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Abstract

The sparse synthesis model for signals has become very popular in the last
decade, leading to improved performance in many signal processing applica-
tions. This model assumes that a signal may be described as a linear combi-
nation of few columns (atoms) of a given synthesis matrix (dictionary). The
Co-Sparse Analysis model is a recently introduced counterpart, whereby signals
are assumed to be orthogonal to many rows of a given analysis dictionary. These
rows are called the co-support.

The Analysis model has already led to a series of contributions that address
the pursuit problem: identifying the co-support of a corrupted signal in order
to restore it. While all the existing work adopts a deterministic point of view
towards the design of such pursuit algorithms, this paper introduces a Bayesian
estimation point of view, starting with a random generative model for the co-
sparse analysis signals. This is followed by a derivation of Oracle, Minimum-
Mean-Squared-Error (MMSE), and Maximum-A’posteriori-Probability (MAP)
based estimators. We present a comparison between the deterministic formula-
tions and these estimators, drawing some connections between the two. We de-
velop practical approximations to the MAP and MMSE estimators, and demon-
strate the proposed reconstruction algorithms in several synthetic and real image
experiments, showing their potential and applicability.
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1. Introduction

In many signal and image processing tasks, such as denoising, deblurring,
or inpainting problems, the main goal is to reconstruct a signal from a noisy
degraded realization. In this paper we shall assume that an observation y ∈ Rk
is obtained by sensing a destination signal x ∈ Rd using an observation matrix
M ∈ Rk×d after it has been contaminated by additive noise n ∈ Rk, namely,
y = Mx + n. As this problem is typically ill-posed, the measurements alone
do not suffice for recovering x. The remedy is the introduction of a-priori
knowledge about the class of signals to which x belongs, forcing some sort of
regularity on the unknown signal. During the last decade, researchers in the
fields of signal and image processing have become increasingly interested in
sparse signal modelling as prior knowledge [1, 2, 3, 4].

Sparse modelling of signals assumes that a signal x can be written as a linear
combination of columns (atoms) from a matrix (dictionary) D ∈ Rd×m (m ≥ d)
with coefficients from a sparse vector α ∈ Rm, i.e., x = Dα, and it is said that
α is the sparse representation of x over the dictionary D. The representation
vector α has k non-zero elements, ‖α‖0 = k, which is typically much smaller
than the signal’s dimension, d. This sparsity-inspired modelling is also called
the Synthesis model, because it expresses how a signal x can be synthesized
from its representation. This model has led to improved performance for many
signal processing applications (see [5, 6, 7, 8, 9, 10] for representative works).

Recently, a counterpart to the above model was introduced [11, 12, 13, 14]:
the Co-Sparse Analysis model. In this new approach, the signal x is defined by
a known analysis dictionary Ω ∈ Rp×d, which can possibly be redundant, p ≥ d.
This model assumes that a signal satisfies ‖Ωx‖0 = p − `, that is, the signal
x is expected to be orthogonal to ` rows of Ω, and therefore to the subspace
spanned by these ` rows. The subset Λ of ` orthogonal rows of Ω is defined as
the co-support. In other words, we say that x is `-co-sparse, implying that its
co-support Λ has ` elements and ΩΛx = 0.

Suppose that a signal x is `-co-sparse with respect to Ω. How can it be
recovered from its observation y? The following optimization task was proposed
[11, 12, 13] for recovering the signal1:

x̂ = arg min
x
‖y −Mx‖22 + λ2 ‖x‖22 + λ0 ‖Ωx‖0 . (1)

This optimization problem seems to be hard [13], because the `0 quasi-norm
appears to require a sweep over all possible combinations of rows to be selected
as the co-support. Methods like the Greedy Analysis Pursuit noise (GAPn)
[16, 12], the Backward Greedy (BG) [17], and iterative projections algorithms
[18, 19, 20] are employed to approximate a solution to the task in (1). Also, `1
based approximation can be considered, similar to the way it has been practiced
for the synthesis sparse model [21, 22, 11, 16].

1Usually, it is assumed λ2 = 0. The formulation posed in (1), with non-zero λ2, is similar
to the elastic net pursuit [15].
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As an alternative to the deterministic approach described above, by assigning
to the signal a prior probability density function, p.d.f., that is consistent with
the Analysis model, one can derive Bayesian estimators for reconstructing x. In
the present work we introduce such an approach, and derive the related estima-
tors. One estimator is the Minimum-Mean-Squared-Error (MMSE) and another
option is the Maximum A-posteriori Probability (MAP). For MAP we distin-
guish between two alternatives - one that targets a co-support size, and another
that considers the subspace dimension the signal should belong to. We refer
to these two as MAPC (MAP-Co-support) and MAPS (MAP-Subspace), and
we study the delicate differences between them. Note that all these estimators
(MAP and MMSE) are hard to compute, with complexity that is exponential
in p.

The estimators give rise to a series of questions: (i) When are these Bayesian
estimators equivalent to the deterministic task in (1)? When they are not, which
one should be preferred? (ii) How can we approximate the proposed estima-
tors? In this work we aim to provide some answers to these questions. We
give sufficient conditions for which the deterministic task becomes equivalent
to the MAPC and MAPS estimators. Additionally, we present an efficient ap-
proximation algorithm to each estimator for reconstructing the signal x̂. We
approximate the MMSE estimate by a Gibbs sampler [23], and the MAPC and
MAPS by using a greedy pursuit approach [16, 17, 4]. In particular, the MAPS
optimization task seems more difficult to approximate, and we suggest a way
to overcome this obstacle. We compare the performance and computational
aspects of these different methods and further discuss each option’s pros and
cons. Finally, we demonstrate the potential of these algorithms in a series of
experiments involving both synthetic signals and real images.

The paper is organized as follows. In the next section, we briefly discuss
the potential of the Co-Sparse Analysis model. In Section 3 the signal genera-
tion model is introduced. In Section 4 we derive the various estimators for x̂.
Next, we expose a relation between MAP-based estimators and the determin-
istic problem in Section 5. Section 6 presents approximation algorithms and
discusses their performance. In Section 7, we demonstrate the algorithms in
synthetic and real-world signals. We conclude the work in Section 8.

2. Analysis vs. Synthesis Models

During the last decade, the Synthesis Sparse Representation model estab-
lished itself and led to state-of-the-art results in many areas, and it seems that
its younger counterpart, the Co-Sparse Analysis model, lags behind. One may
argue why the Co-Sparse Analysis model should be chosen over the synthesis
one? Indeed, the Co-Sparse Analysis model is still in development and it is not
clear yet whether it is better or worse compared to the Synthesis. However,
the two modeling approaches are known to be substantially different, and thus
the Co-Sparse Analysis model may be found effective for specific data sources
or some applications. We describe next some interesting work that has demon-
strated the potential that exists within the Co-Sparse Analysis model.
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In the classic image processing field, a recent work of Hawe et.al. [24, 25]
has shown competitive results to that of K-SVD [26], BM3D [6], and Fields-of-
Experts [27] for image denoising, inpainting, and super-resolution by learning
an analysis dictionary and using it within the recovery process. In a different
work, Portilla [28] showed highly competitive results for the deblurring problem,
using `0 analysis with tight frame dictionaries. In [29], the authors compared
results of synthesis and analysis methods using overcomplete wavelet dictionar-
ies in 1D signals, obtaining better results in the analysis case. Additionally, the
Analysis model has been used in other applications with promising results, for
blind compressed sensing [30], MRI [31], color image super-resolution [32], and
Poisson-Gaussian noise restoration [33].

Furthermore, another alternative and interesting recent approach is the inte-
gration of both models, using analysis and synthesis together. For example, the
work by Danielyan et.al. [34] presented such an integrated model with patch-
based adaptive frames as analysis and synthesis dictionaries, leading to state-of-
the-art deblurring results. A follow-up paper by Ram et. al. [35] improved these
deblurring results by modifying the frame construction, but still relying heavily
on this merger of analysis and synthesis models. Shen et.al. [36, 37, 38] devel-
oped a “balanced” approach with analysis and synthesis frames integrated, and
showed improved results for a variety of inverse problems in imaging. In par-
ticular, they observed that some visual artifacts appear in the synthesis-based
approach while in the analysis-based and their suggested balanced approach the
appearances of such artifacts are substantially reduced.

The Co-Sparse Analysis model is also found to be highly effective in recog-
nition tasks, and perhaps this is the field that has benefitted the most from this
model so far. The extensive work on deep-learning constructs auto-encoders
that are used to extract sparsifying features, and this is done using the Analysis
model. We refer the reader to the work in [39, 40, 41, 42] for further reading.

In all these cases, the Co-Sparse Analysis model is found to be of value. In
this work our objective is not to convince the readers that the Analysis model is
better than its Synthesis counterpart, but rather put forward algorithmic tools
that would be useful for solving the elementary pursuit tasks that accompany
practically any use of this model.

As a final remark, we should add that when it comes to the computational
complexity of the pursuit task, if greedy algorithms are used, in the way we have
practiced in this paper, then the synthesis approach has an advantage over the
Analysis model. Synthesis greedy pursuit algorithms have a time complexity
that is proportional to the number of non-zeros in the sparse representation,
which is typically very small. On the other hand, analysis algorithms, such
as MAPC and MAPS, as presented here after, are dependent on the co-rank,
which is close to the signal dimension. In order to overcome this runtime gap,
analysis methods may work in an opposite way, i.e., by adding non-zeros to the
co-sparse vector Ωx such as GAP and GAPn [16, 12] do for non-noisy signals.
Another option is a relaxation-based method that computes the desired signal
non-greedily. We consider these as important future directions of research.
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3. An Analysis Signal Generation Model

Our goal is to obtain practical Bayesian estimation methods and this requires
us to define a signal generation model that describes how a co-sparse signal
x ∈ Rd is created, and how a measurement vector y ∈ Rk is related to it. The
model introduced in this section is motivated by models posed for the synthesis
model [43, 44, 45, 46, 47], adopting a probabilistic description.

