in [36] for IHT. In a heuristical waywe limit the search to the cosupport

�̃ = Ŝ�(M
∗(y−Mx̂t−1))∩ �̂t−1. This is the intersection of the cosupport of x̂t−1 with the �-cosparse

cosupport of the estimated closest �-cosparse subspace to M∗(y − Mx̂t−1). Since x̂t−1 = Q�̃x̂t−1,

finding μ turns to be

μt := argmin
μ

∥∥∥y − M(x̂t−1 + μQ�̃M∗(y − Mx̂t−1))
∥∥∥2
2
. (39)

This procedure of selecting μt does not require a line search and it has a simple closed form solution.

To summarize, there are three main options for the step size selection:

• Constant step-size selection – uses a constant step size μt = μ in all iterations.
• Optimal changing step-size selection – uses different values forμt in each iterations byminimizing∥∥y − Mx̂t

∥∥
2.• Adaptive changing step-size selection – uses (39).

ACoSaMP and ASP: Analysis CoSaMP (ACoSaMP) and analysis SP (ASP) are presented in Algorithm 4.

The stages are parallel to those of the synthesis CoSaMP and SP. We dwell a bit more on the meaning
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Algorithm3Analysis iterative hard thresholding (AIHT) and analysis hard thresholding pursuit (AHTP)

Require: �,M, �, y where y = Mx + e, � is the cosparsity of x under � and e is the additive noise.

Ensure: x̂AIHT or x̂AHTP: �-cosparse approximation of x.

Initialize estimate x̂0 = 0 and set t = 0.

while halting criterion is not satisfied do

t = t + 1.

Perform a gradient step: xg = x̂t−1 + μtM∗(y − Mx̂t−1)

Find a new cosupport: �̂t = Ŝ�(xg)

Calculate anewestimate: x̂t
AIHT = Q

�̂txg forAIHT, and x̂t
AHTP = argminx̃ ‖y − Mx̃‖2

2 s.t.�
�̂t x̃ = 0

for AHTP.

end while

Form the final solution x̂AIHT = x̂t
AIHT for AIHT and x̂AHTP = x̂t

AHTP for AHTP.

Algorithm 4 Analysis Subspace Pursuit (ASP) and Analysis CoSaMP (ACoSaMP)

Require: �,M, �, y, awhere y = Mx + e, � is the cosparsity of x under � and e is the additive noise.

Ensure: x̂ACoSaMP or x̂ASP: �-cosparse approximation of x.

Initialize the cosupport �0 = {i, 1 � i � p}, the residual y0resid = y and set t = 0.

while halting criterion is not satisfied do

t = t + 1.

Find new cosupport elements: �	 = Ŝa�(M
∗yt−1

resid).

Update the cosupport: �̃t = �̂t−1 ∩ �	.

Compute a temporary estimate:w = argminx̃ ‖y − Mx̃‖2
2 s.t. ��̃t x̃ = 0.

Enlarge the cosupport: �̂t = Ŝ�(w).

Calculate a new estimate: x̂t
ACoSaMP = Q

�̂tw for ACoSaMP, and x̂t
ASP = argminx̃ ‖y − Mx̃‖2

2 s.t.

�
�̂t x̃ = 0 for ASP.

Update the residual: ytresid = y − Mx̂t
ACoSaMP for ACoSaMP, and ytresid = y − Mx̂t

ASP for ASP.

end while

Form the final solution x̂ACoSaMP = x̂t
ACoSaMP for ACoSaMP and x̂ASP = x̂t

ASP for ASP.

of the parameter a in the algorithms. This parameter determines the size of the new cosupport �	

in each iteration. a = 1 means that the size is � and according to Table 1 it is equivalent to a = 1

in the synthesis as done in SP in which we select new k indices for the support in each iteration. In

synthesis CoSaMP we use a = 2 and select 2k new elements. 2k is the maximal support size of two

added k-sparse vectors. The corresponding minimal size in the analysis case is 2� − p according to

Table 1. For this setting we need to choose a = 2�−p

�
.

5.3. The unitary case

For � = I the synthesis and the analysis greedy-like algorithms become equivalent. This is easy to

see since in this case we have p = d, k = d − �, � = TC , Q�x = xT and T1 ∪ T2 = �1 ∩ �2 for

�1 = TC
1 and �2 = TC

2 . In addition, Ŝ� = S∗
� finds the closest �-cosparse subspace by simply taking

the smallest � elements. Using similar arguments, also in the case where � is a unitary matrix the

analysis methods coincide with the synthesis ones. In order to get exactly the same algorithms M is

replaced with M�∗ in the synthesis techniques and the output is multiplied by �∗.
Based on this observation, we can deduce that the guarantees of the synthesis greedy-likemethods

apply also for the analysis ones in a trivial way. Thus, it is tempting to assume that the last should have

similar guarantees based on the �-RIP. In the next section we develop such claims.
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5.4. Relaxed versions for high dimensional problems

Before moving to the next section we mention a variation of the analysis greedy-like techniques.

In AHTP, ACoSaMP and ASP we need to solve the constrained minimization problemminx̃ ‖y − Mx̃‖2
2

s.t. ‖��x̃‖2
2 = 0. For high dimensional signals this problem is hard to solve and we suggest to replace

it withminimizing ‖y − Mx̃‖2
2 +λ ‖��x̃‖2

2, where λ is a relaxation constant. This results in a relaxed

version of the algorithms. We refer hereafter to these versions as relaxed AHTP (RAHTP) relaxed ASP

(RASP) and relaxed ACoSaMP (RACoSaMP).

6. Algorithms guarantees

In this sectionwe provide theoretical guarantees for the reconstruction performance of the analysis

greedy-like methods. For AIHT and AHTP we study both the constant step-size and the optimal step-

size selections. For ACoSaMP and ASP the analysis is made for a = 2�−p

�
, but we believe that it can

be extended also to other values of a, such as a = 1. The performance guarantees we provide are

summarized in the following two theorems. The first theorem, for AIHT and AHTP, is a simplified

version of Theorem 6.5 and the second theorem, for ASP and ACoSaMP, is a combination of Corollaries

6.9 and 6.14, all of which appear hereafter along with their proofs. Before presenting the theorems we

recall the problem we aim at solving:

Definition 6.1 (Problem P). Consider a measurement vector y ∈ R
m such that y = Mx + e where

x ∈ R
d is �-cosparse, M ∈ R

m×d is a degradation operator and e ∈ R
m is a bounded additive noise.

The largest singular value of M is σM and its �-RIP constant is δ�. The analysis operator � ∈ R
p×d is

given and fixed. A procedure Ŝ� for finding a cosupport that implies a near optimal projection with a

constant C� is assumed to be at hand. Our task is to recover x from y. The recovery result is denoted

by x̂.

Theorem6.2 (Stable recovery of AIHT andAHTP). Consider the problemP and apply either AIHT or AHTP

with a certain constant step-size or an optimal changing step-size, obtaining x̂t after t iterations. If

(C� − 1)σ 2
M

C�

< 1 (40)

and

δ2�−p < δ1(C�, σ
2
M),

where δ1(C�, σ
2
M) is a constant guaranteed to be greater than zero whenever (40) is satisfied and C� is the

near-optimal projection constant for cosparsity � (Definition 4.1), then after a finite number of iterations t∗∥∥∥x − x̂t∗
∥∥∥
2

� c1 ‖e‖2 , (41)

implying that these algorithms lead to a stable recovery. The constant c1 is a function of δ2�−p, C� and σ 2
M,

and the constant step-size used is dependent on δ1(C�, σ
2
M).

Theorem 6.3 (Stable recovery of ASP and ACoSaMP). Consider the problem P and apply either ACoSaMP

or ASP with a = 2�−p

�
, obtaining x̂t after t iterations. If

(C2

Ŝ − 1)σ 2
M

C2

Ŝ
< 1, (42)
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and

δ4�−3p < δ2(CŜ, σ
2
M),

where CŜ = max(C�, C2�−p) and δ2(CŜ, σ
2
M) is a constant guaranteed to be greater than zero whenever

(42) is satisfied, then after a finite number of iterations t∗∥∥∥x − x̂t∗
∥∥∥
2

� c2 ‖e‖2 , (43)

implying that these algorithms lead to a stable recovery. The constant c2 is a function of δ4�−3p, C�, C2�−p

and σ 2
M.

Beforeweproceed to theproofs, letuscommentontheconstants in theabove theorems.Theirvalues

can be calculated using Theorem 6.5, and Corollaries 6.9 and 6.14. In the case where � is a unitary

matrix, (40) and (42) are trivially satisfied since C� = C2�−p = 1. In this case the �-RIP conditions

becomeδ2�−p < δ1(1, σ
2
M) = 1/3 forAIHTandAHTP, andδ4�−3p < δ2(1, σ

2
M) = 0.0156 forACoSaMP

and ASP. In terms of synthesis RIP forM�∗, the condition δ2�−p < 1/3 parallels δ2k(M�∗) < 1/3 and

similarly δ4�−3p < 0.0156 parallels δ4k(M�∗) < 0.0156. Note that the condition we pose for AIHT

and AHTP in this case is the same as the one presented for synthesis IHT with a constant step size

[16]. Better reference constants were achieved in the synthesis case for all four algorithms and thus

we believe that there is still room for improvement of the reference constants in the analysis context.

In the non-unitary case, the value of σM plays a vital role, though we believe that this is just an

artifact of our proof technique. For a randomGaussianmatrix whose entries are i.i.d with a zero-mean

and a variance 1
m
, σM behaves like d

m

(
1 +
√

d
m

)
. This is true also for other types of distributions for

which the fourth moment is known to be bounded [38]. For example, for d/m = 1.5 we have found

empirically that σ 2
M � 5. In this case we need C� � 5

4
for (40) to hold and CŜ � 1.118 for (42) to hold,

and both are quite demanding on the quality of the near-optimal projection. For C� = CŜ = 1.05 we

have the conditions δ2�−p � 0.289for AIHT and AHTP, and δ4�−3p � 0.0049 for ACoSaMP and ASP;

and for C� = CŜ = 1.1 we have δ2�−p � 0.24for AIHT and AHTP, and δ4�−3p � 0.00032 for ACoSaMP

and ASP.

