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We propose a direct nonlinear reconstruction algorithm for Computed Tomography (CT), designed to handle low-dose
measurements. It involves the filtered back-projection and adaptive nonlinear filtering in both the projection and the image
domains. The filter is an extension of the learned shrinkage method by Hel-Or and Shaked to the case of indirect observations.
The shrinkage functions are learned using a training set of reference CT images. The optimization is performed with respect to
an error functional in the image domain that combines the mean square error with a gradient-based penalty, promoting image
sharpness. Our numerical simulations indicate that the proposed algorithm can manage well with noisy measurements, allowing a
dose reduction by a factor of 4, while reducing noise and streak artifacts in the FBP reconstruction, comparable to the performance
of a statistically based iterative algorithm.

1. Introduction

1.1. Problem Statement. Computed tomography (CT) imag-
ing produces a 3D map of the scanned object, where the
different materials are distinguished by their X-ray attenua-
tion properties. In medicine, such a map has a great diag-
nostic value, making the CT scan one of the most frequent
noninvasive exploration procedures practiced in almost every
hospital. The attenuation of biological tissues is measured by
comparing the intensity of the X-rays entering and leaving
the body. The main problem precluding pervasive use of the
CT scan for diagnostics andmonitoring is the damage caused
to the tissues by the X-ray radiation. CTmanufacturers make
great efforts to reduce the X-ray dose required for images of
diagnostic quality. In this work we propose an algorithm that
enables a high-quality reconstruction from low-dose (and
thus noisy) measurements.

In ideal conditions, the information obtained in the scan
suffices to build an exact attenuation map, called the CT
image. In practice, the measurements are degraded by a
number of physical phenomena. The main factors are off-
focal radiation, afterglow and crosstalk in the detectors, beam
hardening, and Compton scattering (see [1] for a detailed

overview). These introduce a structured error into the mea-
surements, mostly the type that is modeled by a convolution
with some kernel. Another source of deterioration, dominant
in the low-dose scenario, is the stochastic noise. One type of
such noise stems from the low photon counts, which occur
when the X-rays pass through high-attenuation areas. This
phenomenon is similar to the shot noise, encountered in
photo cameras in poor lighting conditions. Statistically, the
photon counts are modeled as instances of Poisson random
variables. Another type of the stochastic noise originates
from dark currents in the detectors, interference noise from
interconnecting cables, and other hardware sources. This
electronic noise is modeled in the measurements as an
additive Gaussian random variable.

In this work we aim to reduce the influence of the
stochastic noise on the image quality, with the assumption
that the structured error components, mentioned above, are
treated by the existing methods. Explicitly, we use the well-
accepted compound Poisson-Gaussian statistical model and
propose a new noniterativemethod for image reconstruction,
based on the concept of sparse representations [2] and
involving machine learning concepts.
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1.2. Present Reconstruction Algorithms. The basic linear
reconstruction method, filtered back projection (FBP) [3],
makes a very limited account of the noise structure in the
data: it employs a low-pass 1D convolution filter in the Radon
domain, whose parameters are preset for specific anatomical
regions and standard scan protocols. Errors in the photon
counts manifest in the output CT image in the form of
streak artifacts, which corrupt its content and jeopardize its
diagnostic value. Accordingly, each measured line integral is
effectively smeared back over that line by the back projec-
tion; an incorrect measurement results in a line of wrong
intensity in the image. Typically, the streaks radiate from
bone regions or metal implants, which corrupt its content
and jeopardize its diagnostic value. Images of better quality—
with reduced artifacts and increased spatial resolution—
are obtained with a statistically-based approach, where the
maximumaposteriori (MAP) is optimizedwith respect to the
sought image.This problem is converted to aminimization of
the penalized likelihood (PL) objective function [1], (1). The
likelihood expressionmodels the physical process of CT scan,
which allows interpreting the measurements more correctly.
The likelihood component expresses the expected statistical
behavior of the data. The penalty component models the
expected properties of the CT images (i.e., contains a prior
information about the image to be reconstructed). The PL
objective can be designed to restore the measurements from
noisy observations [1, 4, 5] or to reconstruct directly the
CT image [6]. In most cases, the optimization problem is
difficult to solve, so it is sometimes replaced by a second-
order approximation, the penalized weighted least squares
(PWLS) [6, 7]. A drawback of a reconstruction based on
explicit statistical modeling is the computationally heavy
iterative solution.

