The Analysis (Co-)Sparse Model*

Origin, Definition, Pursuit, Dictionary-Learning and Beyond

Michael Elad

The Computer Science Department
The Technion – Israel Institute of technology
Haifa 32000, Israel

MS67: Sparse and Redundant Representations for Image Reconstruction and Geometry Extraction Sunday May 20 4:30PM – 6:30PM

*Joint work with

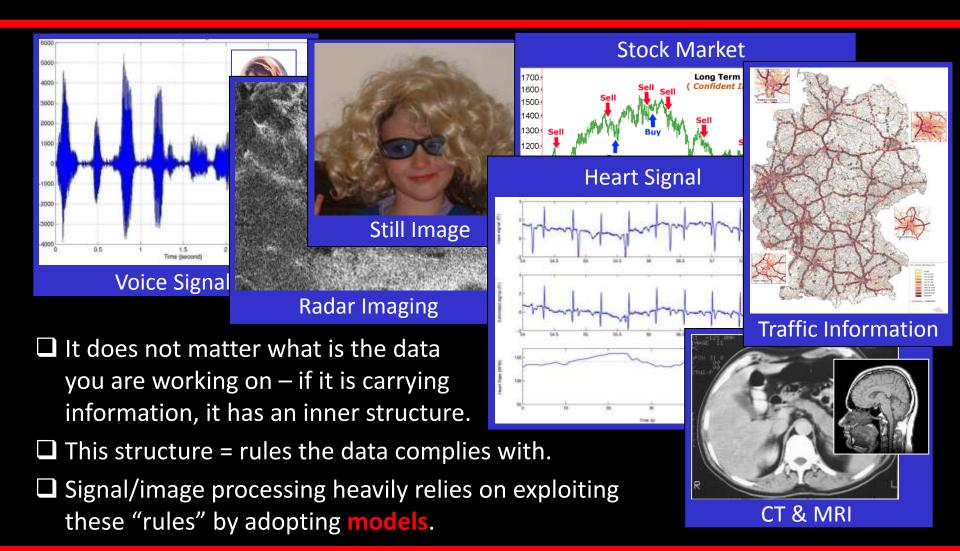
Ron Rubinstein

Remi Gribonval

and

Sangnam Nam, Mark Plumbley, Mike Davies, Raja Giryes, Boaz Ophir, Nancy Bertin

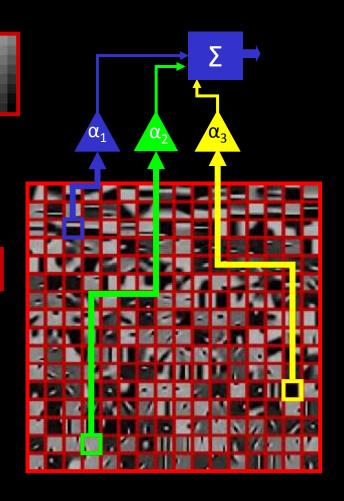
Informative Data → Inner Structure



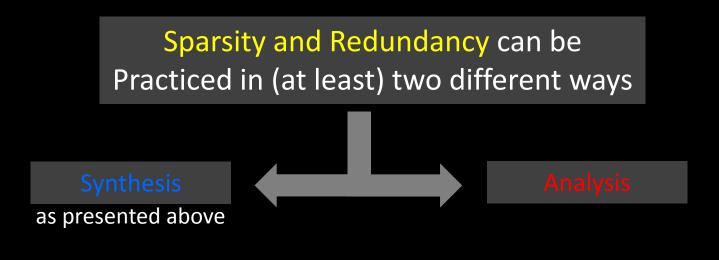
Sparse & redundant Repres. Modeling

- ☐ Task: model image patches of size 10×10 pixels.
- We assume that a dictionary of such image patches is given, containing 256 atom images.
- The sparsity-based model assumption: every image patch can be described as a linear combination of few atoms.

Chemistry of Data



However ...

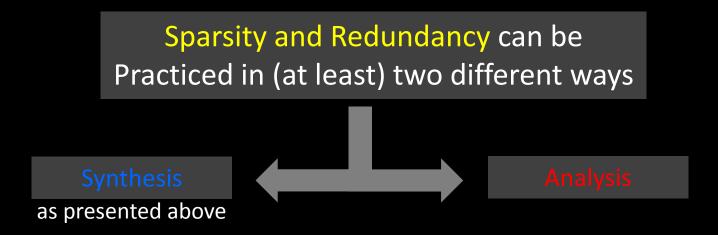


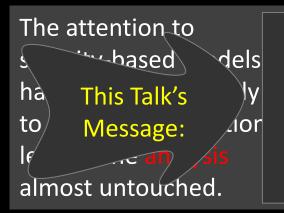
The attention to sparsity-based models has been given mostly to the synthesis option, leaving the analysis almost untouched.