As in the synthesis case, the �-RIP requirements for the theoretical bounds of AIHT and AHTP

are better than those for ACoSaMP and ASP. In addition, in the migration from the synthesis to the

analysis we lost more precision in the bounds for ACoSaMP and ASP than in those of AIHT and AHTP. In

particular, even in the casewhere� is the identitywe do not coincidewith any of the synthesis parallel

RIP reference constants. We should also remember that the synthesis bound for SP is in terms of δ3k
and not δ4k [12]. Thus, we expect that it will be possible to give a condition for ASP in terms of δ3�−2p

with better reference constants. However, our main interest in this work is to show the existence of

such bounds, and in Section 6.5 we dwell more on their meaning.

We should note that here and elsewhere we can replace the conditions on δ2�−p and δ4�−3p in

the theorems to conditions on δcorank2r−p and δcorank4r−3p and the proofs will be almost the same. 3 In this

case we will be analyzing a version of the algorithms which is driven by the corank instead of the

cosparsity. This would mean we need the near-optimal projection to be in terms of the corank. In the

case where� is in a general position, there is no difference between the cosparsity � and the corank r.

However, when we have linear dependencies in � the two measures differ and an �-cosparse vector

is not necessarily a vector with a corank r.

As wewill see hereafter, our recovery conditions require δ2�−p and δ4�−3p to be as small as possible

and for this we need 2� − p and 4� − 3p to be as large as possible. Thus, we need � to be as close as

possible to p and for highly redundant � this cannot be achieved without having linear dependencies

in �. Apart from the theoretical advantage of linear dependencies in �, we also show empirically that

3 At a first glance one would think that the conditions should be in terms of δcorank2r−d and δcorank4r−3d . However, given two cosparse

vectors with coranks r1 and r2 the best estimation we can have for the corank of their sum is r1 + r2 − p.
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an analysis dictionary with linear dependencies has better recovery rate than analysis dictionary in a

general position of the same dimension. Thus, we deduce that linear dependencies in � lead to better

bounds and restoration performance.

Though linear dependencies allow � to be larger than d and be in the order of p, the value of the

corank is always boundedby d and cannot be expected to be large enough for highly redundant analysis

dictionaries. In addition, we will see hereafter that the number of measurements m required by the

�-RIP is strongly dependent on � and less effected by the value of r. From the computational point

of view we note also that using corank requires its computation in each iteration which increases

the overall complexity of the algorithms. Thus, it is more reasonable to have conditions on δ2�−p and

δ4�−3p than on δcorank2r−p and δcorank4r−3p , and our study will be focused on the cosparsity based algorithms.

6.1. AIHT and AHTP guarantees

A uniform guarantee for AIHT in the case that an optimal projection is given, is presented in [29].

The work in [29] dealt with a general union of subspaces,A, and assumed thatM is bi-Lipschitz on the

considered union of subspaces. In our caseA = A� and the bi-Lipschitz constants ofM are the largest

BL and smallest BU where 0 < BL � BU such that for all �-cosparse vectors v1, v2:

BL ‖v1 + v2‖2
2 � ‖M(v1 + v2)‖2

2 � BU ‖v1 + v2‖2
2 . (44)

Under this assumption, one can apply Theorem 2 from [29] to the idealized AIHT that has access to an

optimal projection and uses a constant step size μt = μ. Relying on Table 1 we present this theorem

and replace BL and BU with 1 − δ2�−p and 1 + δ2�−p respectively.

Theorem 6.4 (Theorem 2 in [29]). Consider the problem P with C� = 1 and apply AIHT with a constant

step size μ. If 1 + δ2�−p � 1
μ

< 1.5(1 − δ2�−p) then after a finite number of iterations t∗∥∥∥x − x̂t∗
∥∥∥
2

� c3 ‖e‖2 , (45)

implying that AIHT leads to a stable recovery. The constant c3 is a function of δ2�−p and μ.

In thisworkweextend theabove in severalways: First,we refer to the casewhereoptimalprojection

is not known, and show that the sameflavor guarantees apply for a near-optimal projection. 4 The price

we seemingly have to pay is that σM enters the game. Second, we derive similar results for the AHTP

method. Finally,wealso consider theoptimal step size and showthat the sameperformanceguarantees

hold true in that case.

Theorem 6.5. Consider the problem P and apply either AIHT or AHTP with a constant step size μ or an

optimal changing step size. For a positive constant η > 0, let

b1:= η

1 + η
and b2:= (C� − 1)σ 2

Mb21

C�(1 − δ2�−p)
.

Suppose
b2
b21

= (C�−1)σ 2
M

C�(1−δ2�−p)
< 1, 1 + δ2�−p � 1

μ
<

(
1 +
√
1 − b2

b21

)
b1(1 − δ2�−p) and

1
μ

� σ 2
M. Then

for

t � t∗ �
log

(
η‖e‖2

2

‖y‖2
2

)
log

(
(1 + 1

η
)2( 1

μ(1−δ2�−p)
− 1)C� + (C� − 1)(μσ 2

M − 1) + C�

η2

) , (46)

4 Remark that we even improve the condition of the idealized case in [29] to be δ2�−p � 1
3
instead of δ2�−p � 1

5
.
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∥∥∥x − x̂t
∥∥∥2
2

� (1 + η)2

1 − δ2�−p

‖e‖2
2 , (47)

implying that AIHT and AHTP lead to a stable recovery. Note that for an optimal changing step-size we set

μ = 1
1+δ2�−p

in t∗ and the theorem conditions turn to be
b2
b21

< 1 and 1+ δ2�−p < (1+
√
1 − b2

b21
)b1(1−

δ2�−p).

This theorem is the parallel to Theorems 2.1 in [16] for IHT. A few remarks are in order for the nature

of the theorem, especially in regards to the constant η. One can view that η gives a trade-off between

satisfying the theorem conditions and the amplification of the noise. In particular, one may consider

that the above theorem proves the convergence result for the noiseless case by taking η to infinity;

one can imagine solving the problem P where e → 0, and applying the theorem with appropriately

chosen η which approaches infinity. It is indeed possible to show that the iterate solutions of AIHT and

AHTP converges to x when there is no noise. However, wewill not give a separate proof since the basic

idea of the arguments is the same for both cases.

As to the minimal number of iterations t∗ given in (46), one may ask whether it can be negative. In

order to answer this question it should be noted that according to the conditions of the Theorem the

term inside the log in the denominator (46) is always greater than zero. Thus, t∗ will be negative only

if ‖y‖2
2 < η ‖e‖2

2. Indeed, in this case 0 iterations suffice for having the bound in (47).

The last remark is on the step-size selection. The advantage of the optimal changing step-size over

the constant step-size is thatwe get the guarantee of the optimal constant step-sizeμ = 1
1+δ2�−p

with-

out computing it. This is important since in practice we cannot evaluate the value of δ2�−p. However,

the disadvantage of using the optimal changing step-size is its additional complexity for the algorithm.

Thus, one option is to approximate the optimal selection rule by replacing it with an adaptive one, for

which we do not have a theoretical guarantee. Another option is to set μ = 6/5 which meets the

theorem conditions for small enough δ2�−p, in the case where an optimal projection is at hand.

We will prove the theorem by proving two key lemmas first. The proof technique is based on ideas

from [16] and [29]. Recall that the two iterative algorithms try to reduce the objective
∥∥y − Mx̂t

∥∥2
2 over

iterations t. Thus, the progress of the algorithms can be indirectlymeasured by howmuch the objective∥∥y − Mx̂t
∥∥2
2 is reduced at each iteration t. The two lemmas that we present capture this idea. The first

lemma is similar to Lemma 3 in [29] and relates
∥∥y − Mx̂t

∥∥2
2 to
∥∥∥y − Mx̂t−1

∥∥∥2
2
and similar quantities

at iteration t − 1. We remark that the constraint 1
μ

� σ 2
M in Theorem 6.5 may not be necessary and

is added only for having a simpler derivation of the results in this theorem. Furthermore, this is a very

mild condition compared to 1
μ

<

(
1 +
√
1 − b2

b21

)
b1(1−δ2�−p) and can only limit the range of values

that can be used with the constant step size versions of the algorithms.

Lemma 6.6. Consider the problem P and apply either AIHT or AHTP with a constant step sizeμ satisfying
1
μ

� 1 + δ2�−p or an optimal step size. Then, at the tth iteration, the following holds:

∥∥∥y − Mx̂t
∥∥∥2
2
−
∥∥∥y − Mx̂t−1

∥∥∥2
2

� C�

(
‖y − Mx‖2

2 −
∥∥∥y − Mx̂t−1

∥∥∥2
2

)
(48)

+ C�

(
1

μ(1 − δ2�−p)
− 1

) ∥∥∥M(x − x̂t−1)
∥∥∥2
2
+ (C� − 1)μσ 2

M

∥∥∥y − Mx̂t−1
∥∥∥2
2
.

For the optimal step size the bound is achieved with the value μ = 1
1+δ2�−p

.

The proof of the above lemma appears in Appendix B. The second lemma is built on the result of

Lemma 6.6. It shows that once the objective
∥∥∥y − Mx̂t−1

∥∥∥2
2
at iteration t − 1 is small enough, then we
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are guaranteed to have small
∥∥y − Mx̂t

∥∥2
2 as well. Given the presence of noise, this is quite natural;

one cannot expect it to approach 0 but may expect it not to become worse. Moreover, the lemma also

shows that if
∥∥∥y − Mx̂t−1

∥∥∥2
2
is not small, then the objective in iteration t is necessarily reduced by a

constant factor.

Lemma 6.7. Suppose that the same conditions of Theorem 6.5 hold true. If
∥∥∥y − Mx̂t−1

∥∥∥2
2

� η2 ‖e‖2
2,

then
∥∥y − Mx̂t

∥∥2
2 � η2 ‖e‖2

2. Furthermore, if
∥∥∥y − Mx̂t−1

∥∥∥2
2

> η2 ‖e‖2
2, then∥∥∥y − Mx̂t

∥∥∥2
2

� c4

∥∥∥y − Mxt−1
∥∥∥2
2

(49)

where

c4:=
(
1 + 1

η

)2 (
1

μ(1 − δ2�−p)
− 1

)
C� + (C� − 1)(μσ 2

M − 1) + C�

η2
< 1.

Having the two lemmas above, the proof of the theorem is straightforward.

Proof. (Proof of Theorem 6.5) When we initialize x̂0 = 0, we have
∥∥∥y − Mx̂0

∥∥∥2
2

= ‖y‖2
2. Assuming

that ‖y‖2 > η ‖e‖2 and applying Lemma 6.7 repeatedly, we obtain∥∥∥y − Mx̂t
∥∥∥2
2

� max(ct4 ‖y‖2
2 , η2 ‖e‖2

2).

