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General

• Basis Pursuit algorithm [Chen, Donoho and Saunders, 1995]: 
Effective for finding sparse over-complete representations,

Effective for non-linear filtering of signals.

• Our work (in progress) – better understanding BP and  
deploying it in signal/image processing and computer 
vision applications. 

• We believe that over-completeness has an important role! 

• Today we discuss the analysis of the Basis Pursuit 
algorithm, giving conditions for its success. We then show 
some stylized applications exploiting this analysis.
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Agenda

Understanding 
the BP 

1. Introduction
Previous and current work

2. Two Ortho-Bases
Uncertainty → Uniqueness → Equivalence

3. Arbitrary dictionary
Uniqueness → Equivalence

4.  Stylized Applications
Separation of point, line, and plane clusters

5.  Discussion

Using the BP -
Application
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{ }
{ }α=

=α
−1Ts:Backward

sT:Forward

• Define the forward and backward transforms by (assume 
one-to-one mapping)

s – Signal (in the signal space CN)

α – Representation (in the transform domain CL, L≥N)

• Transforms T in signal and image processing used for 
coding, analysis, speed-up processing, feature 
extraction, filtering, …

Transforms 
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=

L

N Φ s

αAtoms from a 
Dictionary

General transforms
• Special interest - linear 

transforms (inverse)            

Linear

αΦ=s

The Linear Transforms

Square

• In square linear transforms,    
Φ is an N-by-N & non-singular.

Unitary
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• Many available square linear transforms – sinusoids, 
wavelets, packets, …

• Successful transform – one which leads to sparse 
representations.

• Observation: Lack of universality - Different bases 
good for different purposes. 

Sound = harmonic music (Fourier) + click noise (Wavelet),

Image = lines (Ridgelets) + points (Wavelets).

• Proposed solution: Over-complete dictionaries, and 
possibly combination of bases. 

Lack Of Universality



Sparse representation and 
the Basis Pursuit Algorithm

8

Example – Composed Signal
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Example – Desired Decomposition
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• Hard to solve – a  sub-optimal greedy sequential 
solver: “Matching Pursuit algorithm” .

• Given d unitary matrices    {Φk,  1≤k≤d}, define a 
dictionary Φ = [Φ1, Φ2 , … Φd] [Mallat & Zhang (1993)].

αΦ=s

• Combined representation per a signal s by

αΦ=α
α

s.t.sMin:P
00

• Non-unique solution α - Solve for maximal sparsity

Matching Pursuit
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• Interesting observation: In many cases it 
successfully finds the sparsest representation.

αΦ=α
α

s.t.sMin:P
00

• Facing the same problem, and the same 
optimization task [Chen, Donoho, Saunders (1995)] 

αΦ=α
α

s.t.sMin:P
11

• Hard to solve – replace the l0 norm by an l1 : 
“Basis Pursuit algorithm”

Basis Pursuit (BP)
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Example – Basis Pursuit
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Why      ?  2D-Example1l

[ ] 2211
p

2
p

1,
s.t.sMin

21

αφ+αφ=α+α
αα

1α

2α

2211s αφ+αφ=

0≤P<1

1α

2α

2211s αφ+αφ=

P=1

1α

2α

2211s αφ+αφ=

P>1
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Example – Lines and Points*

Original 
image

* Experiments from Starck, Donoho, and Candes - Astronomy & Astrophysics 2002.

Ridgelets part 
of the image

Wavelet part 
of the noisy 

image
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Example – Galaxy SBS 0335-052*

Original

Wavelet Ridgelets Curvelets

=

+ +

Residual

+

* Experiments from Starck, Donoho, and Candes - Astronomy & Astrophysics 2002.
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Non-Linear Filtering via BP

• Through the previous example – Basis Pursuit can be 
used for non-linear filtering.

1
Min s.t. s
α

α = Φα

• From Transforming to Filtering

• What is the relation to alternative non-linear filtering 
methods, such as PDE based methods (TV, anisotropic 
diffusion …), Wavelet denoising?

• What is the role of over-completeness in inverse 
problems?

2

1 2
Min s
α

α + λ − Φα
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Proven equivalence between 
P0 and P1 under some 

conditions on the sparsity of 
the representation, and for 

dictionaries built of two ortho-
bases [Donoho and Huo]

Improving previous 
results –

tightening the bounds
[Elad and Bruckstein] 

time1998 1999 2000 2001 2002

Proving tightness of 
E-B bounds [Feuer

& Nemirovski] 

(Our) Recent Work

Relaxing the notion 
of sparsity from l0
to lp  norm  
[Donoho and Elad]

Generalized all previous results to 
any dictionary and Applications

[Donoho and Elad]
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Before we dive …

• Our goal is the solution of 
0

Min s.t. s
α

α = Φα

• Basis Pursuit alternative is to solve instead

1
Min s.t. s
α

α = Φα

• Given a dictionary Φ and a signal s, we want to find 
the sparse “atom decomposition” of the signal.