For a long-while these two options were confused, even considered to be (near)-equivalent.

Well ... now we know better !!
The two are
VERY DIFFERENT

However ...





The co-sparse analysis model is a very appealing alternative to the synthesis model, it has a great potential for signal modeling.

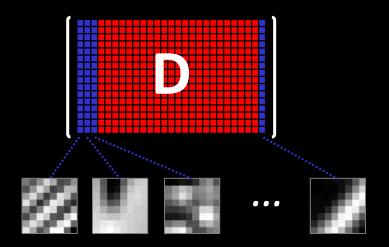
Part I - Background Recalling the Synthesis Sparse Model

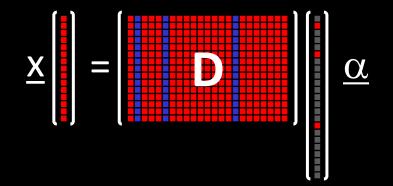
The Sparsity-Based Synthesis Model

- ☐ We assume the existence of a synthesis dictionary $D \in \mathbb{R}^{d \times n}$ whose columns are the atom signals.
- ☐ Signals are modeled as sparse linear combinations of the dictionary atoms:

$$\underline{x} = \mathbf{D}\underline{\alpha}$$

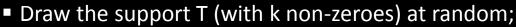
- \Box We seek a **sparsity** of <u>α</u>, meaning that it is assumed to contain mostly zeros.
- ☐ This model is typically referred to as the synthesis sparse and redundant representation model for signals.
- ☐ This model became very popular and very successful in the past decade.

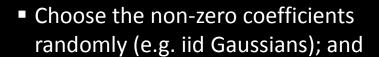


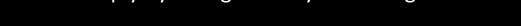


The Synthesis Model – Basics

- The synthesis representation is expected to be sparse: $\|\underline{\alpha}\|_0 = \mathbf{k} << \mathbf{d}$
- ☐ Adopting a Bayesian point of view:



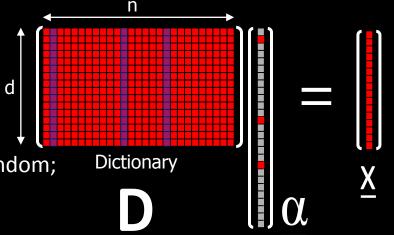




$$\underline{\mathbf{x}} \in \bigcap_{|\mathsf{T}|=k} \mathsf{span} \{\mathbf{D}_\mathsf{T}\}$$
 where $\mathbf{D}_\mathsf{T} \underline{\alpha}_\mathsf{T} = \underline{\mathbf{x}}$

☐ Such synthesis signals belong to a Union-of-Subspaces (UoS):

 \square This union contains $\binom{n}{k}$ subspaces, each of dimension k.



The Synthesis Model – Pursuit

☐ Fundamental problem: Given the noisy measurements,

$$\underline{\mathbf{y}} = \underline{\mathbf{x}} + \underline{\mathbf{v}} = \mathbf{D}\underline{\alpha} + \underline{\mathbf{v}}, \quad \underline{\mathbf{v}} \sim \mathbf{N}\{\underline{0}, \sigma^2\mathbf{I}\}$$

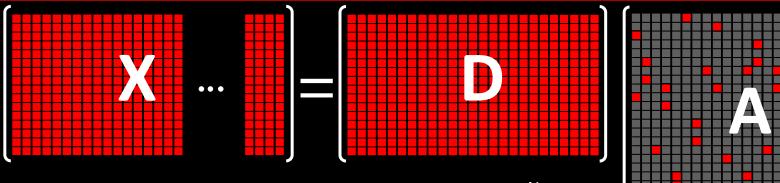
recover the clean signal \underline{x} – This is a denoising task.

- \Box This can be posed as: $\hat{\underline{\alpha}} = \underset{\alpha}{\operatorname{ArgMin}} \|\underline{y} \mathbf{D}\underline{\alpha}\|_{2}^{2}$ s.t. $\|\underline{\alpha}\|_{0} = k \implies \hat{\underline{x}} = \mathbf{D}\hat{\underline{\alpha}}$
- ☐ While this is a (NP-) hard problem, its approximated solution can be obtained by
 - Use L₁ instead of L₀ (Basis-Pursuit)
 - Greedy methods (MP, OMP, LS-OMP)
 - Hybrid methods (IHT, SP, CoSaMP).

