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1.1 General

• This work deals with state-of-the-art 
algorithms for noise suppression. 

• The basic model assumption is

Y=X+V

where X – Unknown signal to be recovered, 
V – Zero-mean white Gaussian noise,
Y – Measured signal.
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1.2 Graphically …

White - Ideal continuous signal
Red – Sampled (discrete) noisy signal
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1.3 Example 
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1.4 Noise Suppression

Noise 
Suppression

Y X

Assumptions on the noise 
and the desired signal X
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1.5 Background

• There are numerous methods to suppress 
noise, 

• We are focusing on the family of methods 
based on 
– Piece-wise smoothness assumption
– Maximum A-posteriori Probability Estimation 

(Bayesian) 
• State-of-the-art methods from this family:

– WLS - Weighted Least Squares,
– RE - Robust Estimator,
– AD - Anisotropic diffusion,
– Bilateral filter
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1.6 In Focus – Bilateral Filter

• The bilateral filter was originally proposed by 
Tomasi and Manduchi in 1998 (ICCV) as a 
heuristic tool for noise removal,

• A similar filter (Digital-TV) was proposed by 
Chan, Osher and Chen in February 2001 (IEEE 
Trans. On Image Proc.),

• In this talk we:
– Analyze the bilateral filter and relate it to the 

WLS/RE/AD algorithms,
– Demonstrate its behavior,
– Suggest further improvements to this filter.
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Chapter 2  

The WLS, RE and 
AD Filters



9/59

2.1 MAP Based Filters

• We would like the filter to produce a signal that 
• Is close to the measured signal, 
• Is smooth function, and 
• Preserves edges.

• Using Maximum-Aposteriori-Probability 
formulation, we can write a penalty function 
which, when minimized, results with the signal 
we desire.

• Main Question: How to formulate the above 
requirements?
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2.2 Least Squares

Proximity to the 
measurements

Spatial smoothness

D - A one-sample shift 
operator. Thus, (X-
DX) is merely a 
discrete one-sided 
derivative.
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2.3 Weighted Least Squares

{ } T T
WLS

1
X X Y X Y X X (Y) X X

2 2
= − − + − −              D W Dλε

Proximity to the 
measurements

Spatially 
smooth

Edge Preserving by 
diagonal weight 

matrix

Based on Y:

Samples belonging to smooth regions are 
assigned with large weight (→1).

Samples suspected of being edge points 
are assigned with low weight (→0).
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2.4 WLS Solution

{ } TWLS X
X Y (Y) X

X
∂

= − + − −          ∂
I D W I D

ε
λ

{ }

( ) ( )

WLS
0

WLS WLS WLS
1 0

ˆX X

T

Xˆ ˆX X
X

Y (Y) Y

=

∂
= −

∂

= − − −I D W I D

ε
µ

µλ

The penalty 
derivative:

A single SD 
Iteration 
with Y as 
initialization 
gives:

What about updating the 
weights after each iteration ?
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2.5 Robust Estimation

{ } { }T
RE

1
X X Y X Y X X

2 2
= − − + −       Dλε ρ

Proximity to the 
measurements

Spatially smooth and 
edge preserving

ρ(α) - A symmetric non-negative function, e.g. 
ρ(α)= α2 or ρ(α)=|α|, etc.
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2.6 RE Solution

{ } { }TRE X
X Y ' X X

X
∂

= − + − −      ∂
I D D

ε
λ ρ

{ }

( ) ( ){ }

RE
0

RE RE RE
1 0

ˆX X

T

Xˆ ˆX X
X

Y Y

=

∂
= −

∂

= − − −I D I D

ε
µ

µλ ρ

The penalty 
derivative:

A single SD 
Iteration 
with Y as 
initialization 
gives:

‘
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( ) ( ){ }
( ){ }

( )

Y, (Y) Y ' Y

' Y
(Y)

Y

∀ − = −

−
⇒ =

−

W I D I D

I D
W

I D

ρ

ρ

For equivalence, require

{ }' Y[k] Y[k 1]
W[k]

Y[k] Y[k 1]
− −

=
− −

ρ

2.7 WLS and RE Equivalence

( ) ( ){ }
( ) ( )

RE T
1

WLS T
1

X̂ Y Y

X̂ Y (Y) Y

= − − −

= − − −

I D I D

I D W I D

µλ ρ

µλ
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2.8 WLS and RE Examples

( ) ( ) ( )

2

2 2
2 2 2 2

2 2 2
2 22 2 2 2 2 2
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sign( )
sign( )
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αα α
α