Since ct4 ‖y‖2
2 � η2 ‖e‖2

2 for t � t∗, we have simply∥∥∥y − Mx̂t
∥∥∥2
2

� η2 ‖e‖2
2 (50)

for t � t∗. If
∥∥∥y − Mx̂0

∥∥∥
2

= ‖y‖2 � η ‖e‖2 then according to Lemma 6.7, (50) holds for every t > 0.

Finally, we observe∥∥∥x − x̂t
∥∥∥2
2

� 1

1 − δ2�−p

∥∥∥M(x − x̂t)
∥∥∥2
2

(51)

and, by the triangle inequality,∥∥∥M(x − x̂t)
∥∥∥
2

�
∥∥∥y − Mx̂t

∥∥∥
2
+ ‖e‖2 . (52)

By plugging (50) into (52) and then the resulted inequality into (51), the result of the Theorem

follows. �

As we have seen, the above AIHT and AHTP results hold for the cases of using a constant or an

optimal changing step size. The advantage of using an optimal one is thatwe do not need to findμ that

satisfies the conditions of the theorem – the knowledge that such a μ exists is enough. However, its

disadvantage is the additional computational complexity it introduces. In Section5wehave introduced

a thirdoptionof using anapproximatedadaptive step size. In thenext sectionwe shall demonstrate this

option in simulations, showing that it leads to the same reconstruction result as the optimal selection

method. Note, however, that our theoretical guarantees do not cover this case.

6.2. ACoSaMP guarantees

Having the results for AIHT and AHTP we turn to ACoSaMP and ASP. We start with a theorem for

ACoSaMP. Its proof is based on the proof for CoSaMP in [6].
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Theorem 6.8. Consider the problem P and apply ACoSaMP with a = 2�−p

�
. Let CŜ = max(C�, C2�−p)

and suppose that there exists γ > 0 such that

(1 + CŜ)

(
1 −
(

CŜ
(1 + γ )2

− (CŜ − 1)σ 2
M

))
< 1. (53)

Then, there exists δACoSaMP(CŜ, σ
2
M, γ ) > 0 such that, whenever δ4�−3p � δACoSaMP(CŜ, σ

2
M, γ ), the tth

iteration of the algorithm satisfies∥∥∥x − x̂t
∥∥∥
2

� ρ1ρ2

∥∥∥x − x̂t−1
∥∥∥
2
+ (η1 + ρ1η2) ‖e‖2 , (54)

where

η1 �

√
2+C�
1+C�

+ 2
√

C� + C�

√
1 + δ3�−2p

1 − δ4�−3p

,

η2
2 �
(
1 + δ3�−2p

γ (1 + α)
+ (1 + δ2�−p)C2�−p

γ (1 + α)(1 + γ )
+ (C2�−p − 1)(1 + γ )σ 2

M

(1 + α)(1 + γ )γ

)
,

ρ2
1 � 1 + 2δ4�−3p

√
C� + C�

1 − δ24�−3p

,

ρ2
2 � 1 −

(√
δ4�−3p −

√
C2�−p

(1 + γ )2

(
1 −
√

δ2�−p

)2 − (C2�−p − 1)(1 + δ2�−p)σ
2
M

)2
and

α =
√

δ4�−3p√
C2�−p

(1+γ )2

(
1 −
√

δ2�−p

)2 − (C2�−p − 1)(1 + δ2�−p)σ
2
M −

√
δ4�−3p

.

Moreover, ρ2
1ρ

2
2 < 1, i.e., the iterates converges.

The constant γ plays a similar role to the constant η of Theorem 6.5. It gives a tradeoff between

satisfying the theoremconditions and thenoise amplification.However, as opposed toη, the conditions
for the noiseless case are achievedwhen γ tends to zero. An immediate corollary of the above theorem

is the following.

Corollary 6.9. Consider the problem P and apply ACoSaMP with a = 2�−p

�
. If (53) holds and δ4�−3p <

δACoSaMP(CŜ, σ
2
M, γ ), where CŜ and γ are as in Theorem 6.8 and δACoSaMP(CŜ, σ

2
M, γ ) is a constant guar-

anteed to be greater than zero whenever (42) is satisfied, then for any

t � t∗ =
⌈
log(‖x‖2 / ‖e‖2)

log(1/ρ1ρ2)

⌉
,

∥∥∥x − x̂t∗
ACoSaMP

∥∥∥
2

�
(
1 + 1 − (ρ1ρ2)

t∗

1 − ρ1ρ2

(η1 + ρ1η2)

)
‖e‖2 , (55)

implying that ACoSaMP leads to a stable recovery. The constants η1, η2, ρ1 and ρ2 are the same as in

Theorem 6.8.
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Proof. By using (54) and recursion we have that∥∥∥x − x̂t∗
ACoSaMP

∥∥∥
2

� (ρ1ρ2)
t∗
∥∥∥x − x̂0

ACoSaMP

∥∥∥
2

(56)

+(1 + ρ1ρ2 + (ρ1ρ2)
2 + · · · + (ρ1ρ2)

t∗−1) (η1 + ρ1η2) ‖e‖2 .

Since x̂0
ACoSaMP = 0, after t∗ iterations, one has

(ρ1ρ2)
t∗
∥∥∥x − x̂0

ACoSaMP

∥∥∥
2

= (ρ1ρ2)
t∗ ‖x‖2 � ‖e‖2 . (57)

By using the equation of geometric series with (56) and plugging (57) into it, we get (55). �

We turn now to prove the theorem. Instead of presenting the proof directly, we divide the proof into

several lemmas. The first lemma gives a bound for ‖x − w‖2 as a function of ‖e‖2 and
∥∥P�̃t (x − w)

∥∥
2
.

Lemma 6.10. Consider the problem P and apply ACoSaMP with a = 2�−p

�
. For each iteration we have

‖x − w‖2 � 1√
1 − δ24�−3p

∥∥P�̃t (x − w)
∥∥
2
+
√
1 + δ3�−2p

1 − δ4�−3p

‖e‖2 . (58)

The second lemma bounds
∥∥x − x̂t

ACoSaMP

∥∥
2 in terms of

∥∥P�̃t (x − x̂t
ACoSaMP)

∥∥
2
and ‖e‖2 using the

first lemma.

Lemma 6.11. Consider the problem P and apply ACoSaMP with a = 2�−p

�
. For each iteration we have∥∥∥x − x̂t

∥∥∥
2

� ρ1

∥∥P�̃t (x − w)
∥∥
2
+ η1 ‖e‖2 , (59)

where η1 and ρ1 are the same constants as in Theorem 6.8.

The last lemma bounds
∥∥P�̃t (x − w)

∥∥
2
with

∥∥∥x − x̂
t−1
ACoSaMP

∥∥∥
2
and ‖e‖2.

Lemma 6.12. Consider the problem P and apply ACoSaMP with a = 2�−p

�
. if

C2�−p <
σ 2
M(1 + γ )2

σ 2
M(1 + γ )2 − 1

, (60)

then there exists δ̃ACoSaMP(C2�−p, σ
2
M, γ ) > 0 such that for any δ2�−p < δ̃ACoSaMP(C2�−p, σ

2
M, γ )∥∥P�̃t (x − w)

∥∥
2

� η2 ‖e‖2 + ρ2

∥∥∥x − x̂t−1
∥∥∥
2
. (61)

The constants η2 and ρ2 are as defined in Theorem 6.8.

The proofs of Lemmas 6.10, 6.11 and 6.12 appear in Appendix D, Appendix E and Appendix F respec-

tively. With the aid of the above three lemmas we turn to prove Theorem 6.8.

Proof. (Proof of Theorem 6.8) Remark that since 1+CŜ > 1we have that (53) implies
CŜ

(1+γ )2
− (CŜ −

1)σ 2
M � 0. Because of that the condition in (60) in Lemma 6.12 holds. Substituting the inequality

of Lemma 6.12 into the inequality of Lemma 6.11 gives (54). The iterates convergence if ρ2
1ρ

2
2 =

1+2δ4�−3p

√
C�+C�

1−δ24�−3p

ρ2
2 < 1. By noticing that ρ2

2 < 1 it is enough to require
1+C�

1−δ24�−3p

ρ2
2 + 2δ4�−3p

√
C�

1−δ24�−3p

< 1.

The last is equivalent to
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(1 + C�)

⎛⎝1 −
(√

δ4�−3p −
√

C2�−p

(1 + γ )2

(
1 −
√

δ2�−p

)2 − (C2�−p − 1)(1 + δ2�−p)σ
2
M

)2⎞⎠
+ 2δ4�−3p

√
C� − 1 + δ24�−3p < 0. (62)

It is easy to verify that ζ(C, δ) � C

(1+γ )2

(
1 − √

δ
)2 − (C − 1)(1 + δ)σ 2

M is a decreasing function of

both δ and C for 0 � δ � 1 and C > 1. Since 1 � C2�−p � CŜ , δ2�−p � δ4�−3p and δ � 0 we have

that ζ(CŜ, δ4�−3p) � ζ(C2�−p, δ4�−3p) � ζ(C2�−p, δ2�−p) � ζ(1, 0) = 1

(1+γ )2
� 1. Thus we have

that−1 � −(
√

δ4�−3p − ζ(C2�−p, δ2�−p))
2 � −δ4�−3p +2

√
δ4�−3p − ζ(CŜ, δ4�−3p). Combining this

with the fact that C� � CŜ provides the following guarantee for ρ2
1ρ

2
2 < 1,

(1 + CŜ)

(
1 − δ4�−3p + 2

√
δ4�−3p − CŜ

(1 + γ )2

(
1 − 2

√
δ4�−3p + δ4�−3p

)
(63)

+(CŜ − 1)(1 + δ4�−3p)σ
2
M

)
+ 2δ4�−3p

√
CŜ − 1 + δ24�−3p < 0.

Let us now assume that δ4�−3p � 1
2
. This necessarily means that δACoSaMP � 1

2
in the end. This

assumption implies δ24�−3p � 1
2
δ4�−3p. Using this and gathering coefficients, we now consider the

condition

(1 + CŜ)

(
1 − CŜ

(1 + γ )2
+ (CŜ − 1)σ 2

M

)
− 1 + 2(1 + CŜ)

(
1 + CŜ

(1 + γ )2

)√
δ4�−3p (64)

+
(
(1 + CŜ)

(
−1 − CŜ

(1 + γ )2
+ (CŜ − 1)σ 2

M

)
+ 2
√
CŜ + 1

2

)
δ4�−3p < 0.