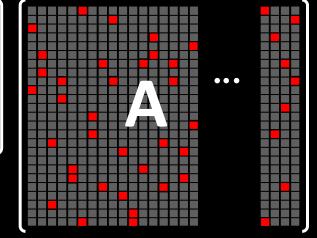
Pursuit Algorithms

☐ Theoretical studies provide various guarantees for the success of these techniques, typically depending on k and properties of **D**.

The Synthesis Model – Dictionary Learning



Given Signals:
$$\left\{ \underline{\mathbf{y}}_{j} = \underline{\mathbf{x}}_{j} + \underline{\mathbf{v}}_{j} \quad \underline{\mathbf{v}}_{j} \sim \mathbf{N} \left\{ \underline{\mathbf{0}}, \sigma^{2} \mathbf{I} \right\} \right\}_{j=1}^{N}$$



Example are linear combinations

of atoms from **D**

$$\operatorname{Min}_{D,A} \left\| \mathbf{DA} - \mathbf{Y} \right\|_{F}^{2} \quad \text{s.t.} \quad \forall j = 1, 2, \dots, N \quad \left\| \underline{\alpha}_{j} \right\|_{0} \leq k$$

Each example has a sparse representation with no more than k atoms

Field & Olshausen ('96) Engan et. al. (`99)

> Gribonval et. al. ('04) Aharon et. al. ('04)

Part II - Analysis Turning to the Analysis Model

- 1. S. Nam, M.E. Davies, M. Elad, and R. Gribonval, "Co-sparse Analysis Modeling Uniqueness and Algorithms", ICASSP, May, 2011.
- 2. S. Nam, M.E. Davies, M. Elad, and R. Gribonval, "The Co-sparse Analysis Model and Algorithms", Submitted to ACHA, June 2011.

The Analysis Model – Basics

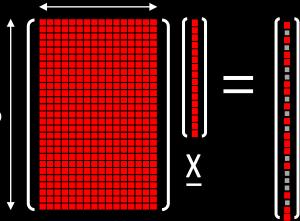
 \Box The analysis representation \underline{z} is expected to be sparse

$$\left\|\mathbf{\Omega}\underline{\mathbf{x}}\right\|_{0} = \left\|\underline{\mathbf{z}}\right\|_{0} = \mathbf{p} - \ell$$

- \square Co-sparsity: ℓ the number of zeros in \underline{z} .
- $lue{}$ Co-Support: Λ the rows that are orthogonal to $\underline{\mathbf{x}}$

$$\Omega_{\Lambda} \underline{\mathbf{x}} = \underline{\mathbf{0}}$$

- This model puts an emphasis on the zeros in the analysis Dictionary representation, <u>z</u>, rather then the non-zeros, in characterizing the signal. This is much like the way zero-crossings of wavelets are used to define a signal [Mallat (`91)].
- □ If Ω is in general position*, then $0 \le \ell < d$ and thus we cannot expect to get a truly sparse analysis representation Is this a problem? Not necessarily!

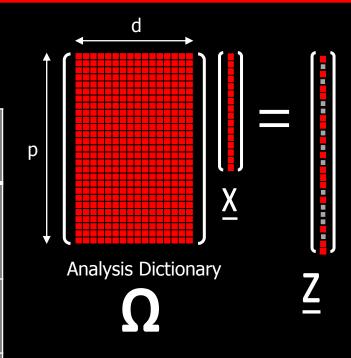


* spark $\{\mathbf{\Omega}^{\mathsf{T}}\} = d+1$

The Analysis Model – Bayesian View

☐ Analysis signals, just like synthesis ones, can be generated in a systematic way:

	Synthesis Signals	Analysis Signals	
Support:	Choose the support T (T =k) at random	Choose the cosupport Λ ($ \Lambda = \ell$) at random	
Coef. :	Choose $\underline{\alpha}_T$ at random	Choose a random vector <u>v</u>	
Generate:	Synthesize by: $\mathbf{D}_{T}\underline{\alpha}_{T} = \underline{\mathbf{x}}$	Orhto $\underline{\mathbf{v}}$ w.r.t. $\mathbf{\Omega}_{\Lambda}$: $\underline{\mathbf{x}} = \left[\mathbf{I} - \mathbf{\Omega}_{\Lambda}^{\dagger} \mathbf{\Omega}_{\Lambda}\right] \underline{\mathbf{v}}$	