Suppose that we want to draw an `-co-sparse signal x under a given dic-
tionary Ω ∈ Rp×d. This implies that there is a subset Λ of rows of Ω, the
co-support, such that

ΩΛx = 0. (2)

This equation defines a subspace spanned by the rows of ΩΛ to which x is known
to be orthogonal. We define a projection matrix2 QΛ ∈ Rd×d that projects any
vector into the subspace orthogonal to the one spanned by the rows of ΩΛ,

QΛ = I−UΛUT
Λ, (3)

where UΛ ∈ Rd×dim(ΩΛ) is obtained by applying an orthogonalization to the
rows of ΩΛ. It is easy to see that any x that obeys (2) satisfies x = QΛx.

Now we describe how to draw signals according to the Analysis model. We
define two steps: (a) Drawing a co-support Λ, and (b) Drawing a signal x and
its measurement y using Λ. We assign to each row in Ω a Bernoulli distribution
with probability q for a row being in the co-support. Hence, the co-support Λ is
drawn by tossing p coins, each one with probability q. The a-priori probability
of the co-support Λ is then given by

P (Λ) = q|Λ| · (1− q)p−|Λ| =

(
q

1− q

)|Λ|
· (1− q)p. (4)

Note that the co-support Λ can be of any size, while its expected size is pq.
Once the co-support Λ is drawn, the matrix QΛ is obtained from Equation (3).

The next step is to draw the signal itself using the co-support Λ. We draw
a vector x0 ∈ Rd from a multivariate Gaussian distribution, i.e., N

(
0, σ2

xI
)
.

Then, x0 is projected by QΛ so that the outcome satisfies the constraint in
Equation (2). The resulting projected vector x = QΛx0 is our clean co-sparse
signal. Finally, a noisy measurement y of the signal x is obtained by applying
the observation operator M and adding a white Gaussian i.i.d. noise vector,

y = Mx + n = MQΛx0 + n, (5)

where n ∼ N
(
0, σ2I

)
is the additive noise.

2Alternatively, a projection matrix QΛ can be computed using the pseudo-inverse Ω†Λ.
However, linear dependencies in ΩΛ should be treated before computing the projection matrix
in this manner.
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Given the co-support Λ, the signal y is obtained by linear operations on
Gaussian vectors, and therefore we have

y|Λ ∼ N
(
0, σ2

xCΛ

)
, (6)

where the matrix CΛ is defined by

CΛ = MQΛMT +
σ2

σ2
x

I. (7)

Similarly, the posterior distribution of x given y and the co-support [48, 49] is
given by

x|y,Λ ∼ N
(
QΛMTC−1

Λ y, σ2
xQΛ − σ2QΛMTC−1

Λ MQΛ

)
. (8)

These definitions are useful for deriving the estimators in the following sections.

4. Bayesian Estimators

In the previous section we described the random signal generation model,
and now we develop several estimators to recover x: the Oracle estimator that
knows the co-support, the Minimum Mean Squared Error (MMSE) estimator,
the Maximum A-Posteriori Co-support (MAPC) estimator, and a Maximum A-
Posteriori Subspace (MAPS) estimator. The oracle estimator is of theoretical
value only, but is important in the path we take, due to two reasons: First, it
gives us a lower bound on the attainable estimation error in practical methods.
In addition, as we shall see, its expressions will serve for the derivation of the
other estimators.

4.1. Oracle Estimator

The Oracle estimator assumes that partial, but helpful, additional informa-
tion regarding x is given. For our model, this information is the co-support Λ.
Assuming that Λ is given, the projection matrix QΛ is known, and as we have
seen already in Section 2, the posterior p.d.f. of x|y,Λ, is a Gaussian multivari-
ate distribution, as given in Equation (8). In this case, estimating the original
vector x can be done with the Minimum Mean Squared Error (MMSE) estima-
tor or the Maximum A-posteriori Probability (MAP) estimator, obtaining with
both the same estimate:

x̂OΛ = E {x|y,Λ} = QΛMTC−1
Λ y =

(
σ2

σ2
x

I + QΛMTMQΛ

)−1

QΛMTy, (9)

where the last equality is obtained by applying the matrix inversion lemma on
CΛ (see Appendix A).
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4.2. Minimum-Mean-Squared-Error (MMSE) Estimator

The MMSE estimate minimizes the mean-squared-error (MSE) and it is
given by the conditional expectation, E {x|y}. Marginalizing the conditional
expectation over all possible co-supports Λ we have

x̂MMSE = E {x|y}

=
1

t

∑
Λ∈Γ

E {x|y,Λ}P (Λ|y)

=
1

t

∑
Λ∈Γ

P (Λ|y) x̂OΛ , (10)

where Γ is the set of all possible co-supports, t =
∑

Λ∈Γ P (Λ|y) is a normal-
ization constant, and x̂OΛ is the oracle estimate in Equation (9) using a specific
co-support Λ. We now derive the posterior p.d.f. of the support P (Λ|y). First,
we apply Bayes’s rule to obtain

P (Λ|y) =
P (y|Λ)P (Λ)

P (y)
∝ P (y|Λ)P (Λ) . (11)

Let us recall the term P (y|Λ) from the distribution in Equation (6),

P (y|Λ) =
1√

(2πσ2
x)
k

det (CΛ)
exp

{
− 1

2σ2
x

yTC−1
Λ y

}
. (12)

Plugging P (Λ) from Equation (4) and Equation (12) back into Equation (11)
we obtain

P (Λ|y) ∝ 1√
det (CΛ)

exp

{
− 1

2σ2
x

yTC−1
Λ y

}(
q

1− q

)|Λ|
. (13)

Next, let us substitute Equation (13) back into the x̂MMSE estimate in Equation
(10), obtaining

x̂MMSE =
1

t

∑
Λ∈Γ

1√
det (CΛ)

e

{
− 1

2σ2
x

yTC−1
Λ y

}(
q

1− q

)|Λ|
x̂OΛ . (14)

This formula implies an averaging over all possible co-supports to compute
the MMSE estimate. Note that this averaging suggests that the MMSE esti-
mate, Ωx̂MMSE is in fact not co-sparse. This phenomenon appears also in the
MMSE estimator for the synthesis model in [43, 45, 44].

To compute the MMSE estimation, a sweep over all possible co-supports Λ
in Γ is needed. This set contains 2p different co-supports, implying that this
computation is infeasible in general.

Note that in [43] we developed a Bayesian estimation solution for denoising
of signals emerging from the synthesis model with a unitary dictionary. This
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case (unitary synthesis model) is in fact completely equivalent to an Analysis
model with the inverse of the above dictionary as the analysis dictionary. In
this special case, [43] shows that the exact MMSE is in fact computable, and
there is a closed-form shrinkage solution to the estimation.

The results in [43] are not applicable in this paper because of two important
reasons: (i) we consider general and redundant analysis dictionaries and we are
no longer restricted to unitary ones; and (ii) in this work we treat general inverse
problems, where denoising is merely a simple special case.

4.3. Maximum A-posteriori Probability for Co-support (MAPC) Estimator

The general and well known MAP estimator finds an estimate x̂ that max-
imizes the posterior probability, P (x|y). Because our model mixes discrete
probabilities q with continuous ones P (y|Λ), the MAPC should be carefully
formulated. For that reason, we must find first the MAP co-support Λ̂MAPC

by maximizing the co-support posterior P (Λ|y),

Λ̂MAPC = arg max
Λ∈Γ

P (Λ|y) , (15)

and only then compute the associated MAPC estimate, x̂MAPC as the oracle
on the found co-support.

Plugging Equation (13) into Equation (15), taking the log and inverting the
sign of the penalty function while minimizing over all possible co-supports, we
obtain the following optimization task for the MAPC estimator

Λ̂MAPC = arg min
Λ∈Γ

1

2σ2
x

yTC−1
Λ y +

1

2
ln [det (CΛ)]− |Λ| ln

(
q

1− q

)
. (16)

After the co-support Λ̂MAPC is computed, the MAPC estimate x̂MAPC is
obtained by substituting this co-support into the Oracle formula in Equation
(9),

x̂MAPC = QΛ̂MAPCMTC−1

Λ̂MAPC
y. (17)

Observe that the minimization task in Equation (16) sweeps over all the pos-
sible co-supports Λ in Γ to compute Λ̂MAPC , suggesting again that computing
this estimation is as hard as the MMSE. Just as for the MMSE, the work in [43]
derived a close-form shrinkage solution for the MAP estimation. However, this
is relevant only for unitary dictionaries, and thus these results are not applicable
here.

4.4. Maximum A-posteriori Probability for Subspace (MAPS) Estimator

Section 3 describes how a signal x is projected onto the subspace spanned
by the rows of ΩΛ, where Λ is the co-support drawn for that signal. When the
dictionary Ω is redundant, i.e., p > d, there are linear dependencies between
rows of Ω. Consequently, different co-supports may span the same subspace.
Hence, the probability of a signal to be drawn with that subspace increases. Due
to this fact, we suggest an alternative MAP – Maximum A-posteriori Probability
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for Subspace (MAPS) estimator, that aims to maximize the subspace posterior
p.d.f.. Like MAPC, this estimator is MAP-based and it should be carefully
derived, thus we find first the MAP subspace Ψ̂MAPS , and then compute the
MAPS estimate x̂MAPS using the Oracle formula in Equation (9) with the
subspace Ψ̂MAPS .