To improve the performance of the fast FBP recon-
struction, adaptive signal processing techniques, implicitly
modeling the noise statistics, have been proposed. These are
applied to the measurements data in a noniterative fashion
and have computational complexity comparable to that of
the FBP. Hsieh employs a trimmed mean filter, adaptive
to the noise variance [8]. For each detector reading 𝑥, the
algorithm adaptively chooses a number of its neighbors
participating in the filtering operation. The value of 𝑥 is
replaced with the average of these neighbors after a portion
of their highest and lowest values is discarded. To some
extent, the aforementioned statistical model of the scan is
used: the noisy samples get a stronger filtering than the
more reliable ones. The experimental results in this work
are very impressive. A similar concept, with a different kind
of filter, is adopted by the work of Kachelrieß et al. who
apply adaptive convolution-based filtering in the sinogram
domain [9]. The filter width is data dependent and also it is
applied only where the data intensity is below a threshold, so
the algorithm processes only the regions where the noise is
substantial. In [10], two signal processing steps are introduced
to improve the performance of FBP. The measurements’ data
is processed by the penalized weighted least squares filter in
a Karhunen-Loeve domain (more familiar under the name
of principal component analysis, PCA). An additional step

of image postprocessing is performed by edge-preserving
smoothing with locally adaptive parameters.

Beyond the use of general-purpose tools, there are
algorithms applying machine learning methods for adaptive
processing of the tomographic data. Close in its spirit to our
work is the algorithm described in [11]. Here, the measured
projections are locally filtered according to a preliminary
classification of its regions.The classes and the corresponding
filters are derived automatically, via an offline example-
based training process. Thus, the standard smoothing by the
low-pass convolution filter is replaced with locally adaptive
filtering, optimized for the minimal mean square error in the
training images.

1.3. Our Work. Our method employs an adaptive local pro-
cessing of the measurements and a matched postprocessing
stage in the CT image domain. Those steps are intended to
enable the FBP to deal with the noisy measurements. The
technique employed in both stages is a learned shrinkage in
the transform domain, following the ideas outlined in the
work by Hel-Or and Shaked in [12].

The learned shrinkage filter was originally designed for
noise reduction and is employed in our work to reduce
an error measure in the CT image domain, while acting
on the raw measurements (at the first stage) and on the
reconstructed image (at the second). In a nutshell, the learned
shrinkage operator is a nonlinear adaptive filter, applied
locally to the signal data. It requires an example-based
training of the filter’s defining parameters, which minimizes
a desired reconstruction error with respect to reference CT
images.

Due to the fact that the noise in the measurements is data
dependent, we introduce a scalar transformation which nor-
malizes the noise variance according to its statistical model.
The aforementioned filter is applied after this transformation.
The error measure in the image domain, used in the training
objective, is a function of the reconstructed CT image and its
ground truth—a high quality reference image. The measure
consists of two components, the standard mean square error
and a gradient-based expression capturing the amount of blur
at fine edges of the image. Filters, optimized with respect to
this errormeasure, are shown to produce CT images with low
spatial noise and artifacts, while producing sharp edges.

On one hand, our approach accounts for the statistical
model of the noise, as used by the iterative algorithms; on
the other, the computationally heavy learning procedure
is performed once offline, at the calibration stage, while
the processing of the new data is done very fast, on par
with the FBP algorithm. This gives a hope to bridge the
gap between the slow high-quality statistical algorithms and
the fast linear reconstruction. We also mention that in the
learning process our algorithm has the potential to adjust
to additional unknown degradation factors and hardware
specifications.