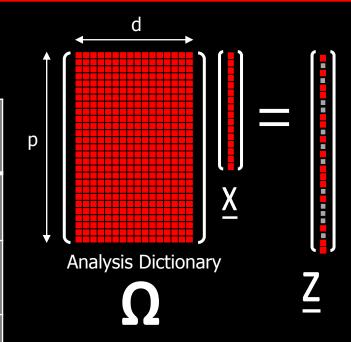


 $oldsymbol{\square}$ Bottom line: an analysis signal \underline{x} satisfies: $\exists \Lambda \mid |\Lambda| = \ell$ s.t. $\Omega_{\Lambda} \underline{x} = \underline{0}$

The Analysis Model – UoS

☐ Analysis signals, just like synthesis ones, leads to a union of subspaces:

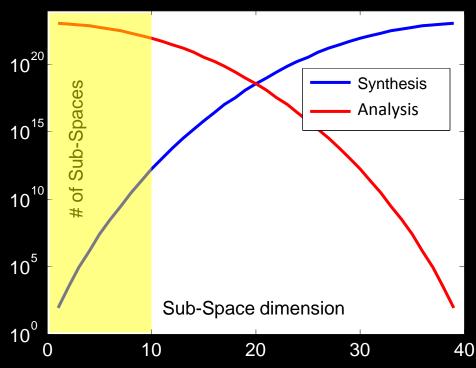
	Synthesis Signals	Analysis Signals
What is the Subspace Dimension:	k	d-ℓ
How Many Subspaces:	$\begin{pmatrix} n \\ k \end{pmatrix}$	$\begin{pmatrix} p \\ \ell \end{pmatrix}$
Who are those Subspaces:	$span\{\mathbf{D}_{T}\}$	$span^\perpig\{oldsymbol{\Omega}_\Lambdaig\}$



☐ The analysis and the synthesis models offer both a UoS construction, but these are very different from each other in general.

The Analysis Model – Count of Subspaces

- \Box Example: p=n=2d:
 - Synthesis: k=1 (one atom) there are 2d subspaces of dimensionality 1.
 - Analysis: ℓ =d-1 leads to $\binom{2d}{d-1}$ >>O(2^d) subspaces of dimensionality 1.
- □ In the general case, for d=40 and p=n=80, this graph shows the count of the number of subspaces.
 As can be seen, the two models are substantially different, the analysis model is much richer in low-dim., and the two complete each other.
- The analysis model tends to lead to a richer UoS. Are these good news?



The Analysis Model – Pursuit

Fundamental problem: Given the noisy measurements,

$$\underline{\mathbf{y}} = \underline{\mathbf{x}} + \underline{\mathbf{v}}, \quad \exists |\Lambda| = \ell \text{ s.t. } \mathbf{\Omega}_{\Lambda} \underline{\mathbf{x}} = \underline{\mathbf{0}}, \quad \underline{\mathbf{v}} \sim \mathbf{N} \{\underline{\mathbf{0}}, \sigma^2 \mathbf{I}\}$$

recover the clean signal \underline{x} – This is a denoising task.

☐ This goal can be posed as:

$$\hat{\underline{\mathbf{x}}} = \operatorname{ArgMin} \left\| \underline{\mathbf{y}} - \underline{\mathbf{x}} \right\|_{2}^{2} \text{ s.t. } \left\| \mathbf{\Omega} \underline{\mathbf{x}} \right\|_{0} = \mathbf{p} - \ell$$

- ☐ This is a (NP-) hard problem, just as in the synthesis case.
- We can approximate its solution by L_1 replacing L_0 (BP-analysis), Greedy methods (OMP, ...), and Hybrid methods (IHT, SP, CoSaMP, ...).
- Theoretical studies should provide guarantees for the success of these techniques, typically depending on the co-sparsity and properties of Ω . This work has already started [Candès, Eldar, Needell, & Randall (`10)], [Nam, Davies, Elad, & Gribonval, (`11)], [Vaiter, Peyré, Dossal, & Fadili, (`11)], [Peleg & Elad ('12)].

The Analysis Model – Backward Greedy

BG finds one row at a time from Λ for approximating the solution of

$$\hat{\underline{\mathbf{x}}} = \operatorname{ArgMin} \left\| \underline{\mathbf{y}} - \underline{\mathbf{x}} \right\|_{2}^{2} \text{ s.t. } \left\| \mathbf{\Omega} \underline{\mathbf{x}} \right\|_{0} = \mathbf{p} - \ell$$