Let us define ΛΨ as the biggest co-support such that the rows of ΩΛΨ
span

the subspace Ψ. Let P (Ψ) be the probability of this subspace Ψ, defined as
the sum of all the probabilities of the co-supports that span it,

P (Ψ) =
∑

Φ ⊆ ΛΨ,
span (ΩΦ) = Ψ

P (Φ) . (18)

Using Bayes’s rule and Equation (18), the MAPS estimator is defined as follows

Ψ̂MAPS = arg max
Ψ

P (Ψ|y)

= arg max
Ψ

P (y|Ψ)P (Ψ)

= arg max
Ψ

P (y|Ψ)
∑

Φ ⊆ ΛΨ,
span (ΩΦ) = Ψ

P (Φ) , (19)

where P (y|Ψ) is the likelihood of a signal given a subspace, computed using
Equation (12) with any co-support that spans Ψ, (e.g., ΛΨ). Applying similar
algebraic steps as with MAPC, we can rewrite Equation (19) as follows,

Ψ̂MAPS = arg min
Ψ

1

2σ2
x

yTC−1
Ψ y +

1

2
ln [det (CΨ)]

− ln


∑

Φ ⊆ ΛΨ

span (ΩΦ) = Ψ

(
q

1− q

)|Φ|
 , (20)

where CΨ is defined in Equation (7) but computed with one of the co-supports
that spans Ψ. After computing the subspace Ψ̂MAPS , the MAPS estimate
x̂MAPS is obtained using the Oracle formula (9),

x̂MAPS = QΨ̂MAPSMTC−1

Ψ̂MAPS
y. (21)

Similarly to the previous estimators, the MAPS estimator sweeps over all possi-
ble subspaces (and their co-supports), requiring a sweep over all 2p co-supports.
Therefore, the complexity of this estimator is as hard as the previous MAPC
and MMSE estimators.

The difference between the optimization task for MAPC estimation in Equa-
tion (16) and that of MAPS in Equation (20) is in the last term, which is given
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by the sum of the co-support probabilities P (Φ). The signal generation proce-
dure presented in Section 3 describes a model where the same subspace can be
drawn for different co-supports, increasing the probability that such a subspace
be chosen for the signal. In fact, some subspaces that are spanned by a bigger
number of combinations of rows from Ω, become more probable in compari-
son to their probability in MAPC estimation. This is the reason why this new
estimate formulation is of interest.

The change of view from co-support to subspace as in MAPS, may be done
in the MMSE estimator as well. The MMSE estimator can be derived using the
subspace posterior p.d.f. to obtain a summation of all the possible subspaces,
instead of co-supports as in Equation (14). However, there is no numerical
difference between these two possible derivations. The probability of a subspace
is equal to the sum of the probabilities of the co-supports which span that
subspace, and the oracle estimate is the same for all of them. Therefore, there
is no point in studying a MMSE formula with a sweep over all the subspaces.

5. MAP Versus Deterministic Pursuit

In this section we show a relation between the deterministic problem in
(1) and the MAP-based estimators described in the previous section. This
connection refers to the equivalence between the deterministic problem and the
optimization problems solved to compute the MAP-based estimators (for both
MAPC and MAPS) when the dictionary has specific characteristics. This fact
allows us to define closed-form formulas based on the model parameters for the
regularizers λ0 and λ2 in the deterministic problem.

5.1. Preliminaries

Let us start by proving the following Lemmas that are useful in the proof of
the main theorem below.

Lemma 1. Given a dictionary Ω, a co-support Λ, and a measurement y, the
following two optimization tasks:

(A) xA = arg min
x
‖y −Mx‖22 + λ2 ‖x‖22

s.t. ΩΛx = 0,

and
(B) xB = arg min

x
‖y −MQΛx‖22 + λ2 ‖x‖22 ,

where QΛ is given in Equation (3), and λ2 > 0, have the same minimizer, i.e.,
xA = xB.

Proof: Let x be a feasible solution of problem (A), thus satisfying the con-

straint ΩΛx = 0. Then, QΛx = x and we have that ‖y −Mx‖22 + λ2 ‖x‖22 =

‖y −MQΛx‖22 + λ2 ‖x‖22, which is the same penalty as in problem (B). In
particular, the optimizer of (A), xA, is one feasible solution that satisfies the
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constraint, hence ‖y −MQΛxB‖22 + λ2 ‖xB‖22 ≤ ‖y −MQΛxA‖22 + λ2 ‖xA‖22 =

‖y −MxA‖22 + λ2 ‖xA‖22.
We now show that the minimizer of (B) satisfies the constraint ΩΛx = 0. Let

us decompose x as x = QΛx + x̄, where the vectors QΛx and x̄ are orthogonal
to each other, i.e., x̄TQΛx = 0. In particular, QΛx̄ = 0. The penalty function
in (B) is then given by

‖y −MQΛ (QΛx + x̄) ‖22 + λ2‖QΛx + x̄‖22
= ‖y −MQΛx‖22 + λ2‖QΛx‖22 + λ2‖x̄‖22.

Clearly, the term ‖x̄‖22 must be zero for xB , otherwise we can reduce the func-
tional by subtracting x̄ from xB . Hence, the minimizer xB satisfies the con-
straint ΩΛxB = 0 in the optimization task (A), and it is part of the feasible

domain. In particular, we obtain ‖y −MxA‖22 + λ2 ‖xA‖22 ≤ ‖y −MxB‖22 +

λ2 ‖xB‖22.
Problems (A) and (B) are convex optimization problems with strictly convex

penalty functions of quadratic form (where QT
ΛMTMQΛ +λ2I and MTM+λ2I

are positive definite matrices). From this and the previous arguments, it follows
that the minimizer of (A) and the minimizer of (B) are the same, i.e. xA = xB .

The following Lemma connects between the two MAP-based estimators we
introduced earlier - the MAPC and the MAPS. (1).

Lemma 2. If the analysis dictionary Ω is in “general position”, i.e.
dim (ΩΛ) = |Λ| for any co-support Λ satisfying |Λ| ≤ d, then x̂MAPC = x̂MAPS.

Proof: From the fact that there are no linear dependencies in Ω, every co-
support Λ with |Λ| ≤ d, defines a subset of linearly independent rows ΩΛ that
span a distinct subspace. Therefore, the last term from the MAPS penalty in
Equation (20) reduces to only one co-support that spans that subspace. In such
a case, the penalty of the MAPS optimization task reduces exactly to the MAPC
optimization task proving that Λ̂MAPC = Λ̂MAPS and also x̂MAPC = x̂MAPS .

5.2. Main Result - Deterministic-Bayesian Equivalence

Now we turn to show the relation between the MAPC estimate and the
deterministic problem posed in Equation (1):

Theorem 3. Assuming that (i) the analysis dictionary Ω is in general position,
i.e., |Λ| = dim (ΩΛ) for any co-support Λ such that |Λ| ≤ d, (ii) the observation
matrix M satisfies MTM = cI (c > 0), and (iii) the noisy signal y is contami-
nated with white Gaussian i.i.d. noise N

(
0, σ2I

)
, then the MAPC estimate, as

defined in Equations (16) and (17), and the deterministic pursuit, as defined in

Equation (1), are equivalent, where λ2 = σ2

σ2
x

and λ0 = 2σ2 ln

[
q

1−q

√
σ2+cσ2

x

σ2

]
.
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Proof: First, let us recall how the MAPC and the deterministic pursuit operate.
The MAPC estimation is obtained by solving for the MAPC co-support

Λ̂MAPC = arg min
Λ∈Γ

1

2σ2
yTy − 1

2σ2
yTMQΛ

(
σ2

σ2
x

I + QΛMTMQΛ

)−1

QΛMTy

+
1

2
ln [det (CΛ)]− |Λ| ln

(
q

1− q

)
, (22)

and computing the estimate x̂MAPC = QΛ̂MAPCMTC−1

Λ̂MAPC
y, whereas the

deterministic pursuit is computed by solving

x̂DET = arg min
x
‖y −Mx‖22 + λ2 ‖x‖22 + λ0 ‖Ωx‖0 . (23)

Let Λ be a co-support with respect to x, such that ΩΛx = 0 and |Λ| ≤ d. By
definition, we have that ‖Ωx‖0 = p − |Λ| for the associated x. Therefore, by
requiring ΩΛx = 0, we rewrite the problem in (23) as a constrained minimization
over both x and Λ as follows

arg min
Λ

[
arg min

x
‖y −Mx‖22 + λ2 ‖x‖22 + λ0 (p− |Λ|)

]
s.t. ΩΛx = 0. (24)

Using Lemma 1 we rewrite this in unconstrained form:

arg min
Λ

[
arg min

x
‖y −MQΛx‖22 + λ2 ‖x‖22 + λ0 (p− |Λ|)

]
. (25)

Let us calculate the optimal solution x̂ of the inner minimization task (25),
assuming that Λ is given. We differentiate the penalty function J (x; Λ) =

‖y −MQΛx‖22 + λ2 ‖x‖22 + λ0 (p− |Λ|) and set it equal to 0:

0 =
∂J (x; Λ)

∂x
= −2QΛMTy + 2QΛMTMQΛx + 2λ2x.

Then, the optimal x̂ for a given co-support Λ is given by

x̂ =
(
λ2I + QΛMTMQΛ

)−1
QΛMTy (26)

= QΛMT
(
λ2I + MTQΛM

)−1
y,

where the last step is obtained by applying the matrix inversion lemma (see
Appendix A). Note the similarity between x̂MAPC in problem (22) and x̂ (up
to the yet unknown co-support).