αα ε
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α αε ε
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+
+ +

+ + +

The weight as a function 
of the derivative
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This way the RE actually applies an update of 
the weights after each iteration 

2.9 RE as a Bootstrap-WLS

( ){ }RE
kX' DI −ρ

( ){ } { }( )RE RE RE
k k k' X X Xρ − = −I D W I D

( ) ( ) ( ){ }TRE RE RE RE
k 1 k k kX X X Y ' X+

 = − µ − + λ − ρ − I D I D

( ) ( ) ( ){ }TWLS WLS WLS WLS
k 1 k k kX X X Y X+

 = − µ − + λ − − I D W I D
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2.10 Anisotropic Diffusion 

• Anisotropic diffusion filter was presented originally 
by Perona & Malik on 1987

• The proposed filter is formulated as a Partial 
Differential Equation,

• When discretized, the AD turns out to be the 
same as the Robust Estimation and the line-
process techniques (see – Black and Rangarajan
– 96` and Black and Sapiro – 99’).

( ){ }2
tX g X X∂ = −∇ ∇ ⋅∇
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2.11 Example

Original

image

WLS – 100

Iterations

Noisy image

Var=15 

RE – 100

Iterations
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Chapter 3  

The Bilateral 
Filter
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3.1 General Idea

• Every sample is replaced by a weighted 
average of its neighbors (as in the WLS),

• These weights reflect two forces
– How close are the neighbor and the center 

sample, so that larger weight to closer samples,
– How similar are the neighbor and the center 

sample – larger weight to similar samples.

• All the weights should be normalized to 
preserve the local mean.
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3.2 In an Equation

N

n N
N

n N

W k,n Y[k n]
X̂ k

W k,n

=−

=−

−  
=  

  

∑

∑

The result 
at the kth

sample

Averaging over the 
2N+1 neighborhood

The weight The 
neighbor 
sample

Normalization of   
the weightingY[j]

j
k
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3.3 The Weights

{ }

{ }

2 2
S

S 2 2
S S

22
R

R 2 2
R R

d [k],[k n] n
W [k,n] exp exp

2 2

Y[k] Y[k n]d Y[k], Y[k n]
W [k,n] exp exp

2 2

 −   = − = −   σ σ    
   − −−      = − = −   σ σ      

S RW[k,n] W [k,n] W [k,n]= ⋅
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3.4 Graphical Example
Center 
Sample

It is clear that in weighting this neighborhood, 
we would like to preserve the step

Neighborhood
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3.5 The Weights

2

S 2
S

n
W [k,n] exp

2
 

= − σ 

2

R 2
R

Y[k] Y[k n]
W [k,n] exp

2

 − −   = − σ  
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3.6 Total-Distance

2
Sd

2
Rd

2 2
R Sd d+

It appears that 
the weight is 
inversely prop. 
to the         
Total-Distance
(both horizontal 
and vertical) 
from the center 
sample.

{ } { }2 2 2 2
R S S R

2 2
S R

d [k],[k n] d Y[k], Y[k n]
W[k,n] exp

2

 σ − + σ − = − σ σ  
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3.7 Discrete Beltrami Flow?

This idea is similar in spirit to the ‘Beltrami Flow’ proposed by 
Sochen, Kimmel and Maladi (1998). There, the effective 
weight is the ‘Geodesic Distance’ between the samples.

Total Distance
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3.8 Kernel Properties

• Per each sample, we can define a ‘Kernel’ that 
averages its neighborhood

• This kernel changes from sample to sample!
• The sum of the kernel entries is 1 due to the 

normalization,
• The center entry in the kernel is the largest,
• Subject to the above, the kernel can take any form (as 

opposed to filters which are monotonically decreasing).

N

n N

W k, N ,....W k, 1 , W k,0 ,W k, 1 ,W k, N

W k,n
=−

 − − + +                   

  ∑



29/59

3.9 Filter Parameters

As proposed by Tomasi and Manduchi, the 
filter is controlled by 3 parameters:

N   – The size of the filter support,
σS – The variance of the spatial distances,
σR – The variance of the spatial distances, and
It   – The filter can be applied for several iterations in

order to further strengthen its edge-preserving
smoothing.



30/59

3.10 Additional Comments

The bilateral filter is a powerful filter:
• One application of it gives the effect of numerous 

iterations using traditional local filters,
• Can work with any reasonable distances ds and dR

definitions,
• Easily extended to higher dimension signals, e.g. 