$$\begin{aligned} \mathbf{i} &= \mathbf{0}, \, \hat{\underline{\mathbf{x}}}_0 = \underline{\mathbf{y}} \, \, \Lambda_0 = \big\{ \, \, \big\} \end{aligned} \qquad \begin{aligned} &\text{Stop condition?} \\ &(\mathbf{e}.\mathbf{g}.\,\, \mathbf{i} = \ell) \end{aligned} \qquad \qquad \end{aligned} \\ &\mathbf{i} = \mathbf{i} + \mathbf{1}, \, \, \Lambda_i = \Lambda_{i-1} \cup \underset{\mathbf{k} \notin \Lambda_{i-1}}{\mathsf{ArgMin}} \, \left| \underline{\mathbf{w}}_{\mathbf{k}}^\mathsf{T} \, \hat{\underline{\mathbf{x}}}_{i-1} \right| \qquad \qquad \\ &\hat{\underline{\mathbf{x}}}_i = \left[\mathbf{I} - \mathbf{\Omega}_{\Lambda_i}^\dagger \, \mathbf{\Omega}_{\Lambda_i} \, \right] \underline{\mathbf{y}} \end{aligned}$$

The Analysis Model – Backward Greedy

Is there a similarity to a synthesis pursuit algorithm?

$$i=0,\ \underline{\underline{r}}_0=\underline{\underline{y}}\ \Lambda_0=\left\{\ \right\} \qquad \text{Stop condition?} \\ (e.g.\ i=\ell) \qquad \text{Output}\ =\underline{\underline{y}}\underline{\underline{r}}_i \\ \\ i=i+1,\ \Lambda_i=\Lambda_{i-1}\cup \text{Arg\,Max}\ \underline{\underline{d}}_k^{\mathsf{T}}\underline{\underline{r}}_{i-1} \qquad \underline{\underline{r}}_i=\left[\mathbf{I}-\mathbf{D}_{\Lambda}\mathbf{D}_{\Lambda}^+\right]\underline{\underline{y}}$$

The Analysis Model – Backward Greedy

Is there a similarity to a synthesis pursuit algorithm?

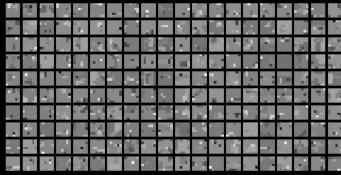
i = 0

Other options:

- A Gram-Schmidt acceleration of this algorithm.
- Optimized BG pursuit (xBG) [Rubinstein, Peleg & Elad (`12)]
- Greedy Analysis Pursuit (GAP) [Nam, Davies, Elad & Gribonval (`11)]
- Iterative Cosparse Projection [Giryes, Nam, Gribonval & Davies (`11)]
- L_p relaxation using IRLS [Rubinstein (`12)]

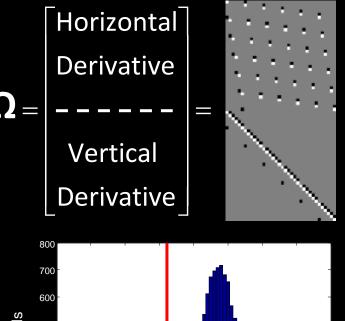
The Low-Spark Ω Case

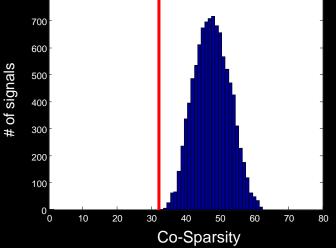
- \square What if spark(Ω^T)<<d?
- \Box For example: a TV-like operator for imagepatches of size 6×6 pixels (Ω size is 72×36).
- Here are analysis-signals generated for cosparsity (ℓ) of 32:



- Their true co-sparsity is higher see graph:
- \square In such a case we may consider $\ell > d$, and thus

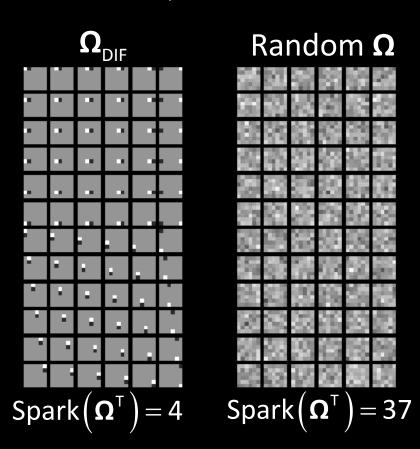
... the number of subspaces is smaller.