The expression on the LHS is a quadratic function of
√

δ4�−3p. Note that since (53) holds the con-

stant term in the quadratic function is negative. This guarantees the existence of a range of values

[0, δACoSaMP(CŜ, σ
2
M, γ )] for δ4�−3p for which (64) holds, where δACoSaMP(CŜ, σ

2
M, γ ) is the square of

the positive solution of the quadratic function. In case of two positive solutions we should take the

smallest among them – in this case the coefficient of δ4�−3p in (64) will be positive.

Looking back at the proof of the theorem, we observe that the value of the constant δACoSaMP(CŜ,
σ 2
M, γ ) can potentially be improved: at the beginning of the proof, we have used ρ2

2 � 1. By the end,

we obtained ρ2
2 � ρ−2

1 � 0.25 since ρ1 > 2. If wewere to use this bound at the beginning, wewould

have obtained better constant δACoSaMP(CŜ, σ
2
M, γ ). �

6.3. ASP guarantees

Having the result of ACoSaMP we turn to derive a similar result for ASP. The technique for deriving

a result for ASP based on the result of ACoSaMP is similar to the one we used to derive a result for

AHTP from the result of AIHT.

Theorem 6.13. Consider the problem P and apply ASP with a = 2�−p

�
. If (53) holds and δ4�−3p �

δASP(CŜ, σ
2
M, γ ), where CŜ and γ are as in Theorem 6.8, and δASP(CŜ, σ

2
M, γ ) is a constant guaranteed to

be greater than zero whenever (53) is satisfied, then the tth iteration of the algorithm satisfies∥∥∥x − x̂t
ASP

∥∥∥
2

� 1 + δ2�−p

1 − δ2�−p

ρ1ρ2

∥∥∥x − x̂
t−1
ASP

∥∥∥
2
+
(
1 + δ2�−p

1 − δ2�−p

(η1 + ρ1η2) + 2

1 − δ2�−p

)
‖e‖2 .

(65)

and the iterates converges, i.e., ρ2
1ρ

2
2 < 1. The constants η1, η2, ρ1 and ρ2 are the same as in Theorem 6.8.
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Proof. We first note that according to the selection rule of x̂ASP we have that∥∥∥y − Mx̂t
ASP

∥∥∥
2

�
∥∥∥y − MQ

�̂tw
∥∥∥
2
. (66)

Using the triangle inequality and the fact that y = Mx + e for both the LHS and the RHS we have∥∥∥M(x − x̂t
ASP)
∥∥∥
2
− ‖e‖2 �

∥∥∥M(x − Q
�̂tw)

∥∥∥
2
+ ‖e‖2 .

Using the �-RIP ofMwith the fact that x, x̂ASP and Q
�̂tw are �-cosparse we have

∥∥∥x − x̂t
ASP

∥∥∥
2

� 1 + δ2�−p

1 − δ2�−p

∥∥∥x − Q
�̂tw
∥∥∥
2
+ 2

1 − δ2�−p

‖e‖2 .

Noticing that Q
�̂tw is the solution we get in one iteration of ACoSaMP with initialization of x̂

t−1
ASP , we

can combine the above with the result of Theorem 6.8 getting (65). For
1+δ2�−p

1−δ2�−p
ρ1ρ2 < 1 to hold we

need that

1 + 2δ4�−3p

√
C� + C�

(1 − δ4�−3p)2

⎛⎜⎝1 −
⎛⎝⎛⎝
√
C̃2�−p

1 + γ
+ 1

⎞⎠√δ4�−3p −
√
C̃2�−p

1 + γ

⎞⎠2
⎞⎟⎠ < 1. (67)

Remark that the above differs from what we have for ACoSaMP only in the denominator of the first

element in the LHS. In ACoSaMP 1 − δ24�−3p appears instead of (1 − δ4�−3p)
2. Thus, using a similar

process to the one in the proof of ACoSaMP we can show that (67) holds if the following holds

(1 + CŜ)

(
1 − CŜ

(1 + γ )2
+ (CŜ − 1)σ 2

M

)
− 1 + 2(1 + CŜ)

(
1 + CŜ

(1 + γ )2

)√
δ4�−3p

+
(
(1 + CŜ)

(
−1 − CŜ

(1 + γ )2
+ (CŜ − 1)σ 2

M

)
+ 2
√
CŜ + 2

)
δ4�−3p < 0. (68)

Notice that the only difference of the above compared to (64) is that we have +2 instead of +0.5 in

the coefficient of δ4�−3p and this is due to the difference we mentioned before in the denominator in

(67). The LHS of (68) is a quadratic function of
√

δ4�−3p. As before, we notice that if (53) holds then

the constant term of the above is positive and thus δASP(CŜ, σ
2
M, γ ) � 0 exists and is the square of the

positive solution of the quadratic function. �

Having Theorem 6.13 we can immediately have the following corollary which is similar to the one

we have for ACoSaMP. The proof resembles the one of Corollary 6.9 and omitted.

Corollary 6.14. Consider the problem P and apply ASP with a = 2�−p

�
. If (53) holds and δ4�−3p �

δASP(CŜ, σ
2
M, γ ), where CŜ and γ are as in Theorem 6.8, and δASP(CŜ, σ

2
M, γ ) is a constant guaranteed to

be greater than zero whenever (42) is satisfied, then for any

t � t∗ =
⎡⎢⎢⎢⎢⎢

log(‖x‖2 / ‖e‖2)

log

(
1

/
1+δ2�−p

1−δ2�−p
ρ1ρ2

)
⎤⎥⎥⎥⎥⎥ ,

∥∥∥xt
ASP − x

∥∥∥
2

�

⎛⎜⎜⎜⎝1 +
1 −
(

1+δ2�−p

1−δ2�−p
ρ1ρ2

)t
1 − 1+δ2�−p

1−δ2�−p
ρ1ρ2

·
(
1 + δ2�−p

1 − δ2�−p

(η1 + ρ1η2) + 2

1 − δ2�−p

)⎞⎟⎟⎟⎠ ‖e‖2 .

(69)
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implying that ASP leads to a stable recovery. The constants η1, η2, ρ1 and ρ2 are the same as in

Theorem 6.8.

6.4. Non-exact cosparse case

In the above guarantees we have assumed that the signal x is �-cosparse. In many cases, it is not

exactly �-cosparse but only nearly so. Denote by x� = QS∗
� (x)x the best �-cosparse approximation of

x, we have the following theorem that provides us with a guarantee also for this case. Similar result

exists also in the synthesis case for the synthesis-�1 minimization problem [39].

Theorem 6.15. Consider a variation of problem P where x is a general vector, and apply either AIHT or

AHTP both with either constant or changing step size; or ACoSaMP or ASP with a = 2�−p

�
, and all are used

with a zero initialization. Under the same conditions of Theorems 6.2 and 6.3 we have for any t � t∗∥∥x − x̂
∥∥
2 �
∥∥∥x − x�

∥∥∥
2
+ c
∥∥∥M(x − x�)

∥∥∥
2
+ c ‖e‖2 , (70)

where t∗ and c are the constants from Theorems 6.2 and 6.3.

Proof. First we notice that we can rewrite y = Mx� +M(x − x�) + e. Denoting e� = M(x − x�) + e

we can use Theorems 6.2 and 6.3 to recover x� and have∥∥∥x� − x̂
∥∥∥
2

� c
∥∥∥e�
∥∥∥
2
. (71)

Using the triangle inequality for
∥∥x − x̂

∥∥
2 with the above gives∥∥x − x̂

∥∥
2 �
∥∥∥x − x�

∥∥∥
2
+
∥∥∥x� − x̂

∥∥∥
2

�
∥∥∥x − x�

∥∥∥
2
+ c
∥∥∥e�
∥∥∥
2
. (72)

Using again the triangle inequality for
∥∥∥e�
∥∥∥
2

� ‖e‖2 +
∥∥∥M(x − x�)

∥∥∥
2
provides us with the desired

result. �

6.5. Theorem conditions

Having the results of the theorems we ask ourselves whether their conditions are feasible. As we

have seen in Section 3, the requirement on the �-RIP for many non-trivial matrices. In addition, as

we have seen in the introduction of this section we need C� and C2�−p to be one or close to one for

satisfying the conditions of the theorems. Using the thresholding in (25) for cosupport selection with

a unitary � satisfies the conditions in a trivial way since C� = C2�−p = 1. This case coincides with

the synthesis model for which we already have theoretical guarantees. As shown in Section 4, optimal

projection schemes exist for �1D-DIF and �FUS which do not belong to the synthesis framework. For

a general �, a general projection scheme is not known and if the thresholding method is used the

constants in (25) do not equal one and are not even expected to be close to one [27]. It is interesting

to ask whether there exists an efficient general projection scheme that guarantees small constants for

any given operator �, or for specifically structured �. We leave these questions as subject for future

work. Instead, we show empirically in the next section that a weaker projection scheme that does not

fulfill all the requirements of the theorems leads to a good reconstruction result. This suggests that

even in the absence of good near optimal projections we may still use the algorithms practically.

6.6. Comparison to other works

Among the existing theoretical works that studied the performance of analysis algorithms

[18,22,26], the result that resembles ours is the result for �1-analysis in [21]. This work analyzed

the �1-analysis minimization problem with a synthesis perspective. The analysis dictionary � was
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replacedwith the conjugate of a synthesis dictionaryDwhich is assumed to be a tight frame, resulting

with the following minimization problem.

x̂A−�1 = argmin
z

∥∥D∗z
∥∥
1 s.t. ‖y − Mz‖2 � ε. (73)

It was shown that if M has the D-RIP [21,29] with δ7k < 0.6, an extension of the synthesis RIP, then

∥∥x̂A−�1 − x
∥∥
2 � C̃�1ε + ‖D∗x − [D∗x]k‖1√

k
. (74)

We say that a matrixM has a D-RIP with a constant δk if for any signal z that has a k-sparse represen-

tation under D

(1 − δk) ‖z‖2
2 � ‖Mz‖2

2 � (1 + δk) ‖z‖2
2 . (75)

The authors in [21] presented this result as a synthesis result that allows linear dependencies in D at

the cost of limiting the family of signals to be those for which ‖D∗x − [D∗x]k‖1 is small. However,

having the analysis perspective, we can realize that they provided a recovery guarantee for �1-analysis
under the new analysis model for the case that � is a tight frame. An easy way to see it is to observe

that for an �-cosparse signal x, setting k = p − �, we have that
∥∥�x − [�∗x]p−�

∥∥
1

= 0 and thus in

the case ε = 0 we get that (74) guarantees the recovery of x by using (73) with D∗ = �. Thus, though

the result in [21] was presented as a reconstruction guarantee for the synthesis model, it is actually a

guarantee for the analysis model.