Plugging Equation (26) into the optimization task in (25), we obtain the
penalty to be minimized with respect to the co-support

arg min
Λ
J (x̂; Λ) = arg min

Λ

∥∥∥y −MQΛ

(
λ2I + QΛMTMQΛ

)−1
QΛMTy

∥∥∥2

2

+λ2

∥∥∥(λ2I + QΛMTMQΛ

)−1
QΛMTy

∥∥∥2

2
+ λ0 (p− |Λ|)

= arg min
Λ
‖y‖22 − yTMQΛ

(
λ2I + QΛMTMQΛ

)−1
QΛMTy

+λ0 (p− |Λ|) . (27)
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Equation (27) above shows signs of similarity (up to a constant) with the penalty
of the MAPC estimator in Equation (22). Next, we compare both penalty func-
tions to find the values for the parameters λ2 and λ0 to make the problems
identical. By comparing the solutions x̂ in Equation (26) and the MAPC esti-
mate in Equation (17) we have

λ2 =
σ2

σ2
x

. (28)

Now, we compute the determinant of the matrix CΛ for a given co-support
Λ:

det (CΛ) = det

(
σ2

σ2
x

I + MQΛMT

)
=

(
σ2

σ2
x

)k
det

(
I +

σ2
x

σ2
MQΛMT

)
=

(
σ2

σ2
x

)k
det

(
I +

σ2
x

σ2
MTMQΛ

)
=

(
σ2

σ2
x

)k
det

(
I + c

σ2
x

σ2
QΛ

)
=

(
σ2

σ2
x

)k (
1 + c

σ2
x

σ2

)d−dim(ΩΛ)

, (29)

where in the second step a determinant identity is used (see Appendix A), and
the assumption MTM = cI is used in the third step. As there are no linear
dependencies in ΩΛ, dim (ΩΛ) can be substituted by the co-support size |Λ| in
Equation (29).

Finally, compare Equation (27) to the MAPC optimization task in (22) and
substitute the determinant of CΛ in Equation (29), while assuming dim (ΩΛ) =
|Λ|. We get

λ0 = 2σ2 ln

(
q

1− q

√
σ2 + cσ2

x

σ2

)
, (30)

which completes the proof.

This theorem yields a relation between the Bayesian and deterministic ap-
proaches. This relation is limited to observation matrices satisfying MTM = cI
and general positioned Ω. In more general scenarios, where linear dependen-
cies in Ω do exist, there are differences between these three methods (MAPC,
MAPS, and the deterministic pursuit). These differences occur in the last two
terms of Equations (22), (20), and (1) and correspond to the co-support size |Λ|
or the dimension dim (ΩΛ) of the subspace spanned by the rows of ΩΛ.
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5.3. Denoising

In the particular task of denoising, whereupon M = I, the observation ma-
trix requirement in Theorem 3 is satisfied. Therefore, we use this problem to
compare the estimators and the deterministic problem, for non-general posi-
tioned dictionaries. For denoising, the solution x̂ in Equation (26) is simplified
to

x̂ = (λ2I + QΛ)
−1

QΛy.

Obviously, the oracle estimator formula in (9) is the same. We can substitute QΛ

using its singular value decomposition UΣUT , and rewrite the above formula
as

x̂ = U (λ2I + Σ)
−1

ΣUTy.

We note that the diagonal matrix Σ contains d − dim (ΩΛ) ones, and zeros

otherwise. Thus, the diagonal matrix (λ2I + Σ)
−1

Σ contains d − dim (ΩΛ)
elements with value 1

1+λ2
and zeros elsewhere. As a result, this matrix functions

as a hard thresholding operator, zeroing all the components in the subspace
spanned by the rows of ΩΛ, and shrinking the part of the signal that resides
in the orthogonal subspace by a factor 1

1+λ2
. If we substitute the λ2 formula

obtained in Theorem 3, λ2 = σ2

σ2
x

, the actual shrinkage factor is given by the

ratio
σ2
x

σ2
x+σ2 , expressing the relation in energy between the clean signal and its

noisy measurement.
When comparing the MAPS with the MAPC optimization tasks for a general

dictionary, we observe that for low noise, σ2 → 0, the `2-term dominates the
penalty function and the estimate is approximated mainly using this term, and
the co-support Λ tends to be empty. On the other extreme, for high noise
σ2 → +∞, the determinant term dominates the penalty function and it is
expected that dim (ΩΛ) → d, namely, x̂ ' 0. Additionally, when q → 0 the
co-support probability term tends to +∞ and the co-support Λ tends to be
empty with an estimate x̂ given by the `2-term. In contrast, when q → 1 the
last term tends to −∞ with a co-support Λ including all the rows in Ω. In such
a case, the estimate is given by x̂ ' 0. The deterministic problem with λ2 and
λ0 given by Theorem 3 should have a similar behaviour. Thus, we expect to see
a performance gap only for intermediate noise values.

We now run a numerical denoising experiment to show these differences. Our
signals are small 2D images of size 4× 3 samples, represented lexicographically
as vectors in R12. Our analysis dictionary computes all the possible horizontal
and vertical differences (without the borders), thus being of size R17×12. Using
this dictionary, we draw 1000 signals as described in Section 3 with parameters
σx = 1, q = 9/17 and noise σ in the interval [0.01, 1]. Then, the various estimators
are computed exhaustively iterating over each possible co-support. The perfor-
mance is measured using the Relative-Mean-Squared-Error (RMSE) given by

the formula
‖x−x̂‖22
d×σ2 , with a value lower than one referring to effective denoising.

Then, we compare the RMSE of the estimators with that of the deterministic
solution using two strategies for fixing λ2, the first taken from Theorem 3, and
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the second is an optimal value using an exhaustive search. Figure 1 shows the
performance comparison for these methods. It can be seen that the determin-
istic approach (DET) using the Theorem 3 regularizer value performs similarly
to the version with the optimized value. Moreover, while the MAPS and the
DET approach have similar performances, the MAPC performance lags behind.
As expected, the MMSE remains the best practical estimator (as it minimizes
the MSE), while the Oracle estimator indeed seems to be a lower bound on the
achievable performance.

Figure 1: Comparison of denoising performance of the Bayesian estimators and the determin-
istic optimization task with the λ0 closed formula from Theorem 3 and with the optimal λ0

value (ΩDIF ∈ R17×12, q = 9/17, σx = 1, σ ∈ [0.01, 1]).

6. Approximation Algorithms

For the MAP and MMSE estimators in Section 4, the optimization tasks
involved are combinatorial in nature. All of them require a sweep over all pos-
sible 2p co-supports to obtain the optimal solution. In order to overcome this
complexity, we introduce approximation algorithms for these estimators. The
MMSE estimate is approximated using a Gibbs sampler. An approximation to
the MAPC and the MAPS estimators is computed using greedy pursuit algo-
rithms, where for MAPS a special penalty approximation is required.

6.1. MMSE Approximation

The MMSE estimator in Section 4.2 requires the computation of an Oracle
estimate for all possible co-supports Λ. This task is computationally prohibitive
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so, instead, we sample some co-supports according to their probability, and
compute their Oracle estimates. With this partial set of likely co-supports and
their estimates, we approximate the MMSE estimate. This sampling scheme
will use the core idea of the Gibbs sampler [23].

The sampling process begins with an initial co-support Λ0, for instance an
empty or a random co-support. Then, in every iteration the co-support Λi is
obtained by updating one element (a row in Ω) from the previous co-support
Λi−1. The updating of atom j is done by evaluating the probability of the atom
to be part of the co-support based on the last sampled version. The probability
of atom j to be active or inactive for the co-support Λi is given by

P
(
j|Λi−1
∗ ,y

)
=


1
t

1√
det
(
C

Λ
i−1
∗ ∪{j}

) exp
{
− 1

2σ2
x
yTC−1

Λi−1
∗ ∪{j}y

}
q j ∈ Λi

1
t

1√
det
(
C

Λ
i−1
∗

) exp
{
− 1

2σ2
x
yTC−1

Λi−1
∗

y
}

(1− q) j /∈ Λi
,

(31)
where Λi−1

∗ is the co-support Λi−1 without element j, and t is a normalization
factor. Then, we toss a coin based on the probabilities P

(
j|Λi−1
∗ ,y

)
to update

the state for atom j in the co-support Λi. Together with the atom update,
the estimate x̂i with the co-support Λi is computed. The process repeats by
iterating through every atom in Ω and continues cyclically after all the atoms
are tested. After a certain number of iterations, the process is stopped and the
MMSE is approximated as the average of the N estimates x̂i obtained:

x̂MMSE =
1

N

N∑
i=1

x̂i.

The method is summarized in Algorithm 1.

6.2. MAPC Approximation

The optimization task in (16) for the MAPC estimator also suggests a sweep
over all possible co-supports in order to find the optimal co-support that maxi-
mizes the penalty function. This penalty is given as

1

2σ2
x

yTC−1
Λ y +

1

2
ln [det (CΛ)]− |Λ| ln

(
q

1− q

)
.

In this case, we propose a greedy pursuit algorithm to approximate a solution
to task (16), following the idea in [17, 4].