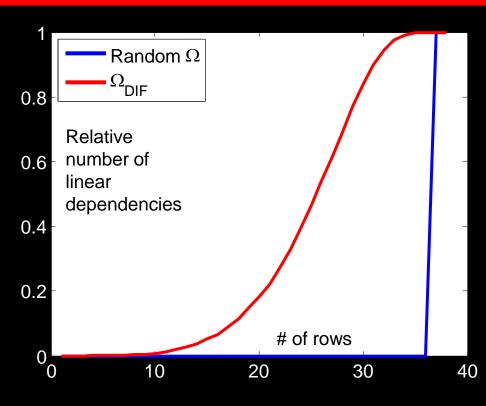




The Analysis Model – The Signature

Consider two possible dictionaries:





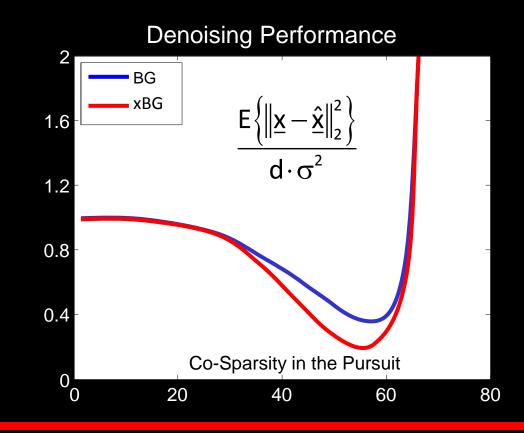
The Signature of a matrix is more informative than the Spark

The Analysis Model – Pursuit Results

- An example performance of BG (and xBG) for these TV-like signals:
- ☐ 1000 signal examples, SNR=25.

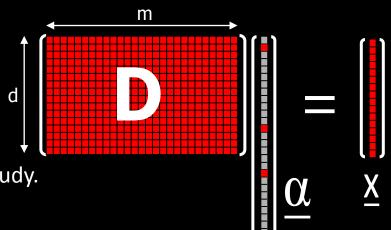


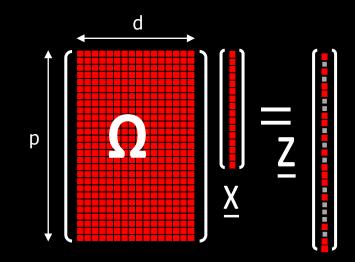
■ We see an effective denoising, attenuating the noise by a factor ~0.3. This is achieved for an effective co-sparsity of ~55.



Synthesis vs. Analysis – Summary

- ☐ The two align for p=n=d : non-redundant.
- Just as the synthesis, we should work on:
 - Pursuit algorithms (of all kinds) Design.
 - Pursuit algorithms (of all kinds) Theoretical study.
 - Dictionary learning from example-signals.
 - Applications ...
- Our experience on the analysis model:
 - Theoretical study is harder.
 - The role of inner-dependencies in Ω ?
 - Great potential for modeling signals.

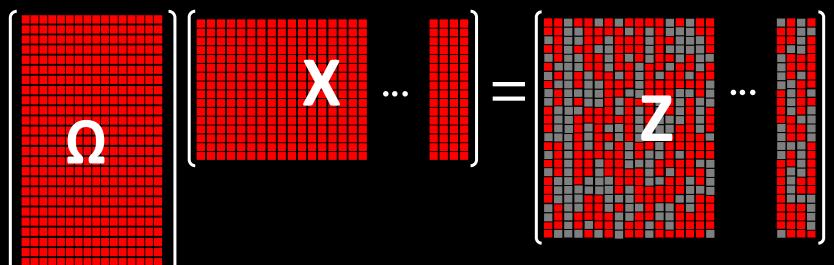




Part III – Dictionaries Analysis Dictionary-Learning and Some Results

- 1. B. Ophir, M. Elad, N. Bertin and M.D. Plumbley, "Sequential Minimal Eigenvalues An Approach to Analysis Dictionary Learning", EUSIPCO, August 2011.
- 2. R. Rubinstein T. Peleg, and M. Elad, "Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model", submitted IEEE-TSP.

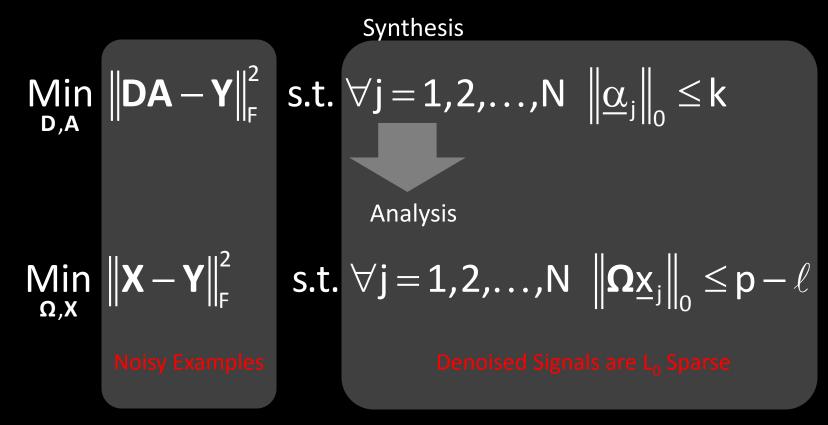
Analysis Dictionary Learning – The Signals