Our main difference from [21] is that the proof technique relies on the analysis model and not on

the synthesis one and that the results presented here are for general operators and not only for tight

frames. For instance, the operators�1D-DIF and�FUS forwhich the guarantees hold are not tight frames

where �1D-DIF is not even a frame. However, the drawback of our approached compared to the work

in [21] is that it is still not known how to perform an optimal or a near optimal projection for a tight

frame.

In the non-exact sparse case our results differ from the one in (74) in the sense that it looks at the

projection error and not at the values of �x. It would be interesting to see if there is a connection

between the two and whether one implies the other.

A recent work has studied the �1-analysis minimization with the 2D-DIF operator, also known

as anisotropic two dimensional total-variation (2D-TV) [40]. It would be interesting to see whether

similar results can be achieved for the greedy-like techniques proposed here with 2D-DIF.

7. Experiments

In this section we repeat some of the experiments performed in [18] for the noiseless case (e = 0)

and some of the experiments performed in [23] for the noisy case. 5

7.1. Targeted cosparsity

Just as in the synthesis counterpart of the proposed algorithms, where a target sparsity level k

must be selected before running the algorithms, we have to choose the targeted cosparsity level which

will dictate the projection steps. In the synthesis case it is known that it may be beneficial to over-

estimate the sparsity k. Similarly in the analysis framework the question arises: In terms of recovery

performance, does it help to under-estimate the cosparsity �? A tentative positive answer comes from

the following heuristic: Let �̃ be a subset of the cosupport � of the signal x with �̃:=|�̃| < � = |�|.
According to Proposition 3 in [18]

5 A matlab package with code for the experiments performed in this paper is available as open source software at

http://hal.inria.fr/hal-00716593/en.
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κ�(�̃) � m

2
(76)

is a sufficient condition to identify �̃ in order to recover x from the relations y = Mx and ��̃x =
0. κ�(�̃) = max�̃∈L

�̃
dim(W�̃) is a function of �̃. Therefore, we can replace � with the smallest �̃

that satisfies (76) as the effective cosparsity in the algorithms. Since it is easier to identify a smaller

cosupport set it is better to run the algorithm with the smallest possible value of �̃, in the absence of

noise. In the presence of noise, larger values of � allows a better denoising. Note, that in some cases

the smallest possible value of �̃ will be larger than the actual cosparsity of x. In this case we cannot

replace � with �̃.

We take two examples for selecting �̃. The first is for � which is in general position and the second

is for �2D−DIF , the finite difference analysis operator that computes horizontal and vertical discrete

derivatives of an image which is strongly connected to the total variation (TV) norm minimization as

noted before. For � that is in general position κ�(�̃) = max(d − �, 0) [18]. In this case we choose

�̃ = min

(
d − m

2
, �

)
. (77)

For �DIF we have κ�DIF
(�̃) � d − �

2
−
√

�
2

− 1 [18] and

�̃ = �min((−1/
√

2 + √
2d − m − 1.5)2, �)�. (78)

Replacing � with �̃ is more relevant to AIHT and AHTP than ACoSaMP and ASP since in the last we

intersect cosupport sets and thus the estimated cosupport set need to be large enough to avoid empty

intersections. Thus, for � in general position we use the true cosparsity level for ACoSaMP and ASP.

For �DIF, where linear dependencies occur, the corank does not equal the cosparsity and we use �̃
instead of � since it will be favorable to run the algorithm targeting a cosparsity level in the middle. In

this case � tends to be very large and it is more likely to have non-empty intersections .

7.2. Phase diagrams for synthetic signals in the noiseless case

We begin with synthetic signals in the noiseless case. We test the performance of AIHT with a

constant step-size, AIHT with an adaptive changing step-size, AHTP with a constant step-size, AHTP

with an adaptive changing step-size, ACoSaMP with a = 2�−p

�
, ACoSaMP with a = 1, ASP with

a = 2�−p

�
and ASP with a = 1. We compare the results to those of A-�1-minimization [20] and GAP

[18]. We use a random matrix M and a random tight frame with d = 120 and p = 144, where each

entry in the matrices is drawn independently from the Gaussian distribution.

We draw a phase transition diagram [41] for each of the algorithms. We test 20 different possible

values of m and 20 different values of � and for each pair repeat the experiment 50 times. In each

experiment we check whether we have a perfect reconstruction. White cells in the diagram denotes

a perfect reconstruction in all the experiments of the pair and black cells denotes total failure in the

reconstruction. The values ofm and � are selected according to the following formula:

m = δd � = d − ρm, (79)

where δ, the sampling rate, is the x-axis of the phase diagram and ρ , the ratio between the cosparsity

of the signal and the number of measurements, is the y-axis.

Fig. 2 presents the reconstruction results of the algorithms. It should be observed that AIHT and

AHTP have better performance using the adaptive step-size than using the constant step-size. The

optimal step-size has similar reconstruction result like the adaptive one and thus not presented. For

ACoSaMP and ASP we observe that it is better to use a = 1 instead of a = 2�−p

�
. Compared to each

otherwe see that ACoSaMP andASP achieve better recovery thanAHTP andAIHT. Between the last two,

AHTP is better. Though AIHT has inferior behavior, we should mention that with regards to running
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Fig. 2. Recovery rate for a random tight frame with p = 144 and d = 120. From left to right, up to bottom: AIHT with a constant

step-size, AIHT with an adaptive changing step-size, AHTP with a constant step-size, AHTP with an adaptive changing step-size,

ACoSaMP with a = 2�−p

�
, ACoSaMP with a = 1, ASP with a = 2�−p

�
, ASP with a = 1, A-�1-minimization and GAP.

Fig. 3. Recovery rate for a random tight frame with p = 240 and d = 120 (up) and a finite difference operator (bottom). From left to

right: AIHT and AHTP with an adaptive changing step-size, and ACoSaMP and ASP with a = 1.

time AIHT is the most efficient. Afterwards we have AHTP and then ACoSaMP and ASP. Compared to

�1 and GAP we observe that ACoSaMP and ASP have competitive results.

With the above observations, we turn to test operators with higher redundancy and see the effect

of linear dependencies in them. We test two operators. The first is a random tight frame as before but

with redundancy factor of 2. The second is the two dimensional finite difference operator �2D-DIF.

In Fig. 3 we present the phase diagrams for both operators using AIHT with an adaptive changing
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Fig. 4. From left to right: Shepp Logan phantom image, AIHT reconstruction using 35 radial lines, noisy image with SNR of 20 and

recovered image using RASP and only 22 radial lines. Note that for the noiseless case RASP and RACoSaMP get a perfect reconstruction

using only 15 radial lines.

step-size, AHTP with an adaptive changing step-size, ACoSaMP with a = 1, and ASP with a = 1. As

observed before, also in this case the ACoSaMP and ASP outperform AIHT and AHTP in both cases and

AHTP outperform AIHT. We mention again that the better performance comes at the cost of higher

complexity. In addition, as we expected, having redundancies in � results with a better recovery.

7.3. Reconstruction of high dimensional images in the noisy case

Weturnnow to test themethods for highdimensional signals.WeuseRASP andRACoSaMP (relaxed

versions of ASP andACoSaMPdefined in Section5.4) for the reconstruction of the Shepp-Loganphantom

from few number of measurements. The sampling operator is a two dimensional Fourier transform

that measures only a certain number of radial lines from the Fourier transform. The cosparse operator

is �2D-DIF and the cosparsity used is the actual cosparsity of the signal under this operator (� =
128014). The phantom image is presented in Fig. 4(a) Using the RACoSaMP and RASP we get a perfect

reconstruction using only 15 radial lines, i.e., only m = 3782 measurements out of d = 65536 which

is less then 6 percent of the data in the original image. The algorithms requires less than 20 iterations

for having this perfect recovery. For AIHT and RAHTP we achieve a reconstruction which is only close

to the original image using 35 radial lines. The reconstruction result of AIHT is presented in Fig. 4(b).

The advantage of the AIHT, though it has an inferior performance, over the othermethods is its running

time. While the others need several minutes for each reconstruction, for the AIHT it takes only few

seconds to achieve a visually reasonable result.

Exploring the noisy case, we perform a reconstruction using RASP of a noisy measurement of

the phantom with 22 radial lines and signal to noise ratio (SNR) of 20. Fig. 4(c) presents the noisy

image, the result of applying inverse Fourier transform on the measurements, and Fig. 4(d) presents

its reconstruction result. Note that for the minimization process we solve conjugate gradients, in each

iteration and take only the real part of the result and crop the values of the resulted image to be in the

range of [0, 1]. We get a peak SNR (PSNR) of 36 dB. We get similar results using RACoSaMP but using

more radial lines (25).

8. Discussion and conclusion

In thisworkwepresented newpursuits for the cosparse analysismodel. A theoretical study of these

algorithms was performed giving guarantees for stable recovery under the assumptions of the �-RIP

and the existence of anoptimal or a near optimal projection.We showed that optimal projections exists

for some non-trivial operators, i.e., operators that do not take us back to the synthesis case. In addition,

we showed experimentally that using simpler kind of projections is possible in order to get good

reconstruction results. We demonstrated both in the theoretical and the empirical results that linear

dependencies within the analysis dictionary are favorable and enhance the recovery performance.

We are aware that there are still some open questions in this work and we leave them for future

research. This should deal with following:
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• Our work assumed the existence of a procedure that finds a cosupport that implies a near optimal

projection with a constant C�. Two examples for optimal cosupport selection schemes were given.

However, the existence of an optimal or a near optimal scheme for a general operator is still an open

question. The question is: for which types of � and values of C� we can find an efficient procedure

that implies a near optimal projection.
• As we have seen in the simulations, the thresholding procedure, though not near optimal with

the theorems required constants, provides good reconstruction results. A theoretical study of the

analysis greedy-like techniques with this cosupport selection scheme is required.
• A family of analysis dictionaries that deserves a special attention is the family of tight frame oper-

ators. In synthesis, there is a parallel between the guarantees of �1-synthesis and the greedy like

algorithms. The fact that a guarantee with a tight frame � exists for �1-analysis encourage us to

believe that similar guarantees exist also for the analysis greedy-like techniques.
• In this paper, the noise e was considered to be adversarial. Random white Gaussian case was

considered for the synthesis case in [15] resulting with near-oracle performance guarantees. It

would be interesting to verify whether this is also the case for the analysis framework.
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Appendix A. Proofs of Theorem 3.7 and Theorem 3.8

Theorem 3.7 (Theorem 3.3 in [29]). LetM ∈ R
m×d be a randommatrix that satisfies that for any z ∈ R

d

and 0 < ε̃ � 1
3

P
(∣∣∣‖Mz‖2

2 − ‖z‖2
2

∣∣∣ � ε̃ ‖z‖2
2

)
� e−

CMmε̃
2 ,

where CM > 0 is a constant. For any value of εr > 0, if

m � 32

CMε2
r

(
log(
∣∣∣Lcorank

r

∣∣∣) + (d − r) log(9/εr) + t
)
,

then δcorankr � εr with probability exceeding 1 − e−t .