The greedy pursuit algorithm for approximating MAPC starts from an empty
co-support, i.e., Λ0 = ∅, and adds a new element (row) in each iteration of the
algorithm. A new row is selected by iterating over every element j that is not
in Λi−1 and computing the value of the penalty function for a provisional co-
support which involves the previous elements and j, i.e., Λj = Λi−1∪{j}. Next,
the row jmin that achieves the minimum penalty value is chosen to update the
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Algorithm 1 MMSE Approximation

1: Input: Analysis dictionary Ω ∈ Rp×d, observation operator M ∈ Rk×d,
noisy observed signal y ∈ Rd, model parameters σx, σ, q, and N the number
of iterations.

2: Output: Approximated signal x̂ ∈ Rd.

3: Initialization: Set i = 0, Λ0 := ∅ (or any other initial co-support).

4: while i < N do
5: i := i+ 1.

6: Choose an Atom: j ∈ {l}pl=1

7: Compute Provisional Co-support: Λ∗ := Λi−1 − {j}
8: Compute Probabilities: Calculate probabilities P (j|Λ∗,y) for atom

j to be part of the co-support Λi (pin) and to stay outside of it (pout).
Normalize the values such that pin + pout = 1.

9: Toss a Coin: Draw a value pcoin in the range [0 . . . 1].
10: Update Co-support: for pcoin < pin update Λi := Λi−1 ∪ { j }, other-

wise update Λi := Λi−1 − { j }.
11: Compute Current Estimate: x̂i := QΛiM

TC−1
Λi y.

12: end while

13: return x̂ = 1
N

N∑
i=1

x̂i.
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Algorithm 2 MAPC and MAPS Approximations

1: Input: Analysis dictionary Ω ∈ Rp×d, sensing operator M ∈ Rk×d, noisy
signal y ∈ Rk, and parameters σx, σ and q.

2: Output: Signal x̂ ∈ Rd with co-support Λ̂.

3: Initialization: Set i = 0, Λ0 := ∅, F1 = 1 (for MAPS)

4: while Stopping criterion is not met do
5: i := i+ 1

6: for j /∈ Λi−1 do
7: Update Provisional Co-support: Λ̂j := Λi−1 ∪ {j}
8: Update Provisional Linear Dependencies: Λ̂j := Λ̂j ∪ {k :

QΛ̂j
ωk = 0}

9: Provisional Error: With Λ̂j as co-support, compute Penalty(j) for
MAPC using Equation (16), or for MAPS using Equation (20) with the
last term approximated using Equation (32).

10: end for
11: Sweep: jmin := arg minj /∈Λi−1 Penalty(j)
12: Update Co-support: Λi := Λi−1 ∪ { jmin }
13: Update Linear Dependencies: Λi := Λi ∪ {k : QΛiωk = 0}
14: end while

15: return x̂ := QΛ̂MTC−1

Λ̂
y and Λ̂ = Λi.

co-support, i.e., Λi = Λi−1∪{jmin}. Additionally, rows that are linearly depen-
dent on rows in the co-support are added to Λi. It is worth noting that these
steps increment by one the dimension of the solution’s subspace. The previous
steps are repeated until a stopping criterion is met. Typical stopping criteria are
given by the error term [12] or the co-sparsity of the co-support or its co-rank
[17], or a local minimum in the penalty function for the updated co-support.
After exiting the main loop, the approximated estimate x̂ is computed using
the Oracle formula in (9) with the current co-support, see Algorithm 2.

It is worth noting that there is a similarity between the penalty function
of the deterministic pursuit (1) (upto λ2 and λ0) and the penalty function of
the MAPC estimator. This means that a similar approximation algorithm can
be formulated for the deterministic pursuit. In fact, the pursuit algorithm that
we propose is similar to the Backward Greedy (BG) and the Optimized Back-
ward Greedy (OBG) algorithms proposed by Rubinstein et al.[11]. The main
difference from these algorithms lies in the fact that the provisional error is com-
puted using the penalty function and not only the `2-term like for BG or OBG.
In many cases, this discrepancy produces different solutions. Additionally, while
BG and OBG were proposed for the denoising task only, MAPC incorporates
an observation matrix M for solving more general inverse problems.
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6.3. MAPS Approximation

With a penalty function similar to that of MAPC, one may suggest a greedy
pursuit approximation to Equation (20) for obtaining an approximation to the
MAPS estimator. Unfortunately, the MAPS estimator requires knowledge of
which co-supports span the same subspace. This extra piece of information is
not easy to compute and it changes with the dependency relations between the
rows of the dictionary Ω. Nevertheless, we present a greedy pursuit algorithm
that approximates the MAPS estimator by approximating these dependency
relations in an efficient manner.

Consider the summation in the last term of the MAPS optimization task
in Equation (20) and assume that it has been fully computed for the previous
iteration of a greedy pursuit algorithm with the subspace Ψi−1 , that is, assume
that the following is known:

Fi−1 =
∑

Φ ⊆ ΛΨi−1

span (ΩΦ) = Ψi−1

(
q

1− q

)|Φ|
.

How can this term be updated for Ψi? When a new element is added to form the
subspace Ψi, all the subsets that span the same subspace Ψi should be taken into
account. However, different linear dependencies may exist among the subsets of
ΛΨi , making this a non-trivial combinatorial problem. Therefore, we propose
to approximate the original term by partial counting of these subsets. The idea
is to easily count as many terms in the summation as we can, such that all these
terms are correct (that is, they should be part of the true summation). Let us
assume that a new row is added to the co-support, in the process of updating
the subspace Ψi from Ψi−1. Along with this newly added row, other rows may
join as they are found to be linearly dependent on the resulting subspace - let
us assume that the overall number of rows added is m. In order to obtain a
co-support Φ that spans Ψi, we may add any non-empty combination of these m
elements to the previous co-support ΛΨi−1

3. If, for example, a specific subset of

r such elements is added to the co-support, this should contribute Fi−1 ·
(

q
1−q

)r
to the computation of Fi, as it corresponds to all the possible co-supports that
were used in the summation of Fi−1, each with the extra r elements.

Thus, we obtain the approximation of the summation term by taking into
account all the possible combinations with the m new elements by considering

3Recall that this is the maximal co-support that spans Ψi−1.
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all the possible choices of 1 ≤ r ≤ m out of m:

Fi =
∑

Φ ⊆ ΛΨi

span (ΩΦ) = Ψi

(
q

1− q

)|Φ|
≥


∑

Φ ⊆ ΛΨi−1

span (ΩΦ) = Ψi−1

(
q

1− q

)|Φ|


·

[
m∑
r=1

(
m
r

)(
q

1− q

)r]

= Fi−1 ·
m∑
r=1

(
m
r

)(
q

1− q

)r
. (32)

The reason for the inequality above is simple - there might be other co-supports
that do not contain all ΛΨi−1 and yet span Ψi and those evidently are not taken
into account. When using only the equality part from the Inequality (32), one
may suggest an approximate update formula between two iterations of a greedy
algorithm for the summation term. Interestingly, the update formula depends
only on the model parameter q and the number m of added rows. Instead of
using the computation in Inequality (32), we can apply the Binomial theorem
to obtain the following closed formula which is easier to compute:

m∑
r=1

(
m
r

)
·
(

q

1− q

)r
=

(
1

1− q

)m
− 1.

The final greedy pursuit algorithm for MAPS approximation is presented in
Algorithm 2.

6.4. Computational Complexity

We analyse the time complexity of the three approximation algorithms pro-
posed in the previous sections as described in Appendix B. All the algorithms
can be implemented using the Modified Gram Schmidt (MGS) algorithm and
exploiting the matrix inversion lemma to reduce the complexity of inverting the
matrix CΛi and computing the provisional linear dependencies.

The MAPC and MAPS approximation algorithms behave similarly but with
distinct penalty functions. More specifically, these functions differ only in their
last term. Still the complexity in both cases is the same. The bottleneck in the
time complexity of both algorithms is where the provisional linear dependencies
are updated. The inner loop can be replaced by maintaining a p by p matrix Gi,
and thus reducing the complexity from O

(
p2d
)

- applying a matrix multiplica-

tion for each row - to O
(
p2
)

to find the provisional linear dependencies. Since
this matrix needs to be updated in each iteration, the main loop for both al-
gorithms has O

(
p2r
)

time complexity; the outer loop gathering the co-support
up to r dimensions (being r the co-rank, with r < d) adds the extra factor
r. Additionally, during the initialization, the matrix G0 is computed with time

20



complexity O
(
p2d
)
, as well as a Cholesky factorization of CΛ0 that takes place

with execution time proportional to O
(
k3
)

to exploit the complexity improve-
ments obtained by MGS. Under the assumption that k ≤ d (recall that k is the
number of measurements in y), the overall time complexity of both algorithms
is O

(
p2d
)
.

Comparing to the BG and OBG algorithms, the MAPC and MAPS approx-
imations have the same complexity. The BG and OBG algorithms have time
complexity O

(
p2d
)
, also achievable exploiting the MGS method. The reason

for the same complexity is that we manage to remove the inner loop in MAPC
and MAPS by maintaining the extra matrix Gi and thus pairing the complexity
to the BG, and OBG methods.

The time complexity of the approximation algorithm for MMSE estimation
is bounded by the computation of the probabilities pin and pout of element j.
When the co-support does not change between iterations, one of these probabili-
ties remains the same and does not add to the complexity of the algorithm. The
other probability depends of the current state in the co-support. If an element
enters the co-support, then it is equivalent to computing a MGS step in O (pd).
On the other hand, when an element leaves the co-support, all the other ele-
ments in the co-support should be updated to take into account the eliminated
dimension. This update requires a restart of the MGS computation for all the
elements in the co-support in O

(
pd2
)

time. The main loop in this algorithm

runs for N iterations, with an overall O
(
Npd2

)
complexity in the worst case.