• Our focus for now: Why should this work?
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1. Introduction
Previous and current work

2. Two Ortho-Bases
Uncertainty → Uniqueness → Equivalence

3. Arbitrary dictionary
Uniqueness → Equivalence

4. Stylized Applications
Separation of point, line, and plane clusters

5.  Discussion

Agenda

N

N

N

ΘΨ=Φ
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Our Objective

Given a signal s, and its two representations using Ψ and 
Θ, what is the lower bound on the sparsity of both?

( )ΘΨ≥β+α
βΘ=
αΨ=

,Thr
s
s

00

Our Objective is

We will show that such rule immediately leads to a 
practical result regarding the solution of the P0 problem.
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Mutual Incoherence

( )j
H

kNj,k1
MaxMDefine θψ=

≤≤

• M – mutual incoherence between Ψ and Θ.

1MN1 ≤≤

• Properties 
Generally,                    .

For Fourier+Trivial (identity) matrices               .

For random pairs of ortho-matrices                          .  NNlog2M e≈

N1M =

• M plays an important role in the desired uncertainty rule.
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Uncertainty Rule

*

* Donoho & Huo obtained a weaker bound ( )1

00
M1 −+≥β+α

M
2

2
0000
≥β⋅α≥β+αTheorem 1

2
00
≥β+α

N1M = N2
00
≥β+α

Examples:
Ψ=Θ: M=1, leading to                    .

Ψ=I, Θ=FN (DFT):             , leading to .
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Example

N1M = N2
00
≥β+αΨ=I, Θ=FN (DFT)           

• For N=1024,                         . 

• The signal satisfying this bound: Picket-fence

64sFs
00
≥⋅+
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Towards Uniqueness

• Given a unit norm signal s, assume we hold two 
different representations for it using Φ

21
s γΦ=γΦ=

qxx 21 =Θ−=Ψ⇒

02010210201 xx
M
2

γ+γ≤γ−γ=+≤

• Based on the uncertainty theorem we just got:
x

( ) [ ]







ΘΨ=γ−γΦ=

2

121

x
x,0• Thus
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Uniqueness Rule

0201M
2

γ+γ≤

In words: Any two different representations of the same     

signal CANNOT BE JOINTLY TOO SPARSE.

*

* Donoho & Huo obtained a weaker bound ( )1

0
M15.0 −+<γ

If we found a representation that satisfy 

Then necessarily it is unique (the sparsest).

0M
1

γ>Theorem 2
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Uniqueness Implication

[ ] .,s.t.sMin:P
00 γΘΨ=γ

α

• We are interested in solving

1ˆM
0
<γ⋅γ̂

• The uniqueness theorem tells us that a simple test on     
(              ) could tell us if it is the solution of P0. 

• However: 
If the test is negative, it says nothing.
This does not help in solving P0.
This does not explain why P1 may be a good replacement. 

γ̂• Somehow we obtain a candidate solution   .
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• We are going to solve the following problem

[ ] .,s.t.sMin:P
11 γΘΨ=γ

α

Equivalence - Goal

• The questions we ask are: 
Will the P1 solution coincide with the P0 one? 
What are the conditions for such success?

• We show that if indeed the P0 solution is sparse 
enough, then P1 solver finds it exactly.
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Equivalence - Result

Given a signal s with a representation                ,

Assuming a sparsity on γ such that (assume k1<k2)

[ ]γΘΨ= ,s

[ ]N22N1NN21 , γγγγγγ=γ ++ KK

k1 non-zeros k2 non-zeros 

Theorem 3
01MkkkM2 221

2 <−+If k1 and k2 satisfy

then P1 will find the correct solution. 

*
* Donoho & Huo obtained a weaker bound ( )1

0
M15.0 −+<γ

M
5.02

21 kk −<+A weaker requirement is given by 

… …
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K 1

K
2

2M2K1K2+MK2-1=0

K1+K2= 0.9142/M

K1+K  =2
= 0.5(1+1/M)

K1>K2

+K =1/MK1 2

The Various Bounds 

Results

Uniqueness: 31 entries and below,

Equivalence: 

• 16 entries and below (D-H), 

• 29 entries and below (E-B).

Signal dimension: N=1024,

Dictionary: Ψ=I, Θ=FN ,

Mutual incoherence M=1/32.

0 4 12 16 20 24 328 28

4

8

12

16

20

24

28

32
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Equivalence – Uniqueness Gap

• Is this gap due to careless bounding? 