Theorem 3.8. Under the same setup of Theorem 3.7, for any ε� > 0 if

m � 32

CMε2
�

(
(p − �) log

(
9p

(p − �)ε�

)
+ t

)
,

then δ� � ε� with probability exceeding 1 − e−t .

Proof. Let ε̃ = εr/4, B
d−r = {z ∈ R

d−r, ‖z‖2 � 1} and � an ε̃-net for Bd−r with size |�| �(
1 + 2

ε̃

)d−r
[30]. For any subspaceWB

� = W�∩Bd−r such that� ∈ Lcorank
r wecanbuild an orthogonal

matrix U� ∈ R
d×(d−r) such that WB

� = {U�z, z ∈ R
d−r, ‖z‖2 � 1} = U�Bd−r . It is easy to see
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that �� = U��d−r is an ε̃-net forWB
� and that �Acorank

r
= ∪�∈Lcorank

r
�� is an ε̃-net for Acorank

r ∩ Bd,

where
∣∣∣�Acorank

r

∣∣∣ � ∣∣∣Lcorank
r

∣∣∣ (1 + 2
ε̃
)d−r .

We could stop here and use directly Theorem 2.1 from [30] to get the desired result for

Theorem 3.7. However, we present the remaining of the proof using a proof technique from [32,8].

Using union bound and the properties ofMwe have that with probability exceeding 1−
∣∣∣Lcorank

r

∣∣∣ (1+
2
ε̃
)d−re−

CMmε̃2

2 every v ∈ �Acorank
r

satisfies

(1 − ε̃) ‖v‖2
2 � ‖Mv‖2

2 � (1 + ε̃) ‖v‖2
2 . (A.1)

According to the definition of δcorankr it holds that
√
1 + δcorankr = supv∈Acorank

r ∩Bd ‖Mv‖2. Since

Acorank
r ∩ Bd is a compact set there exists v0 ∈ Acorank

r ∩ Bd that achieves the supremum. Denot-

ing by ṽ its closest vector in �Acorank
r

and using the definition of �Acorank
r

we have ‖v0 − ṽ‖2 � ε̃. This

yields√
1 + δcorankr = ‖Mv0‖2 � ‖Mṽ‖2 + ‖M(v0 − ṽ)‖2 (A.2)

�
√

1 + ε̃ +
∥∥∥∥∥M v0 − ṽ

‖v0 − ṽ‖ 2

∥∥∥∥∥
2

‖v0 − ṽ‖2

�
√

1 + ε̃ +
√
1 + δcorankr ε̃.

The first inequality is due to the triangle inequality; the second one follows from (A.1) and arithmetics;

and the last inequality follows from the definition of δcorankr , the properties of ε̃-net and the fact that∥∥∥ v0−ṽ
‖v0−ṽ‖2

∥∥∥
2

= 1. Reordering (A.2) gives

1 + δcorankr � 1 + ε̃

(1 − ε̃)2
� 1 + 4ε̃ = 1 + εr . (A.3)

where the inequality holds because εr ≤ 0.5 and ε̃ = εr
4

� 1
8
. Since we want (A.3) to hold with

probability greater than 1 − e−t it remains to require
∣∣∣Lcorank

r

∣∣∣ (1 + 8
εr

)d−re−
CMmε2r

32 � e−t . Using the

fact that (1+ 8
εr

) � 9
εr

and some arithmetics we get (20) and this completes the proof of the theorem.

We turn now to the proof of Theorem 3.8. Its proof is almost identical to the previous proof but

with the difference that instead of r, Lcorank
r and δcorankr we look at �, L� and δ�. In this case we do

not know what is the dimension of the subspace that each cosupport implies. However, we can have

a lower bound on it using p − �. Therefore, we use Bp−� instead of Bd−r . This change provides us with

a condition similar to (20) but with p − � in the second coefficient instead of d − r. By using some

arithmetics, noticing that the size of L� is
(
p

�

)
and using Stirling’s formula for upper bounding it we

get (21) and this completes the proof. �

Appendix B. Proof of Lemma 6.6

Lemma 6.6. Consider the problem P and apply either AIHT or AHTP with a constant step size μ satisfying
1
μ

� 1 + δ2�−p or an optimal step size. Then, at the tth iteration, the following holds:

∥∥∥y − Mx̂t
∥∥∥2
2
−
∥∥∥y − Mx̂t−1

∥∥∥2
2

� C�

(
‖y − Mx‖2

2 −
∥∥∥y − Mx̂t−1

∥∥∥2
2

)
(B.1)

+ C�

(
1

μ(1 − δ2�−p)
− 1

) ∥∥∥M(x − x̂t−1)
∥∥∥2
2

+ (C� − 1)μσ 2
M

∥∥∥y − Mx̂t−1
∥∥∥2
2
.
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For the optimal step size the bound is achieved with the value μ = 1
1+δ2�−p

.

Proof. We consider the AIHT algorithm first. We take similar steps to those taken in the proof of

Lemma 3 in [29]. Since 1
μ

� 1 + δ2�−p, we have, from the �-RIP ofM,∥∥∥M(x̂t − x̂t−1)
∥∥∥2
2

� 1

μ

∥∥∥x̂t − x̂t−1
∥∥∥2
2
.

Thus, ∥∥∥y − Mx̂t
∥∥∥2
2
−
∥∥∥y − Mx̂t−1

∥∥∥2
2

= −2〈M(x̂t − x̂t−1), y − Mx̂t−1〉 +
∥∥∥M(x̂t − x̂t−1)

∥∥∥2
2

� −2〈M(x̂t − x̂t−1), y − Mx̂t−1〉 + 1

μ

∥∥∥x̂t − x̂t−1
∥∥∥2
2

= −2〈x̂t − x̂t−1,M∗(y − Mx̂t−1)〉 + 1

μ

∥∥∥x̂t − x̂t−1
∥∥∥2
2

= −μ
∥∥∥M∗(y−Mx̂t−1)

∥∥∥2
2
+ 1

μ

∥∥∥x̂t−x̂t−1−μM∗(y − Mx̂t−1)
∥∥∥2
2
.

Note that by definition, x̂t = QŜ�

(
x̂t−1 + μM∗(y − Mx̂t−1)

)
. Hence, by the C�-near optimality of the

projection, we get∥∥∥y − Mx̂t
∥∥∥2
2
−
∥∥∥y−Mx̂t−1

∥∥∥2
2

� −μ
∥∥∥M∗(y−Mx̂t−1)

∥∥∥2
2
+C�

μ

∥∥∥x−x̂t−1 − μM∗(y−Mx̂t−1)
∥∥∥2
2
.

(B.2)

Now note that∥∥∥x − x̂t−1 − μM∗(y − Mx̂t−1)
∥∥∥2
2

=
∥∥∥x − x̂t−1

∥∥∥2
2
− 2μ〈M(x − x̂t−1), y − Mx̂t−1〉 + μ2

∥∥∥M∗(y − Mx̂t−1)
∥∥∥2
2

� 1

1 − δ2�−p

∥∥∥M(x − x̂t−1)
∥∥∥2
2
− 2μ〈M(x − x̂t−1), y − Mx̂t−1〉 + μ2

∥∥∥M∗(y − Mx̂t−1)
∥∥∥2
2

= 1

1 − δ2�−p

∥∥∥M(x − x̂t−1)
∥∥∥2
2
+ μ

(
‖y − Mx‖2

2 −
∥∥∥y − Mx̂t−1

∥∥∥2
2
−
∥∥∥M(x − x̂t−1)

∥∥∥2
2

)
+ μ2

∥∥∥M∗(y − Mx̂t−1)
∥∥∥2
2
.

Putting this into (B.2), we obtain the desired result for the AIHT algorithm.

We can check that the same holds true for the AHTP algorithm as follows: suppose that x̂
t−1
AHTP is the

(t−1)st estimate from the AHTP algorithm. If we now initialize the AIHT algorithmwith this estimate

and obtain the next estimate x̂t ˜AIHT
, then the inequality of the lemma holds true with x̂t ˜AIHT

and x̂
t−1
AHTP

in place of x̂t and x̂t−1 respectively. On the other hand, from the algorithm description, we know that

the tth estimate x̂t
AHTP of the AHTP satisfies∥∥∥y − Mx̂t

AHTP

∥∥∥2
2

�
∥∥∥y − Mx̂t ˜AIHT

∥∥∥2
2
.

This means that the result holds for the AHTP algorithm as well.

Usinga similar argument for theoptimal changing step sizewenote that it selects the cosupport that

minimizes
∥∥Mx − Mx̂t

∥∥2
2. Thus, for AIHT andAHTPwehave that

∥∥∥Mx − Mx̂t
Opt

∥∥∥2
2

�
∥∥∥Mx − Mx̂t

μ

∥∥∥2
2
for

any value of μ, where x̂t
Opt and x̂t

μ are the recovery results of AIHT or AHTP with an optimal changing
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step-size and a constant step-size μ respectively. This yields that any theoretical result for a constant

step-size selection with a constant μ holds true also to the optimal changing-step size selection. In

particular this is true also for μ = 1
1+δ2�−p

. This choice is justified in the proof of Lemma 6.7. �

Appendix C. Proof of Lemma 6.7

Lemma 6.7. Suppose that the same conditions of Theorem 6.5 hold true. If
∥∥∥y − Mx̂t−1

∥∥∥2
2

� η2 ‖e‖2
2,

then
∥∥y − Mx̂t

∥∥2
2 � η2 ‖e‖2

2. Furthermore, if
∥∥∥y − Mx̂t−1

∥∥∥2
2

> η2 ‖e‖2
2, then∥∥∥y − Mx̂t

∥∥∥2
2

� c4

∥∥∥y − Mx̂t−1
∥∥∥2
2

where

c4:=
(
1 + 1

η

)2 (
1

μ(1 − δ2�−p)
− 1

)
C� + (C� − 1)(μσ 2

M − 1) + C�

η2
< 1.