Note that N should be at least p and typically N � p, because we must iterate
at least one time per each element in the dictionary Ω. The initialization of the
MMSE algorithm is the same as MAPC and MAPS because the same Cholesky
factorization is computed in O

(
k3
)

operations (with k ≤ d). If the algorithm
is initialized with a non-empty co-support then MGS should be applied for this
co-support, adding O

(
p2d
)

to the complexity. All in all, the time complexity

of the MMSE algorithm is bounded by O
(
Npd2

)
� O

(
p2d2

)
.

The solution x̂ of the MMSE estimate is not co-sparse, in contrast to the
MAPC and MAPS solutions. Moreover, it is known that a Gibbs sampler may
converge extremely slowly [50, 23] such that the number of iterations N is much
bigger than p. We demonstrate this fact with the following denoising simulation.
We select the dictionary ΩDIF for image patches of 8 by 8 pixels with p = 112
and d = 64. The MMSE approximation algorithm is tested with 1000 signals
generated with the current model and with parameters σx = 1, q = 58/112.
The simulation is repeated for several noise values σ in the interval [0.01, 1].
The denoising performance is measured using RMSE. The graph in Figure 2
presents the average performance achieved after N iterations for several values
of N . As expected, the performance improves with the number of iterations but
the algorithm converges slowly. In this case, we note that the algorithm seems
to converge when N ≈ dp for the current experiment. In general, the MMSE
approximation has a greater time complexity of O (Nd) times the cost of the
MAP-based approximations, making the later more affordable.
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Figure 2: Denoising performance of the MMSE approximation with different values for the
number of iterations N .

7. Simulation Results

In this section, we present a set of experimental results to evaluate the
performance of the approximation algorithms. First, we present experiments
on synthetic signals, demonstrating the ability of the approximation algorithms
introduced in Section 6 to perform well compared to the optimal solutions. Sec-
ond, we show image reconstruction results with the current algorithms applied
to the denoising and inpainting problems. We present visual inpainting results
for piecewise-constant and natural images. Note that in all these experiments we
choose a specific analysis dictionary ΩDIF (horizontal and vertical derivatives)
rather than optimizing it for best performance, as practiced in [17, 51, 52, 24].
Thus the shown results are not the best possible with the Analysis model, as
our main goal here is to demonstrate the relevance of the Bayesian approach
taken and the approximation methods proposed for practical inverse problems.

7.1. Synthetic Experiments

The first experiment shows the behavior of the approximation algorithms
presented in Section 6 in comparison to their exhaustive counterparts, and this is
done for the denoising task (M = I). In this experiment, the analysis dictionary
ΩDIF contains horizontal and vertical finite differences for image patches of size
4 by 3 pixels (p = 17, d = 12). Recall that small dimensions are required in
order to enable the computation of the exhaustive estimations. We generate
1000 signals (with σx = 1, q = 9/17) as described in Section 3 and apply the
different methods for reconstruction. The values for the λ0 and λ2 regularizers
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in the deterministic approach are given by the formulas in Theorem 3. The
MAP-like and deterministic (DET) approximations stop when a local minimum
is reached with respect to their penalty functions. The MMSE approximation
runs for 400 (which is roughly 23p) iterations for each reconstructed signal.
Figure 3 shows the average denoising performance for all these methods with
the noise level σ varying in the range [0.01, 1]. The performance is measured

using the Relative-Mean-Squared-Error (RMSE):
‖x−x̂‖22
d×σ2 . As can be seen, there

is a good match between the approximate and exhaustive results.
The next synthetic experiment focuses on the inpainting problem – interpo-

lating missing values in the signals. For this experiment, the analysis dictionary
is ΩDIF as before. We generate 1000 signals as described in Section 3 (with
σx = 1, q = 9/17, σ = 0.1) and their respective observation matrices. An ob-
servation matrix M selects a randomly chosen subset of the samples from the
signal while removing the rest. This matrix is built for each signal by randomly
drawing rows from the identity matrix. The performance is measured using

Root-Mean-Squared-Error (Root-MSE):

√
‖x−x̂‖22

d . In Figure 4, the various es-
timators and their approximations are shown as a function of the percentage of
missing elements in the measured signal. Together with these methods, a trivial
`2 solution4 is included as a reference. The results show that the approximations
are quite accurate, and the order between them is as expected.

The previous experiments require the computation of exact estimators by
exhaustive sweeps through all possible co-supports. This is possible only for
unrealistically low dimensional signals. Next, we run two more synthetic ex-
periments, of denoising and inpainting, but this time using higher dimensional
signals, and therefore we cannot compute these exact estimators. We select
ΩDIF for image patches of size 8 by 8 pixels (p = 112, d = 64) as the analy-
sis dictionary, as shown in Figure 7. Then, we generate 1000 signals as in the
previous experiments with σx = 1, and q = 58/112 as model parameters. The
remaining parameters are the same as in the low dimensional experiments. The
Gibbs sampler for MMSE estimation runs for N = 32 · p = 3584 steps. Addi-
tionally, we included in the denoising plot the results for the known algorithms
BG, OBG [17], and GAPn [12] to compare with the Bayesian estimators and the
deterministic method. The error threshold used for these algorithms is set to
1.1
√
dσ. We note that these algorithms do not assume a prior on x besides the

co-sparsity property, thus the ‖x‖22 term does not appear in their penalties. The
results of these experiments are depicted in Figures 5 and 6, showing similar re-
covery behaviour as in the low-dimensional signals. The MAPS approximation
gives better results than the deterministic approach in both experiments. Also,
DET and MAPS achieved better performance than BG, OBG and GAPn. We
recall that the difference between OBG and DET depends on how the provi-

4The trivial solution aims to solve the inverse `2 problem given by ‖y −Mx‖22 + λ2 ‖x‖22.
This solution is in fact the first step done by all the greedy algorithms presented in this work,
when Λ = ∅.
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Figure 3: Denoising performance of the estimators and their respective approximation algo-
rithms (ΩDIF ∈ R17×12, q = 9/17, σx = 1, σ ∈ [0.01, 1]). The deterministic method uses λ0 as
given in Theorem 3.

Figure 4: Inpainting results of the exhaustive Bayesian estimators (Oracle, MAPC, MAPS,
and MMSE) and the deterministic pursuit (DET) compared to their approximated solutions as
a function of the number of missing elements in the signal (ΩDIF ∈ R17×12, σx = 1, q = 9/17).
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sional error is computed. The OBG algorithm uses only the `2 term while DET
also accounts for the `0 term for co-sparsity measure together with the `2 term.

Figure 5: Comparison of the denoising performance for several approximation algorithms
(Oracle, MAPC, MAPS, and MMSE), the deterministic approximation (DET), BG, OBG,
and GAPn methods applied to high-dimensional signals (with ΩDIF ∈ R112×64, σx = 1, q =
58/112, σ ∈ [0.01, 1]).

7.2. Experiments with Images

We next present experimental results for denoising and inpainting of real
images, in order to demonstrate the algorithms on true data. For the denoising
task, we reconstruct a noisy version of Lena for various levels of white Gaussian
noise with σ in the range 5−30. In the denoising case, the observation operator
M is the identity matrix I. The approach we take is to reconstruct the image
locally by extracting all possible 8 × 8 pixel patches with overlaps, denoising
each such patch by imposing the Co-Sparse Analysis model and exploiting the
above developed estimators, and then merging the results. Before processing
each patch, we remove the mean value of the pixels in the patch in order to
satisfy the zero mean assumption of the signal model, and it is then added back
to the cleaned patches. Finally, the resulting patches are aggregated by simple
averaging to reconstruct the full image.

The analysis dictionary ΩDIF used for this task is the same as in previous ex-
periments (see Figure 7). The denoising performance is measured using RMSE,
evaluated for the approximation algorithms for the Bayesian estimators and the
deterministic pursuit approach (DET). The values for the model parameters for
each estimator and regularizer parameters λ0 and λ2 for DET are exhaustively
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Figure 6: Comparison of inpainting results for several approximation algorithms (Oracle,
MAPC, MAPS, and MMSE), the deterministic approximation (DET), and GAPn algorithm.
The number of missing elements in the signal varies between 10% and 90%, the remaining
parameters are ΩDIF ∈ R112×64, σx = 1, q = 58/112.

searched for best performance5 and appear in Table 1. Additionally, the MMSE
runs for N = 16 · p = 1792 steps.

Figure 8 shows the performance of the various methods as a function of
the noise level. We find that the Bayesian estimators and the Deterministic
approach manage to reduce noise effectively. In particular, the MAP-based ap-
proaches and DET obtain similar results for all noise levels. Differences between

5One could consider finding these parameters via SURE, but this is beyond the scope of
this work.

Noise σ DET MAPC MAPS MMSE
λ2 λ0 σx q σx q σx q

5 0.010 7000 30 0.70 30 0.55 30 0.55
10 0.040 7000 50 0.75 40 0.60 40 0.60
15 0.046 15000 60 0.75 70 0.70 80 0.70
20 0.063 20000 80 0.75 80 0.70 80 0.70
25 0.037 60000 200 0.80 190 0.70 190 0.70
30 0.063 45000 200 0.80 200 0.70 190 0.70

Table 1: Algorithm parameters for denoising of Lena.
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Noise σ DET MAPC MAPS MMSE
λ2 λ0 σx q σx q σx q

5 0.0031 35000 200 0.65 200 0.55 200 0.55
10 0.0051 50000 200 0.60 200 0.55 200 0.55
15 0.0088 65000 200 0.65 200 0.55 200 0.55
20 0.0100 80000 200 0.60 200 0.50 200 0.60
25 0.0156 87500 200 0.60 200 0.50 200 0.60
30 0.0225 87500 200 0.65 200 0.50 200 0.65

Table 2: Algorithm parameters for inpainting of Lena with 75% missing pixels.

these Bayesian methods and the deterministic pursuit are seen in other general
inverse problems when the observation matrix M is not the identity operator.
On the other hand, the MMSE remains the best performer by far though its
runtime complexity is much higher.