Images, video, etc. 
• Easily extended to vectored-signals, e.g. Color 

images, etc.



31/59

3.11 Example

Original

image

RE – 100

Iterations

Noisy image

Var=15 

Bilateral 

(N=10, …)
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3.12 To Summarize

Feature Bilateral filter WLS/RE/AD

Behavior Edge preserve Edge preserve

Support size    May be large Very small

Iterations Possible Must

Origin Heuristic MAP-based

What is the connection between the 
bilateral and the WLS/RE/AD filters ?
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Chapter 4  

The Bilateral 
Filter Origin
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4.1 General Idea

In what follows we shall show that:
• We can propose a novel penalty function ε{X}, 

extending the ones presented before,

• The bilateral filter emerges as a single Jacobi
iteration minimizing ε{X}, if Y is used for 
initialization,

• We can get the WLS/RE filters as special cases of 
this more general formulation.
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X[k]-x[k-n]

4.2 New Penalty Function

{ } T

TN n n

n 1

1
X X Y X Y

2

X X (Y,n) X X
2

ε

λ
=

= − − +      

   + − −∑    D W D

Proximity to the 
measurements

Spatially smooth and 
edge preservation
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4.3 Penalty Minimization

{ } ( ) ( )N Tn n

n 1

X
(Y,n) X Y

X
ε

λ
=

∂  
= + − − −∑ ∂  

I I D W I D

( ) ( )N n n
1

n 1
X̂ (Y,n) Y−

=

 
= − µλ − −∑ 
 
I I D W I D

A single Steepest-Descent 
iteration with Y as initialization 

gives
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4.4 Algorithm Speed-Up

( ) ( )
2 N n n

2 n 1

1

(Y) (Y,n)
X

(Y) diag{ (Y)}

−

=

−

 ∂ ε
= = + λ − −∑ 

 ∂

⇒ = + ξ  

H I I D W I D

M H I

Instead the SD, we use a Jacobi iteration, where µ is 
replaced by the inverse of the Hessian Matrix main diagonal

( ) ( )N n n
1

n 1
X̂ (Y) (Y,n) Y−

=

 
= − λ − −∑ 
 
I M I D W I D

Relaxation
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4.5 Choice of Weights

( ){ }
( ) ( )

n

n

' Y
(Y,n) V n

Y

−
= ⋅

−

I D
W

I D

ρ

Where: ρ(x) - Some robust function (non-negative,

symmetric penalty function, e.g. ρ(x)=|x|.

V(n) - Symmetric, monotonically decreasing 

weight, e.g. V(n)=α|n|, where 0<α<1.

Let us choose the weights in the diagonal matrix  W(Y,n) as
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This entire operation can be viewed as a 
weighted average of samples in Y, where 
the weights themselves are dependent on Y

4.6 The Obtained Filter

( ) ( )N n n
1

n 1
X̂ (Y) (Y,n) Y−

=

 
= − λ − −∑ 
 
I M I D W I D

N
1

n N
X̂ [k] f ,k Y k

=−
= ⋅ −   ∑    l l

We can write
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4.7 The Filter Coefficients

{ }
( )

{ }

{ }

N

n N

N

n N

' Y[k] Y[k ]
V( )

Y[k] Y[k ] N N,
' Y[k] Y[k n] 0

1 V(n)
f[ ,k] Y[k] Y[k n]

1
0 .

' Y[k] Y[k n]
1 V(n)

Y[k] Y[k n]

=−

=−

 − −
⋅ − − ≤ ≤  −   − − ≠ + + ⋅ ∑= − −

 + =  − −
+ + ⋅∑ − −

l
l

l l

l

l

l

ρ
λ

ρ
ξ λ

ξ
ρ

ξ λ
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4.8 The Filter Properties

• If we choose

we get an exact equivalence to the bilateral filter.

• The values of ξ and λ enable a control over the 
uniformity of the filter kernel.

• The sum of all the coefficients is 1, and all are non-
negative.

( )
2 2

2
R 2 2

R S
1 exp , V( ) exp

2 2

       = − − = −    
        

l
l

αρ α σ
σ σ
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4.9 To Recap

A new penalty 
function was defined

We assumed a 
specific weight form 

We used a single 
Jacobi iteration

We got the 
bilateral filter
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Chapter 5  

Improving The 
Bilateral Filter

No time ? press HERE
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5.1 What can be Achieved?

• Why one iteration? We can apply several 
iterations of the Jacobi algorithm.