Proof. First, suppose that
∥∥∥y − Mx̂t−1

∥∥∥2
2

> η2 ‖e‖2
2. From Lemma 6.6, we have

∥∥∥y − Mx̂t
∥∥∥2
2
� C� ‖y − Mx‖2

2 + (C� − 1)(μσ 2
M − 1)

∥∥∥y − Mx̂t−1
∥∥∥2
2

(C.1)

+C�

(
1

μ(1 − δ2�−p)
− 1

) ∥∥∥M(x − x̂t−1)
∥∥∥2
2
.

Remark that all the coefficients in the above are positive because 1 + δ2�−p � 1
μ

� σ 2
M and C� � 1.

Since y − Mx = e, we note

‖y − Mx‖2
2 <

1

η2

∥∥∥y − Mx̂t−1
∥∥∥2
2

and, by the triangle inequality,∥∥∥M(x − x̂t−1)
∥∥∥
2

� ‖y − Mx‖2 +
∥∥∥y − Mx̂t−1

∥∥∥
2

<

(
1 + 1

η

) ∥∥∥y − Mx̂t−1
∥∥∥
2
.

Therefore, from (C.1),∥∥∥y − Mx̂t
∥∥∥2
2

< c4

∥∥∥y − Mx̂t−1
∥∥∥2
2
.

This is the second part of the lemma.

Now, suppose that
∥∥∥y − Mx̂t−1

∥∥∥2
2

� η2 ‖e‖2
2. This time we have∥∥∥M(x − x̂t−1)

∥∥∥
2

� ‖y − Mx‖2 +
∥∥∥y − Mx̂t−1

∥∥∥
2

� (1 + η) ‖e‖2 .

Applying this to (C.1), we obtain∥∥∥y − Mx̂t
∥∥∥2
2

� C� ‖e‖2
2 + (C� − 1)(μσ 2

M − 1)η2 ‖e‖2
2

+C�

(
1

μ(1 − δ2�−p)
− 1

)
(1 + η)2 ‖e‖2

2

=
(
C� + (C� − 1)(μσ 2

M − 1)η2 + C�

(
1

μ(1 − δ2�−p)
− 1

)
(1 + η)2

)
‖e‖2

2

= c4η
2 ‖e‖2

2 .

Thus, the proof is complete as soon as we show c4 < 1, or c4 − 1 < 0.
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To see c4 − 1 < 0, we first note that it is equivalent to–all the subscripts are dropped from here on

for simplicity of notation–

1

μ2
− 2(1 − δ)

1 + 1
η

1

μ
+ (C − 1)σ 2(1 − δ)

C
(
1 + 1

η

)2 < 0,

or
1

μ2
− 2(1 − δ)b1

1

μ
+ (1 − δ)2b2 < 0.

Solving this quadratic equation in 1
μ
, we want

(1 − δ)

(
b1 −

√
b21 − b2

)
<

1

μ
< (1 − δ)

(
b1 +

√
b21 − b2

)
.

Such μ exists only when
b2
b21

< 1. Furthermore, we have already assumed 1 + δ � 1
μ

and we know

(1 − δ)

(
b1 −

√
b21 − b2

)
< 1 + δ, and hence the condition we require is

1 + δ � 1

μ
< (1 − δ)

(
b1 +

√
b21 − b2

)
, (C.2)

which is what we desired to prove.

For a changing optimal step-size selection, in a similar way to what we have in Lemma 6.6, (49)

holds for any value of μ that satisfies the conditions in (C.2). Thus, in the bound of changing optimal

step-size we put a value of μ that minimizes c4. This minimization result with 1
μ

= √
b2(1 − δ2�−p).

However, since we need 1
μ

� 1+ δ2�−p and have that
√

b2(1− δ2�−p) < b1(1− δ2�−p) < 1+ δ2�−p

we set 1
μ

= 1 + δ2�−p in c4 for the bound in optimal changing step-size case. �

Appendix D. Proof of Lemma 6.10

Lemma 6.10. Consider the problem P and apply ACoSaMP with a = 2�−p

�
. For each iteration we have

‖x − w‖2 � 1√
1 − δ24�−3p

∥∥P�̃t (x − w)
∥∥
2
+
√
1 + δ3�−2p

1 − δ4�−3p

‖e‖2 .

Proof. Since w is the minimizer of ‖y − Mv‖2
2 with the constraint ��̃tv = 0, then

〈Mw − y,Mu〉 = 0, (D.1)

for any vector u such that ��̃tu = 0. Substituting y = Mx + e and moving terms from the LHS to the

RHS gives

〈w − x,M∗Mu〉 = 〈e,Mu〉, (D.2)

where u is a vector satisfying ��̃tu = 0. Turning to look at
∥∥Q�̃t (x − w)

∥∥2
2
and using (D.2) with

u = Q�̃t (x − w), we have∥∥Q�̃t (x − w)
∥∥2
2

= 〈x − w,Q�̃t (x − w)〉 (D.3)

= 〈x − w, (I − M∗M)Q�̃t (x − w)〉 − 〈e,MQ�̃t (x − w)〉
� ‖x − w‖2

∥∥Q�∩�̃t (I−M∗M)Q�̃t

∥∥
2

∥∥Q�̃t (x−w)
∥∥
2
+‖e‖2

∥∥MQ�̃t (x−w)
∥∥
2

� δ4�−3p ‖x − w‖2

∥∥Q�̃t (x − w)
∥∥
2
+ ‖e‖2

√
1 + δ3�−2p

∥∥Q�̃t (x − w)
∥∥
2
.
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where the first inequality follows from the Cauchy–Schwartz inequality, the projection property that

Q�̃t = Q�̃tQ�̃t and the fact that x − w = Q�∩�̃t (x − w). The last inequality is due to the �-RIP

properties, Corollary 3.6 and that according to Table 1 |�̃t| � 3� − 2p and |� ∩ �̃t| � 4� − 3p. After

simplification of (D.3) by
∥∥Q�̃t (x − w)

∥∥
2
we have

∥∥Q�̃t (x − w)
∥∥
2

� δ4�−3p ‖x − w‖2 +
√
1 + δ3�−2p ‖e‖2 .

Utilizing the last inequality with the fact that ‖x − w‖2
2 = ∥∥P�̃t (x − w)

∥∥2
2
+ ∥∥Q�̃t (x − w)

∥∥2
2
gives

‖x − w‖2
2 �
∥∥P�̃t (x − w)

∥∥2
2
+
(
δ4�−3p ‖x − w‖2 +

√
1 + δ3�−2p ‖e‖2

)2
. (D.4)

By moving all terms to the LHS we get a quadratic function of ‖x − w‖2. Thus, ‖x − w‖2 is bounded

fromaboveby the larger root of that function; thiswith a fewsimple algebraic steps gives the inequality

in (58). �

Appendix E. Proof of Lemma 6.11

Lemma 6.11. Consider the problem P and apply ACoSaMP with a = 2�−p

�
. For each iteration we have

∥∥∥x − x̂t
∥∥∥
2

� ρ1

∥∥P�̃t (x − w)
∥∥
2
+ η1 ‖e‖2 ,

where η1 and ρ1 are the same constants as in Theorem 6.8.

Proof. We start with the following observation

∥∥∥x − x̂t
∥∥∥2
2

=
∥∥∥x − w + w − x̂t

∥∥∥2
2

= ‖x − w‖2
2 +
∥∥∥x̂t − w

∥∥∥2
2
+ 2(x − w)∗(w − x̂t), (E.1)

and turn to bound the second and last terms in the RHS. For the second term, using the fact that

x̂t = QŜ�(w)w with (24) gives

∥∥∥x̂t − w
∥∥∥2
2

� C� ‖x − w‖2
2 . (E.2)

For bounding the last term,we look at its absolute value anduse (D.2)withu = w−x̂t = Q�̃t (w−x̂t).
This leads to∣∣∣(x − w)∗(w − x̂t)

∣∣∣ = ∣∣∣(x − w)∗(I − M∗M)(w − x̂t) − e∗M(w − x̂t)
∣∣∣ .

By using the triangle and Cauchy–Schwartz inequalities with the fact that x − w = Q�∩�̃t (x − w)

andw − x̂t = Q�̃t (w − x̂t) we have∣∣∣(x − w)∗(w − x̂t)
∣∣∣ � ‖x − w‖2

∥∥Q�∩�̃t (I − M∗M)Q�̃t

∥∥
2

∥∥∥w − x̂t
∥∥∥
2

(E.3)

+‖e‖2

∥∥∥M(w − x̂t)
∥∥∥
2

� δ4�−3p ‖x − w‖2

∥∥∥w − x̂t
∥∥∥
2
+
√
1 + δ3�−2p ‖e‖2

∥∥∥w − x̂t
∥∥∥
2
,

where the last inequality is due to the �-RIP definition and Corollary 3.6.
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By substituting (E.2) and (E.3) into (E.1) we have∥∥∥x − x̂t
∥∥∥2
2

� (1 + C�) ‖x − w‖2
2 + 2δ4�−3p

√
C� ‖x − w‖2

2 (E.4)

+ 2
√
1 + δ3�−2p

√
C� ‖e‖2 ‖x − w‖2

�
(
(1 + 2δ4�−3p

√
C� + C�) ‖x − w‖2 + 2

√
(1 + δ3�−2p)C� ‖e‖2

)
‖x − w‖2

� 1 + 2δ4�−3p

√
C� + C�

1 − δ24�−3p

∥∥P�̃t (x − w)
∥∥2
2

+ 2
√
1 + δ3�−2p(1 + (1 + δ4�−3p)

√
C� + C�)

(1 − δ4�−3p)
√
1 − δ24�−3p

∥∥P�̃t (x − w)
∥∥
2
‖e‖2

+ (1 + δ3�−2p)(1 + 2
√

C� + C�)

(1 − δ4�−3p)2
‖e‖2

2

�
⎛⎝
√
1 + 2δ4�−3p

√
C� + C�√

1 − δ24�−3p

∥∥P�̃t (x − w)
∥∥
2

√
2+C�
1+C�

+ 2
√

C� + C�

√
1 + δ3�−2p

1 − δ4�−3p

‖e‖2

⎞⎟⎠
2

,

where for the second inequality we use the fact that δ4�−3p � 1 combined with the inequality of

Lemma 6.10, and for the last inequality we use the fact that (1 + (1 + δ4�−3p)
√

C� + C�)
2 � (1 +

2δ4�−3p

√
C� + C�)(

2+C�
1+C�

+ 2
√

C� + C�) together with a few algebraic steps. Taking square-root on

both sides of (E.4) provides the desired result. �

Appendix F. Proof of Lemma 6.12

Lemma 6.12. Consider the problem P and apply ACoSaMP with a = 2�−p

�
. if

C2�−p <
σ 2
M(1 + γ )2

σ 2
M(1 + γ )2 − 1

,

then there exists δ̃ACoSaMP(C2�−p, σ
2
M, γ ) > 0 such that for any δ2�−p < δ̃ACoSaMP(C2�−p, σ

2
M, γ )∥∥P�̃t (x − w)

∥∥
2

� η2 ‖e‖2 + ρ2

∥∥∥x − x̂t−1
∥∥∥
2
.