We are given a set of N contaminated (noisy) analysis signals, and our goal is to recover their analysis dictionary, Ω

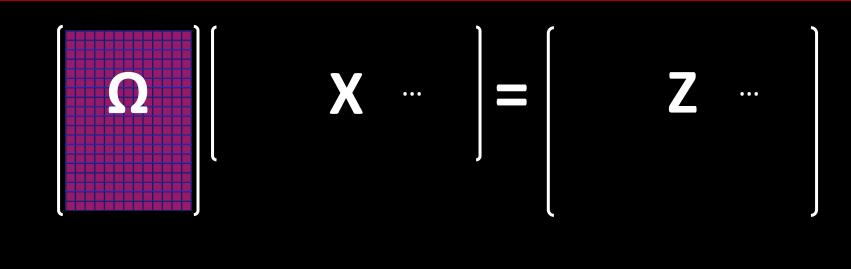
$$\left\{ \underline{\mathbf{y}}_{\mathbf{j}} = \underline{\mathbf{x}}_{\mathbf{j}} + \underline{\mathbf{v}}_{\mathbf{j}}, \quad \exists \left| \Lambda_{\mathbf{j}} \right| = \ell \quad \text{s.t.} \quad \mathbf{\Omega}_{\Lambda_{\mathbf{j}}} \underline{\mathbf{x}}_{\mathbf{j}} = \underline{\mathbf{0}}, \quad \underline{\mathbf{v}} \sim \mathbf{N} \left\{ \underline{\mathbf{0}}, \sigma^{2} \mathbf{I} \right\} \right\}_{\mathbf{j}=1}^{N}$$

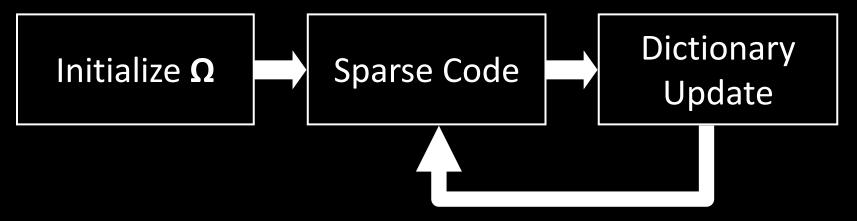
Analysis Dictionary Learning – Goal



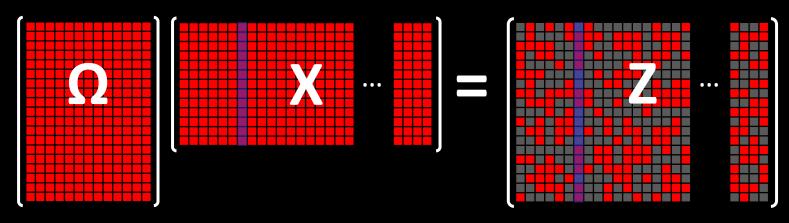
We shall adopt a similar approach to the K-SVD for approximating the minimization of the analysis goal

Analysis K-SVD — Outline [Rubinstein, Peleg & Elad (`12)]





Analysis K-SVD – Sparse-Coding Stage



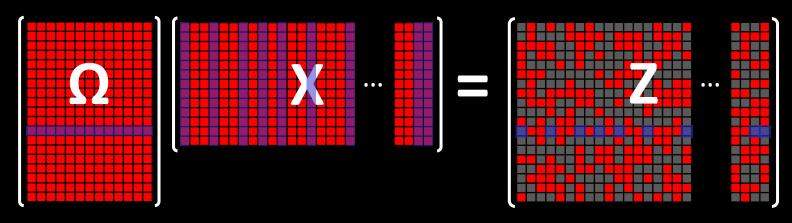
$$\underset{\boldsymbol{\Omega},\boldsymbol{X}}{\text{Min}} \, \left\| \boldsymbol{X} - \boldsymbol{Y} \right\|_F^2 \ \, \text{s.t.} \, \forall j = 1,2,\ldots,N \, \, \left\| \boldsymbol{\Omega} \underline{\boldsymbol{x}}_j \right\|_0 \leq p - \ell$$

Assuming that Ω is fixed, we aim at updating X

$$\left\{ \hat{\underline{\mathbf{x}}}_{j} = \operatorname{ArgMin} \ \left\| \underline{\mathbf{x}} - \underline{\mathbf{y}}_{j} \right\|_{2}^{2} \quad \text{s.t.} \ \left\| \mathbf{\Omega} \underline{\mathbf{x}} \right\|_{0} \leq \mathbf{p} - \ell \right\}_{j=1}^{N}$$

These are N separate analysis-pursuit problems. We suggest to use the BG or the xBG algorithms.