Figure 7: The atoms of the analysis dictionary ΩDIF of size 112 by 64. Each atom corresponds
to a horizontal or vertical finite difference of a 8 by 8 pixels image patch.

The next experiment presents the performance for the inpainting task for
various pursuit methods in a noisy environment. The setup for this problem is
the same as in the previous denoising experiment, with an additional removal
of 75% of the image pixels for the inpainting reconstruction. In this case, the
observation matrix M varies for each patch depending on the missing pixels
pattern. The inpainting performance is measured using Root-MSE. The ex-
periment is run with the approximation algorithms for the Bayesian estimators
and with the deterministic pursuit (DET) approach. Table 2 shows the model
parameters for the estimators’ approximations and the deterministic approach.
These parameters are exhaustively searched for best performance. Similar as
for denoising, the number of steps for MMSE is N = 16 · p = 1792.

Figure 9 illustrates the Root-MSE results of the inpainting application as a
function of the noise level. In contrast with the denoising results, we observe
a performance gap between the deterministic pursuit (DET) and the Bayesian
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Figure 8: Comparison of denoising results with several algorithms for the Lena image as a
function of the noise level.

estimators. This gap reveals the usefulness of the extra terms that are found
in these estimators. The plot shows that the gap between MAPS and MAPC
methods seen in the synthetic experiments has vanished in this experiment as
well. Furthermore, MAPC achieves slightly better results for high noise levels.
6

Next, we provide further the results for the inpainting application. Given an
image, we remove 25% or 75% of the pixels and add white Gaussian noise with
σ = 20 to the rest. We compare the inpainting performance of the approxima-
tion algorithms for the Bayesian estimators to the deterministic approach (λ0

and λ2 optimized for performance), and the GAPn method [12]. The analysis
dictionary used for this task is ΩDIF . We run the inpainting experiment for
three images: Peppers, Lena, and a piecewise-constant (PWC) image. All the
images have 256 by 256 pixels with a total of 62,001 patches. The parameters
for the Bayesian estimators and the deterministic pursuit remains the same as
above. The stopping threshold used in the GAPn is 1.1σ

√
d ·
√
m, where m is

the fraction of known elements in each patch.
The original and noisy images with 25% and 75% of the pixels missing are

shown in Figure 10, the results for 25% missing pixels are presented in Figures

6These experiments include merging the patches after the reconstruction process, and thus
there is an extra operator which does not belong to the model. We checked the average patch
reconstruction performance of each algorithm before averaging and found similar results to
those shown in Figure 9, and thus these graphs were not included.
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Figure 9: Comparison of inpainting results with several algorithms for the Lena image as a
function of the noise level. The number of missing pixels in the image is 75%.

11, 12, and 13, while the results with 75% missing pixels in Figures 14, 15,
and 16 for Peppers, Lena, and PWC images, respectively. The results shown
include the Root-MSE performance for each method. The performances of the
different approximations when 75% of the pixels are missing resemble those of
the experiment above for all the images. On the other hand, MAPS obtains
better results when 25% of the pixels are missing. Additionally, GAPn obtains
results that are between the MAP-based estimators and the MMSE.

Visually, the algorithms succeeded in reconstructing the images, but with a
few noticeable artifacts. A closer look reveals that all the analysis algorithms
find it difficult to handle pixels with high added noise. The reason is that the
removal of unusually high noise requires a higher cost in the `2-term than in
the `0-term of the penalty functions. The number of these outlying pixels is
relatively small, because the noise is normally distributed. Additionally, these
methods yield images that tend to be sharp. This can be explained by the
fact that in the Analysis model algorithms we used the dictionary ΩDIF that
is well-suited for sharpening edges in images. We believe that all these results
can be improved by selecting a more suitable dictionary or even learning it
[17, 52, 24, 53].

8. Conclusions

In this work we have presented a generating model for co-sparse signals. We
have derived Bayesian estimators based on this model: the Oracle estimator,
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Figure 10: Original images (left), noisy images with 25% missing pixels and noise level σ = 20
(center), noisy images with 75% missing pixels and noise level σ = 20 (right) for inpainting of
Peppers, Lena, and PWC images.
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(a) GAPn – 9.11 (b) DET – 10.87

(c) MAPC – 10.11 (d) MAPS – 9.84

(e) MMSE – 9.00

Figure 11: Inpainting results of Peppers image with 25% missing pixels (σ = 20). The Root-
MSE performance is shown next to each method.
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(a) GAPn – 9.54 (b) DET – 11.16

(c) MAPC – 10.41 (d) MAPS – 10.25

(e) MMSE – 9.31

Figure 12: Inpainting results of Lena image with 25% missing pixels (σ = 20). The Root-MSE
performance is shown next to each method.
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(a) GAPn – 9.73 (b) DET – 12.65

(c) MAPC – 10.50 (d) MAPS – 10.26

(e) MMSE – 9.82

Figure 13: Inpainting results of PWC image with 25% missing pixels (σ = 20). The Root-MSE
performance is shown next to each method.
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(a) GAPn – 14.30 (b) DET – 16.77

(c) MAPC – 14.44 (d) MAPS – 14.63

(e) MMSE – 14.20

Figure 14: Inpainting results of Peppers image with 75% missing pixels (σ = 20). The Root-
MSE performance is shown next to each method.
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(a) GAPn – 14.39 (b) DET – 16.14

(c) MAPC – 14.02 (d) MAPS – 14.19

(e) MMSE – 13.91

Figure 15: Inpainting results of Lena image with 75% missing pixels (σ = 20). The Root-MSE
performance is shown next to each method.
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(a) GAPn – 20.39 (b) DET – 25.51

(c) MAPC – 21.45 (d) MAPS – 21.39

(e) MMSE – 20.37

Figure 16: Inpainting results of PWC image with 75% missing pixels (σ = 20). The Root-MSE
performance is shown next to each method.
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the MMSE, and two versions of a MAP, the MAPC and the MAPS estimators.
Furthermore, we have developed algorithms to approximate them and compared
them to exact solutions. Additionally, we have shown the conditions for which
the MAP-based estimators and the deterministic pursuit methods are fully-
equivalent. Finally, we have demonstrated the capabilities of the methods in
some basic experiments, showing effective recovery of synthetic and real image
data.

We have shown that the deterministic pursuit and the MAP are different
for the prior in Section 3 in cases where the assumptions in the theorem are
not satisfied. However, additional exploration might lead to a prior where these
problems are exactly the same for any inverse problem (with a general M) and
for any dictionary (with linear dependencies). Also, it would be interesting
to extend the results obtained in this work with a theoretical study of the
performance gaps that exist between the oracle and the estimators as well as
the estimators and their approximated versions.

Appendix A. Proofs

Appendix A.1. Derivation of the Alternative Oracle Formula

We derive the equality QΛMTC−1
Λ =

(
σ2

σ2
x
I + QΛMTMQΛ

)−1

QΛMT used

in the Oracle estimator in Equation (9). Recall that matrix QΛ = I−UΛUT
Λ is

a projection matrix and it satisfies Q2
Λ = QΛ. Using this fact and applying the

matrix inversion lemma to the matrix CΛ = σ2

σ2
x
I + MQΛMT , we have

QΛMTC−1
Λ = QΛMT

(
σ2

σ2
x

I + MQ2
ΛMT

)−1

= QΛMT

[
σ2
x

σ2
I− σ4

x

σ4
MQΛ

(
I +

σ2
x

σ
QΛMTMQΛ

)−1

QΛMT

]

=
σ2
x

σ2

[
I−QΛMTMQΛ

(
σ2

σ2
x

I + QΛMTMQΛ

)−1
]

QΛMT

=

(
σ2

σ2
x

I + QΛMTMQΛ

)−1

QΛMT .

Appendix A.2. Proof of the Determinant Identity

In Theorem 3, we use an identity of determinants to obtain the closed-form
solution to the determinant of CΛ. Recall the identity in Equation (29),

det

(
Ik×k +

σ2
x

σ2
MQΛMT

)
= det

(
Id×d +

σ2
x

σ2
MTMQΛ

)
. (A.1)
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Now we prove this identity for the general case. Let A,B ∈ Rd×k be two
matrices, then it follows that

det
(
Ik×k + ATB

)
= det

(
Ik×k + BTA

)
=

det
(
Id×d + ABT

)
= det

(
Id×d + BAT

)
. (A.2)

The first equality is obtained from the determinant of the transpose of an in-
vertible matrix X property, i.e., det (X) = det

(
XT
)
. In order to prove the

second equality, let us look at the following block matrix and decompose it into
two possible pairs of triangular block matrices(

Id×d −B
AT Ik×k

)
=

(
Id×d 0
AT Ik×k

)(
Id×d −B

0 Ik×k + ATB

)
=

(
Id×d −B

0 Ik×k

)(
Id×d + BAT 0

AT Ik×k

)
.

As these decompositions into block matrices are identical, then the determinants
of the decompositions are the same. The determinant of a block triangular
matrix is calculated as the product of the determinants of the diagonal blocks.
Therefore, the determinant of the first matrix in both decompositions is 1 as
det (I) = 1. In addition, we obtain

det

(
Id×d −B
AT Ik×k

)
= det (Ik×k) det

(
Id×d + ATB

)
= det

(
Ik×k + BAT

)
det (Id×d) ,

which shows the second equality. The last equality is obtained by using the
determinant of a transpose matrix which completes the proof for Equation
(A.2). The identity used to prove Theorem 3 is obtained by substituting

AT =
σ2
x

σ2 MQΛ, and B = MT in Equation (A.2).