• Answer [by Feuer and Nemirovski, to appear in IEEE Transactions On 

Information Theory]: No, both bounds are indeed tight. 

M
5.02

0

−<γ

M
1

0
<γ• For uniqueness we got the requirement  

• For equivalence we got the  requirement 
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1. Introduction
Previous and current work

2. Two Ortho-Bases
Uncertainty → Uniqueness → Equivalence

3. Arbitrary dictionary
Uniqueness → Equivalence

4. Stylized Applications
Separation of point, line, and plane clusters

5.  Discussion

Agenda

L

N

Every column 
is normalized 
to have an l2
unit normΦ



Sparse representation and 
the Basis Pursuit Algorithm

33

Why General Dictionaries?

• In many situations
We would like to use more than just two ortho-bases (e.g. 
Wavelet, Fourier, and ridgelets);

We would like to use non-ortho bases (pseudo-polar FFT, 
Gabor transform, … ),

In many situations we would like to use non-square transforms
as our building blocks (Laplacian pyramid, shift-invariant 
Wavelet, …).

• In the following analysis we assume ARBITRARY 
DICTIONARY (frame). We show that BP is successful 
over such dictionaries as well.
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Uniqueness - Basics

( ) 0s
2121
=γ−γΦ⇒γΦ=γΦ=

• Given a unit norm signal s, assume we hold two 
different representations for it using Φ

• In the two-ortho case - simple splitting and use of the 
uncertainty rule – here there is no such splitting !!

= 0

v

Φ
0v =Φ• The equation             

implies a linear combination 
of columns from Φ that are 
linearly dependent. What is 
the smallest such group?
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Uniqueness – Matrix “Spark”

Definition: Given a matrix Φ, define σ=Spark{Φ} as the 
smallest integer such that there exists at least one group 
of σ columns from Φ that is linearly dependent. 



















0

0
1

100

010
001

M

L

MOMM

L

L

Spark                        =2


















1

1
1

100

010
001

M

L

MOMM

L

L

Spark                        =N+1;

Examples:
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“Spark” versus “Rank”

The notion of spark is confusing – here is an attempt to 
compare it to the notion of rank

Computation: Combinatorial -
sweep through 2L combinations      
of columns to check linear 
dependence - the smallest group      
of linearly dependent vectors is     
the Spark.

Definition: Minimal # of columns  
that are linearly dependent

Spark

Computation: Sequential - Take the 
first column, and add one column at 
a time, performing Gram-Schmidt 
orthogonalization. After L steps, 
count the number of non-zero 
vectors – This is the rank.

Definition: Maximal # of columns 
that are linearly independent

Rank

Generally: 2 ≤ σ=Spark{Φ} ≤ Rank{Φ}+1.
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Uniqueness – Using the “Spark”

• For any pair of representations of s we have

( ) 0s
2121
=γ−γΦ⇒γΦ=γΦ=

• Assume that we know the spark of Φ, denoted by σ. 

0201021
γ+γ≤γ−γ≤σ

• From here we obtain the relationship 

σ≥
0

v

σ≥γ−γ
021

• By the definition of the spark we know that if Φv=0 
then           . Thus                   
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0201
γ+γ≤σ

Any two different representations of the same signal            
using an arbitrary dictionary

cannot be jointly sparse.

If we found a representation that satisfy 

Then necessarily it is unique (the sparsest).

02
γ>

σTheorem 4

Uniqueness Rule – 1
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Lower bound on the “Spark”

.
M
1

1 +≥σ

• We can show (based on Gerśgorin disks theorem) 
that a lower-bound on the spark is obtained by

• Define

(notice the resemblance to the previous definition of M).

{ } 1MaxM(?)0
j

H

k
jk

Lj,k1
≤φφ=<

≠
≤≤

• Since the Gerśgorin theorem is un-tight, this lower 
bound on the Spark is too pessimistic.
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Uniqueness Rule – 2

0201M
1

1 γ+γ≤σ≤+

Any two different representations of the same signal          
using an arbitrary dictionary

cannot be jointly sparse.

If we found a representation that satisfy 

Then necessarily it is unique (the sparsest).

0

1 1
1

2 2 M
σ  ≥ + > γ 

 
Theorem 5

*

* This is the same as Donoho and Huo’s bound! Have we lost tightness?
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“Spark” Upper bound

0

S

kLk1
Min γ=σ

≤≤

{ }L

1k

S

k =
γ{ }L

k k0
k 1

S : Min s.t. 0 & 1
γ =

γ Φγ = γ =

• The Spark can be found by solving

0

S

k0

Q

k
γ≥γ• Clearly                 . 