Analysis K-SVD – Dictionary Update Stage



$$\underset{\boldsymbol{\Omega},\boldsymbol{X}}{\text{Min}} \, \left\| \boldsymbol{X} - \boldsymbol{Y} \right\|_F^2 \ \, \text{s.t.} \, \forall j = 1,2,\ldots,N \, \, \left\| \boldsymbol{\Omega} \underline{\boldsymbol{x}}_j \right\|_0 \leq p - \ell$$

- Only signals orthogonal to the atom should get to vote for its new value.
- The known supports should be preserved.

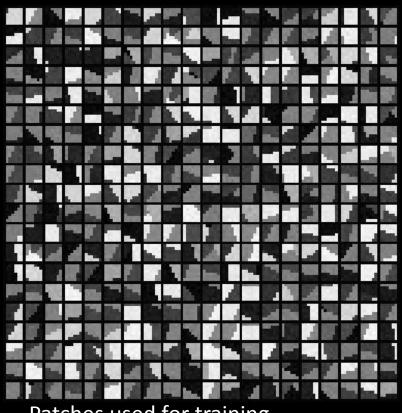
Analysis Dictionary Learning – Results (1)

Experiment #1: Piece-Wise Constant Image

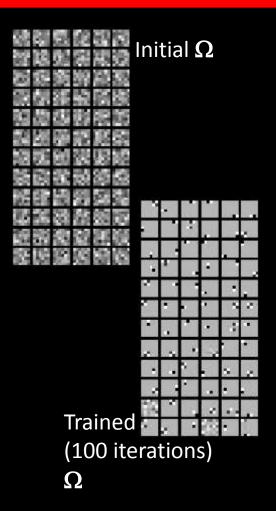
■ We take 10,000 patches (+noise σ =5) to train on

☐ Here is what we got:

Original Image



Patches used for training



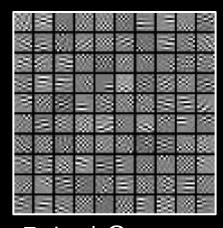
Analysis Dictionary Learning – Results (2)

Experiment #2: A set of Images

- ☐ We take 5,000 patches from each image to train on.
- \square Block-size 8×8, dictionary size 100×64. Co-sparsity set to 36.
- ☐ Here is what we got:

Original Images

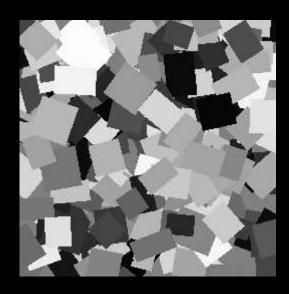
Localized and oriented atoms



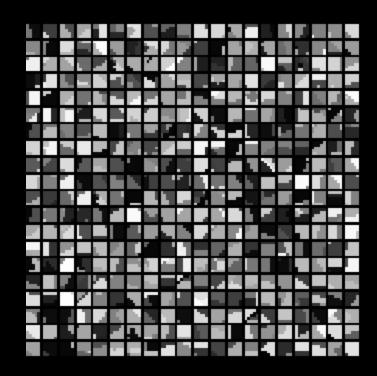
Trained Ω (100 iterations)

Analysis Dictionary Learning – Results (3)

Experiment #3: denoising of piece-wise constant images



256×256



Non-flat patch examples

Analysis Dictionary Learning – Results (3)

	вмзр		Synthesis K-SVD		Sparse Analysis K-SVD	
Average subspace	n/a		2.42	2.03	1.75	1.74
dimension			1.79	1.69	1.51	1.43
Patch denoising: error per element	n/a		2.91	5.37	1.97	4.38
			7.57	10.29	6.81	9.62
Image PSNR [dB]	40.66	35.44	43.68	38.13	46.02	39.13
	32.23	30.32	34.83	32.02	35.03	31.97

Cell Legend:

σ=5	σ=10
σ=15	σ=20

Part V – We Are Done Summary and Conclusions

Today ...

Sparsity and Redundancy are practiced mostly in the context of the synthesis model

Is there any other way?

Yes, the analysis model is a very appealing (and different) alternative, worth looking at

- Deepening our understanding
- Applications?
- Combination of signal models ...

In the past few years
there is a growing
interest in this model,
deriving pursuit
methods, analyzing
them, designing
dictionary-learning, etc.

So, what to do?

More on these (including the slides and the relevant papers) can be found in http://www.cs.technion.ac.il/~elad