• Speed-up the algorithm effect by a Gauss-
Siedel (GS) behavior.

• Speed-up the algorithm effect by updating 
the output using sub-gradients.

• Extend to treat piece-wise linear signals by 
referring to 2nd derivatives.
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5.2 GS Acceleration

{ } T T1
X X X P X C

2
= − +Qε

( )1 0 0
ˆ ˆ ˆX X P X= + µ − Q

For a function of the form:

The SD iteration:

( ) ( )1
1 0 0

ˆ ˆ ˆX X I diag{ } P X−= + + µ −Q QThe Jacobi iteration:

The GS iteration: ( ) ( )1
1 0 0

ˆ ˆ ˆX X I updiag{ } P X−= + + µ ⋅ −Q Q

The GS intuition – Compute the output sample by sample, 
and use the already computed values whenever possible.
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5.3 Sub-Gradients

The function we have has the form

{ }
J T T

j jj
j 1

1
X X Q X P X C

2=

 = − +∑   
ε

11 0 0 1

22 1 1 2

JJ J 1 J 1 J

ˆ ˆ ˆX X Q X P

ˆ ˆ ˆX X Q X P

ˆ ˆ ˆX X Q X P− −

 = − − 
 = − − 

 = − − 

M

µ

µ

µ

J
j1 0 0 j

j 1
ˆ ˆ ˆX X Q X P

=
 = − µ −∑  

One SD iteration:
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5.4 Piecewise Linear Signals

{ }
Tn n n nN2

n 1

1 X X X X
X X Y X (Y,n) X

2 2 2 2

− −

=

   + +
= − + − −∑    

      

D D D DWλε

Similar penalty term using 2nd derivatives for 
the smoothness term

This way we do not penalize linear signals !
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Chapter 6  

Results
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6.1 General Comparison

Original image Noisy image
Values in the range [1,7]                 Gaussian Noise - σ=0.2

Noise Gain = 
Mean-Squared-Error before the filter

Mean-Squared-Error after the filter
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6.2 Results

WLS

50 iterations

Gain: 3.90

Bilateral (N=6)

1 iteration

Gain: 23.50

RE (            )

50 iterations

Gain: 10.99

Bilateral

10 iterations

Gain: 318.90

( ) =ρ α α
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6.3 Speedup Results

• Regular bilateral filter gave Gain=23.50.
• Using the Gauss-Siedel version of the 

filter we got Gain=39.44.
• Using the sub-gradient approach we got 

Gain=197.26! The filter size is 13 by 13, 
which means that we have 169 sub-
iterations instead of a single large one.
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6.3 Piecewise linear Image

Original

image
Values in the

range [0,16]

Noisy image
Gaussian noise 

with σ=0.2
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6.4 Results

Regular

bilateral filter

Gain: 1.53

Regular BL

Filter error
(mul. By 80)

Piecewise lin.

bilateral filter

Gain: 12.91

Regular BL

Filter error
(mul. By 80)
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6.5 The Filter’s Kernel

Original

image
Values in the

range [0,4]

Noisy image
Gaussian noise 

with σ=0.2
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6.6 RE & Bilateral Results

RE with

1500

iterations

Gain: 2.32

Bilateral 

Filter

Gain: 19.97

• The bilateral filter uses a 13 by 13 filter support, and 
exploits every possible pixel in this neighborhood in 
order to average the noise. 

• The RE effective support cannot propagate across 
edges! Thus, at most 4 by 4 pixels (the size of the 
squares in the checkerboard) are averaged.  
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6.7 Bilateral Kernel Shape

Important Property: As opposed to the WLS, RE, and 
AD filters, the bilateral filter may 
give non-monotonically varying 
weights.

Center Pixel

13

13
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Chapter 7  

Conclusions and 
Further Work
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7.1 Conclusions

• The bilateral filter is a powerful alternative to the 
iteration-based (WLS,RE,AD) filters for noise 
removal.

• We have shown that this filter emerges as a 
single Jacobi iteration of a novel penalty term 
that uses ‘long-distance’ derivative.

• We can further speed the bilateral filter using 
either the GS or the sub-gradient approaches.

• We have generalized the bilateral filter for 
treating piece-wise linear signals.
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• Convergence proofs for the regular 
bilateral filter if applied iteratively, and 
its speed-up variations,

• Relation to Wavelet-based (Donoho 
and Johnston) and other de-noising 
algorithms,

• Approximated bilateral filter - Enjoying 
the good de-noising performance while 
reducing complexity.

7.2 What Next ?