• Use Basis Pursuit

{ }L

k k1
k 1

Q : Min s.t. 0 & 1
γ =

γ Φγ = γ = { } LQ

k k 1=
γ

0

Q

kLk10

S

kLk1
MinMin γ≤γ=σ

≤≤≤≤
Thus                                      .
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Equivalence – The Result 

Theorem 6

Given a signal s with a representation           ,

Assuming that                        , P1 (BP) is 

Guaranteed to find the sparsest solution. 

γΦ=s

( )M115.0
0

+<γ
*

* This is the same as Donoho and Huo’s bound! Is it non-tight? 

Following the same path as shown before for the 
equivalence theorem in the two-ortho case, and adopting 
the new definition of M we obtain the following result:
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To Summarize so far …

Over-complete 
linear transforms 
– great for sparse 
representations

Basis Pursuit 
Algorithm

forward 
transform?

We give 
explanations 

(uniqueness and 
equivalence) true 
for any dictionary

Why works so 
well?

Practical 
Implications?

(a) Design of dictionaries,      
(b) Test of for optimality,       
(c) Applications - scrambling,   

signal separation, inverse    
problems, …
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Agenda

1. Introduction
Previous and current work

2. Two Ortho-Bases
Uncertainty → Uniqueness → Equivalence

3. Arbitrary dictionary
Uniqueness → Equivalence

4. Stylized Applications
Separation of point, line, and plane clusters

5.  Discussion
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Problem Definition

• Task: Decompose S into the point, line, and plane 
atoms  – sparse decomposition is desired.

[ ] [ ]nSn,n,nS 321 =• Assume a 3D volume                            of size           

Voxels.ppp ××

• S contains digital points, lines, and planes, defined 
algebraically ( ):

Point – one Voxel

Line – p Voxels (defined by a starting Voxel on the cube’s face, 
and a slope – wrap around is permitted),

Plane – p2 Voxels (defined by a height Voxel in the cube, and 2 
slope parameters – wrap around is permitted).

3
pZ



Sparse representation and 
the Basis Pursuit Algorithm

46

Properties To Use

Digital lines and planes are 
constructed such that:

Any two lines are disjoint, or 
intersect in a single Voxel.

Any two planes are disjoint, 
or intersect in a line of p 
Voxels.

Any digital line intersect a 
with a digital plane not at 
all, in a single Voxel, or 
along the p Voxels being  
the line itself.
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Our Dictionary

• We construct a dictionary to contain all occurrences of 
points, lines, and planes (O(p4) columns).

• Every atom in our set is reorganized lexicographically 
as a column vector of size p3-by-1.

• The spark of this dictionary is σ=p+1                         
(p points and one line, or p lines and one plane).

• The mutual incoherence is given by M=p-0.5

(normalized inner product                                       
of a plane with a line,                                         
or line with a point). p1

1
intPo,Line

⋅
=
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Thus we can say that …

Due to 
Theorem 4

If we found a representation that satisfies 

then necessarily it is sparsest (P0 solution).
2

1p
0

+
<γ

Due to 
Theorem 6

γΦ=s ( )p15.0
0

+<γ

Given a volume s with a representation

such that                        , (BP)         

is guaranteed to find it.  
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Implications

• Assume p=1024:
A representation with fewer than 513 atoms        
IS KNOWN TO BE THE SPARSEST.

A representation with fewer than 17 atoms                
WILL BE FOUND BY THE BP. 

• What happens in between? We know that the 
second bound is very loose! BP will succeed far 
above 17 atoms. Further work is needed to 
establish this fact.

• What happens above 513 atoms? No theoretical 
answer yet!
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Towards Practical Application

• The algebraic definition of the points, lines, 
and planes atoms was chosen to enable the 
computation of σ and M. 

• Although wrap around makes this definition 
non-intuitive, these results are suggestive of 
what may be the case for geometrically 
intuitive definitions of points, lines, and 
planes.

• Further work is required to establish this 
belief.
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Summary

• The Basis Pursuit can be used as a 
Forward transform, leading to sparse representation.

Way to achieve non-linear filtering.

• The dream: the over-completeness idea is highly effective, 
and should be used in modern methods in representation 
and inverse-problems. 

• We would like to contribute to this development by 
Supplying clear(er) explanations about the BP behavior, 

Improve the involved numerical tools, and then 

Deploy it to applications. 

53
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Future Work

• What dictionary to use? Relation to learning?

• BP beyond the bounds – Can we say more?

• Relaxed notion of sparsity? When zero is really zero?

• How to speed-up BP solver (both accurate and 
approximate)?

• Theory behind approximate BP?

• Applications – Demonstrating the concept for practical 
problems, such as denoising, coding, restoration, 
signal separation …

54