Appendix B. Optimizing the Approximation Algorithms

The algorithms presented in Section 6 require to compute the provisional
linear dependencies, the inversion and determinant of matrix CΛi in every iter-
ation. Additionally, these algorithms update the co-support (and the solution)
from the previous iteration. Therefore, the complexity of the provisional lin-
ear dependencies as well as the inversion and the determinant of CΛi can be
reduced using recursive formulas to update the results computed with the co-
support Λi−1 from the previous iteration.

Every time that an algorithm adds an element to the co-support, it may be
linearly dependent on or independent of the other elements in the co-support. In
the former case, the added element does not change the subspace of the solution
as well as matrices QΛ and CΛ. In contrast, when the added element is linearly
independent of the others, a new direction is added to the solution subspace and
an update takes place in the projection matrix in Equation (3) and all its related
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computations. Let Λi−1 be the previous co-support and uj be the new direction
obtained from a Modified Gram-Schmidt (MGS) orthogonalization process from
ωTj , the jth row of the dictionary Ω. Then, the projection matrix in Equation
(3) can be updated as follows

QΛi = QΛi−1 − uju
T
j , (B.1)

where the initial value is given by QΛ0 = I. With the recursive relation for
matrix QΛi , we obtain the following recursive formula for computing matrix
CΛi in Equation (7)

CΛi =
σ2

σ2
x

I + MQΛiM
T = CΛi−1 −Muju

T
j MT , (B.2)

with an initial matrix CΛ0 = σ2

σ2
x
I+MMT . We note that MQΛMT is a positive

semidefinite matrix (a Gram matrix) and σ2

σ2
x
I is a positive definite matrix, hence

CΛ is always invertible.
With a recursive formula for CΛi , we proceed with the determinant and

matrix inversion formulas. We plug Equation (B.2) into the determinant of
CΛi and apply the matrix determinant lemma to obtain a recursive formula for
computing the determinant,

det (CΛi) = det (CΛi−1) ·
(
1− uTj MTC−1

Λi−1Muj
)
. (B.3)

The initial determinant value is obtained by computing the determinant of CΛ0

defined above. In Equation (B.3), the previous determinant value and the in-
verted matrix CΛi−1 are needed. Nevertheless, we avoid to compute C−1

Λi−1

directly for every update of the co-support, as shown next.
Instead of computing the inverted matrix C−1

Λi every iteration of the algo-
rithms, we define a recursive formula to update every term that requires com-
puting such an inversion. The recursive formulas for these terms are obtained
by applying the matrix inversion lemma on C−1

Λi . We start with the `2-term in
the penalty functions of the estimators,

yTC−1
Λi y = yTC−1

Λi−1y +

(
yTC−1

Λi−1Muj
) (

uTj MTC−1
Λi−1y

)
1− uTj MTC−1

Λi−1Muj
. (B.4)

The initialization value given by yTC−1
Λ0 y still requires inverting the initial ma-

trix CΛ0 . Note that the denominator in Equation (B.4) is exactly the same
factor that appears in the determinant Equation (B.3). Next, we derive a re-
cursive formula to compute the estimate x̂i as in Equation (9) with co-support
Λi. For this purpose, we apply the matrix inversion lemma on C−1

Λi and plug
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the recursive formula for QΛi in Equation (B.1) into Equation (9) to obtain

x̂i = QΛiM
TC−1

Λi y

= QΛiM
TC−1

Λi−1y + QΛiM
T

C−1
Λi−1Muju

T
j MTC−1

Λi−1y

1− uTj MTC−1
Λi−1Muj

= x̂i−1 − uju
T
j MTC−1

Λi−1y + QΛiM
T

C−1
Λi−1Muju

T
j MTC−1

Λi−1y

1− uTj MTC−1
Λi−1Muj

,(B.5)

where we need to update the matrix QΛiM
T first, given the following formula

QΛiM
T = QΛi−1MT − uju

T
j MT . The initialization vector is computed by

x̂0 = MTC−1
Λ0 y.

The recursive formulas (B.3), (B.4), and (B.5) suggest that C−1
Λi−1 should

be computed and updated every iteration. However, the inverted matrix C−1
Λi−1

appears always as a matrix by vector multiplication, i.e., C−1
Λi−1Muj . This is

also the case for the term Muj in these formulas. Instead of computing these
terms every iteration, we construct these terms for all the directions together
and update them using recursive formulas. For this purpose, we compute a MGS
step to obtain a new direction uj for some iteration. This vector is computed
by projecting the row ωTj of the dictionary Ω into the subspace defined by the

co-support Λi−1, and eventually normalizing the vector such that ‖uj‖2 = 1. As
the MGS method is recursive in its nature, a copy Ωi with the orthogonalized
versions of the dictionary Ω rows is maintained. The matrix Ωi is updated every

iteration applying a recursive MGS step: ΩiT = Ωi−1T−uju
T
j Ωi−1T . Similarly,

Muj is obtained by maintaining the matrix MΩiT and updating it using the
same idea. Last, C−1

Λi−1Muj is obtained by building and updating the matrix

C−1
Λi MΩiT every iteration. This matrix requires a two step update process: (a)

compute the term C−1
Λi−1MΩiT for the updated matrix ΩiT and (b) update the

result using the formula C−1
Λi MΩiT = C−1

Λi−1MΩiT −
C−1

Λi−1Muju
T
j MTC−1

Λi−1MΩiT

1−uTj MTC−1

Λi−1Muj

(obtained by using the matrix inversion lemma on C−1
Λi ). We remark that these

matrices don’t have the normalizing factor involving the vector uj , such that
‖uj‖2 = 1. Therefore, when using columns from these matrices to compute

the terms C−1
Λi Muj and Muj , one should divide by the normalizing factor

in the computations. Maintaining and updating these three matrices avoids
inverting the matrix CΛi every iteration, hence reducing the time complexity
of the algorithms. The initialization values for these formulas still requires one
matrix inversion, i.e., for CΛ0 , as well as computing its determinant. This is
a k by k matrix that is computed using a Cholesky decomposition as it is a
positive definite matrix. The Cholesky decomposition allows to compute the
determinant straightforward as well as these matrices.

Additional to computing the inversion of matrix CΛi and its determinant,
the algorithms in Section 6 require to compute the provisional linear dependen-
cies to decide which row should be added to the co-support Λi. As posed in
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Algorithm 2, this can be achieved by iterating over each row j outside the co-
support Λi−1 and checking for linear dependencies of the provisional co-support
Λ̂j = {j} ∪ Λi−1. This set of provisional linear dependencies can be obtained

by computing Ω̂T
j = QΛ̂j

ΩT and checking which columns are equal to zero.

Note that this needs to be executed for each row not in the co-support Λi−1

per every iteration of the outer loop iteration of the algorithm, becoming very
expensive to compute. Multiplying the matrix QΛ̂j

by ΩT is equivalent to or-

thogonalizing the rows in Ω. Using the recursive formula for ΩiT described
above, the same computation can be achieved only with matrix-by-vector mul-

tiplications by projecting the already orthogonalized elements in Ωi−1T with a

provisional direction uj : Ω̂T
j = QΛ̂j

ΩT = Ωi−1T − uj(u
T
j Ωi−1T ). Then the

linear dependencies are the columns of Ω̂j that become zero. In such a way, the
cost is reduced by a factor of d for each row of the inner loop. Checking which
columns of Ω̂T

j are zero is equivalent to check which columns have zero norm.
In particular, the `2-norm allows us to define a recursive formula for the norm
of each column as follows:

‖ω̂k‖22 =
∥∥ωk − uju

T
j ωk

∥∥2

2
= ‖ωk‖22 − (uTj ωk)2, (B.6)

where ω̂k is the kth column of Ω̂T
j , and ωk is the kth column of Ωi−1T . Recall

that uj is the column ωj of Ωi−1T after normalization to be a unit length vector.
The inner loop can be eliminated computing Equation (B.6) simultaneously for
all the directions uj that are not in Λi−1. This is achieved by computing Gi−1 =

Ωi−1Ωi−1T and dividing each resulting element by the respective normalizing
factor. Even though we eliminate the inner loop in this way, computing this
matrices multiplication does not reduce the complexity, yet. In order to reduce
the computational cost, the following recursive formula is used:

Gi = ΩiΩiT

= Ωi−1Ωi−1T − (Ωi−1ujmin)(uTjminΩi−1T )

= Gi−1 − (Ωi−1ujmin)(uTjminΩi−1T ),

where G0 = ΩΩT , jmin is the element added to the co-support Λi in the
iteration i, and ujmin is the orthogonalized version of ωjmin . In this manner, all
the inner products of the orthogonalized vectors are updated with every (outer)
loop iteration. The norms of every ω̂k can be computed using matrix Gi and
an the previous iteration norm value ‖ωk‖22.

The approximation algorithms presented in Section 6, can make extensive
use of these recursive formulas. Every time that a new linearly independent
element is added to the co-support, the previous formulas are useful. It is worth
mentioning that the MMSE approximation algorithm may need to extract an
element from the co-support for some specific cases. When this happens, all
these matrices and terms must be changed to reflect this co-support modifi-
cation. These changes require to compute the orthogonalization of the matrix
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almost from scratch and may be quite expensive to compute, making the MMSE
approximation time consuming.
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