The constants η2 and ρ2 are as defined in Theorem 6.8.

In the proof of the lemma we use the following Proposition.

Proposition E.1. For any two given vectors x1, x2 and any constant c > 0 it holds that

‖x1 + x2‖2
2 � (1 + c) ‖x1‖2

2 +
(
1 + 1

c

)
‖x2‖2 . (F.1)

The proof of the proposition is immediate using the inequality of arithmetic and geometric means.

We turn to the proof of the lemma.
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Proof. Looking at the step of finding new cosupport elements one can observe that Q�	
is a near

optimal projection forM∗yt−1
resid = M∗(y −Mx̂t−1) with a constant C2�−p. The fact that

∣∣∣�̂t−1 ∩ �
∣∣∣ �

2� − p combined with (24) gives∥∥∥(I − Q�	
)M∗(y − Mx̂t−1)

∥∥∥2
2

� C2�−p

∥∥∥(I − Q
�̂t−1∩�

)M∗(y − Mx̂t−1)
∥∥∥2
2
.

Using simple projection properties and the fact that �̃t ⊆ �	 with z = M∗(y − Mx̂t−1) we have∥∥Q�̃t z
∥∥2
2

�
∥∥Q�	

z
∥∥2
2 = ‖z‖2

2 − ∥∥(I − Q�	
)z
∥∥2
2 � ‖z‖2

2 − C2�−p

∥∥∥(I − Q
�̂t−1∩�

)z
∥∥∥2
2

(F.2)

= ‖z‖2
2 − C2�−p

(
‖z‖2

2 −
∥∥∥Q

�̂t−1∩�
z
∥∥∥2
2

)
=C2�−p

∥∥∥Q
�̂t−1∩�

z
∥∥∥2
2
− (C2�−p−1) ‖z‖2

2 .

We turn to bound the LHS of (F.2) from above. Noticing that y = Mx + e and using (F.1) with a

constant γ1 > 0 gives

∥∥∥Q�̃tM
∗(y − Mx̂t−1)

∥∥∥2
2

�
(
1 + 1

γ1

) ∥∥Q�̃tM
∗e
∥∥2
2
+ (1 + γ1)

∥∥∥Q�̃tM
∗M(x − x̂t−1)

∥∥∥2
2
. (F.3)

Using (F.1) again, now with a constant α > 0, we have∥∥∥Q�̃tM
∗M(x − x̂t−1)

∥∥∥2
2

� (1 + α)
∥∥∥Q�̃t (x − x̂t−1)

∥∥∥2
2

(F.4)

+
(
1 + 1

α

) ∥∥∥Q�̃t (I − M∗M)(x − x̂t−1)
∥∥∥2
2

� (1 + α)
∥∥∥x − x̂t−1

∥∥∥2
2
− (1 + α)

∥∥∥P�̃t (x − x̂t−1)
∥∥∥2
2

+
(
1 + 1

α

) ∥∥∥Q�̃t (I − M∗M)(x − x̂t−1)
∥∥∥2
2
.

Putting (F.4) into (F.3) and using (18) and Corollary 3.3 gives∥∥∥Q�̃tM
∗(y − Mx̂t−1)

∥∥∥2
2

� (1 + γ1)(1 + δ3�−2p)

γ1

‖e‖2
2 (F.5)

−(1 + α)(1 + γ1)
∥∥∥P�̃t (x − x̂t−1)

∥∥∥2
2

+
(
1 + α + δ4�−3p + δ4�−3p

α

)
(1 + γ1)

∥∥∥x − x̂t−1
∥∥∥2
2
.

We continue with bounding the RHS of (F.2) from below. For the first element of the RHS we use

an altered version of (F.1) with a constant γ2 > 0 and have∥∥∥Q
�̂t−1∩�

M∗(y − Mx̂t−1)
∥∥∥2
2

� 1

1 + γ2

∥∥∥Q
�̂t−1∩�

M∗M(x − x̂t−1)
∥∥∥2
2

(F.6)

− 1

γ2

∥∥∥Q
�̂t−1∩�

M∗e
∥∥∥2
2
.

Using the altered form again, for the first element in the RHS of (F.6), with a constant β > 0 gives∥∥∥Q
�̂t−1∩�

M∗M(x − x̂t−1)
∥∥∥2
2

� 1

1 + β

∥∥∥x − x̂t−1
∥∥∥2
2

(F.7)

− 1

β

∥∥∥Q
�̂t−1∩�

(M∗M − I)(x − x̂t−1)
∥∥∥2
2
.
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Putting (F.7) in (F.6) and using the RIP properties and (18) provide

∥∥∥Q
�̂t−1∩�

M∗(y − Mx̂t−1)
∥∥∥2
2

�
(

1

1 + β
− δ2�−p

β

)
1

1 + γ2

∥∥∥x − x̂t−1
∥∥∥2
2

(F.8)

− (1 + δ2�−p)

γ2

‖e‖2
2 .

Using (F.1), with a constant γ3 > 0, (9), and some basic algebraic stepswe have for the second element

in the RHS of (F.2)

∥∥∥M∗(y − Mx̂t−1)
∥∥∥2
2
� (1 + γ3)

∥∥∥M∗M(x − x̂t−1)
∥∥∥2
2
+
(
1 + 1

γ3

) ∥∥M∗e
∥∥2
2 (F.9)

� (1 + γ3)(1 + δ2�−p)σ
2
M

∥∥∥(x − x̂t−1)
∥∥∥2
2
+
(
1 + 1

γ3

)
σ 2
M ‖e‖2

2 .

By combining (F.5), (F.8) and (F.9) with (F.2) we have

(1 + α)(1 + γ1)
∥∥∥P�̃t (x − x̂t−1)

∥∥∥2
2

(F.10)

� (1 + γ1)(1 + δ3�−2p)

γ1

‖e‖2
2

+ C2�−p

(1 + δ2�−p)

γ2

‖e‖2
2 + (C2�−p − 1)

(
1 + 1

γ3

)
σ 2
M ‖e‖2

2

+
(
1 + α + δ4�−3p + δ4�−3p

α

)
(1 + γ1)

∥∥∥x − x̂t−1
∥∥∥2
2

+ (C2�−p − 1)(1 + γ3)(1 + δ2�−p)σ
2
M

∥∥∥(x − x̂t−1)
∥∥∥2
2

− C2�−p

(
1

1 + β
− δ2�−p

β

)
1

1 + γ2

∥∥∥x − x̂t−1
∥∥∥2
2
.

Dividing both sides by (1 + α)(1 + γ1) and gathering coefficients give

∥∥∥P�̃t (x − x̂t−1)
∥∥∥2
2

�
(
1 + δ3�−2p

γ1(1 + α)
+ (1 + δ2�−p)C2�−p

γ2(1 + α)(1 + γ1)
(F.11)

+ (C2�−p − 1)(1 + γ3)σ
2
M

(1 + α)(1 + γ1)γ3

)
‖e‖2

2

+
(
1 + δ4�−3p

α
+ (C2�−p − 1)(1 + γ3)(1 + δ2�−p)σ

2
M

(1 + α)(1 + γ1)

− C2�−p

(1 + α)(1 + γ1)(1 + γ2)

(
1

1 + β
− δ2�−p

β

)) ∥∥∥x − x̂t−1
∥∥∥2
2
.

The smaller the coefficient of
∥∥∥x − x̂t−1

∥∥∥2
2
, the better convergence guarantee we obtain. Thus, we

choose β =
√

δ2�−p

1−√
δ2�−p

and α =
√

δ4�−3p√
C2�−p

(1+γ1)(1+γ2)

(
1−√

δ2�−p

)2− (C2�−p−1)(1+γ3)(1+δ2�−p)σ2
M

1+γ1
−√

δ4�−3p

so that the

coefficient is minimized. The values of γ1, γ2, γ3 provide a tradeoff between the convergence rate

and the size of the noise coefficient. For smaller values we get better convergence rate but higher
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amplification of the noise. We make no optimization on their values and choose them to be γ1 =
γ2 = γ3 = γ for an appropriate γ > 0. Thus, the above yields∥∥∥P�̃t (x − x̂t−1)

∥∥∥2
2

(F.12)

�
(
1 + δ3�−2p

γ (1 + α)
+ (1 + δ2�−p)C2�−p

γ (1 + α)(1 + γ )
+ (C2�−p − 1)(1 + γ )σ 2

M

(1 + α)(1 + γ )γ

)
‖e‖2

2

+
⎛⎝1 −

(√
δ4�−3p −

√
C2�−p

(1 + γ )2

(
1 −
√

δ2�−p

)2 − (C2�−p − 1)(1 + δ2�−p)σ
2
M

)2⎞⎠
×
∥∥∥x − x̂t−1

∥∥∥2
2
.

Since P�̃tw = P�̃t x̂
t−1 = 0 the above inequality holds also for

∥∥∥P�̃t (x − x̂t−1)
∥∥∥2
2
. Inequality (61)

follows since the right-hand side of (F.12) is smaller than the square of the right-hand side of (61).

Before ending the proof, we notice that ρ2, the coefficient of
∥∥∥x − x̂t−1

∥∥∥2
2
is defined only when

(C2�−p − 1)(1 + δ2�−p)σ
2
M � C2�−p

(1 + γ )2

(
1 −
√

δ2�−p

)2
. (F.13)

First we notice that since 1 + δ2�−p �
(
1 −
√

δ2�−p

)2
a necessary condition for (F.13) to hold is

(C2�−p − 1)σ 2
M <

C2�−p

(1+γ )2
which is equivalent to (60). By moving the terms in the RHS to the LHS we

get a quadratic function of
√

δ2�−p. The condition in (60) guarantees that its constant term is smaller

than zero and thus there exists a positive δ2�−p for which the function is smaller than zero. Therefore,

for any δ2�−p < δ̃ACoSaMP(C2�−p, σ
2
M, γ ) (F.13) holds, where δ̃ACoSaMP(C2�−p, σ

2
M, γ ) > 0 is the square

of the positive solution of the quadratic function. �
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