One possible application of the proposed method is to
exploit the adaptive nature of its filtering stages to taylor the
filter parameters to an individual patient, in a specific scan
setup. Such step can be made in the scenario where repeated
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CT scans are performed, for reasons ofmonitoring.Thus after
the first full-dose scan, the X-ray exposure in the following
procedures can be reduced by using filters trained on the
image data very similar to that which is expected in the next
scan. With the correct training protocol, there is no danger
of overfitting the filters to the “healthy” images and thus to
jeopardise detection of anomalies (an experiment, suggesting
this fact, is reported later in this paper). In this way, a patient
can avoid a substantial amount of X-ray exposure.

In our numerical experiments we compare the proposed
algorithm against three existing ones. First is the optimally
tunedFBP,which serves as a baseline; another is the nonlinear
ATM filter for CT reconstruction, proposed by Hsieh in
[8], and the third is the iterative, statistically-based PWLS
reconstruction [6]. Our method is shown to outperform
both the FBP and the ATM in the sense of image quality
and robustness to changes of the anatomical region, and
it is comparable to the statistically-based reconstruction.
The comparison includes a visual display, a number of
quantitative measures and evaluation of the local impulse
response for each algorithm.

The paper is organized as follows. The mathematical
description of the CT scan is given in Section 2. The learned
shrinkage method is presented in Section 3. The new error
measure is described in Section 4, laying the ground for our
method for CT reconstruction, described in Section 5. A
numerical study is given in Section 6. Section 7 concludes the
paper.

2. Mathematical Model of the CT Scan

Our algorithm is designed in the setup of two-dimensional,
parallel-beam scan geometry. An example of a scanned object
is an axial slice (axial plane is the one parallel to the floorwhen
the patient is standing) of the patient’s body.Themain part of
a CT scanner is a rotating gantry, which has the X-ray source
mounted against an array of detectors. During the scan, the
gantry sweeps the angular range of [0, 𝜋], equally divided into
a large number of projections or “views”. For each angle 𝜃, the
one-dimensional array of detectors produces photon counts
from rays that arrive in a fan-shaped beam from the source.
Via a rebinning step, the rays are rearranged so that there is
a comb of parallel rays for each projection.The acquired data
is arranged into a 2D matrix, whose columns correspond to
different angles, and the rows are assigned to different bins in
each projection.

To describe the nature of measured data we use the com-
pound Poisson-Gaussian statistical model that is assumed in
[1, 13] and is also empirically verified in [8]. Each measured
photon count 𝑦

ℓ
is viewed as an instance of the random

variable 𝑌
ℓ
given by

𝑌
ℓ
∼ Poiss (𝜆

ℓ
) + Gauss (𝑑, 𝜎

𝑛
) , where

𝜆
ℓ
= 𝜆
0
⋅ exp (−[R𝑓]

ℓ
) ,

(1)

whereR𝑓 is the Radon transform of the scanned image𝑓 and
the constant 𝜆

0
is the photon count at the X-ray source. The

Radon transform is defined on the collection of all straight

lines ℓ through the object. For each ℓ, its value is the linear
integral:

[R𝑓]
ℓ
= ∫

ℓ

𝑓 (ℓ) 𝑑ℓ. (2)

The log-transformed photon counts𝑔
ℓ
= − log(𝑦

ℓ
/𝜆
0
) are the

approximate line integrals; the corresponding datamatrix𝑔 is
called a sinogram since every point in the image space traces
a sine curve in this domain.

The filtered back-projection algorithm is based on the
Radon inversion formula. First, the measurements are trans-
formed to the Radon domain by the logarithm function: 𝑔 =
− log(𝑦/𝜆

0
).Then, a linear operator implementing the inverse

of Radon transform is applied as follows:

̃
𝑓 = R∗FRL (𝑔) , (3)

where R∗ is the adjoint of the Radon transform, also known
as the back-projection operator:

(R∗𝑔) 𝑥 = ∫
𝜃

𝑔 (𝜃, 𝑥 ⋅ 𝜃) 𝑑𝜃. (4)

The filter FRL uses the Ram-Lak kernel 𝜅 [14], defined in the
Fourier domain by

𝜅 (𝜔) = |𝜔| . (5)

In practice, an additional, low-pass filtering is performed
in the Radon domain to reduce the high-frequency noise
amplified by the Ram-Lak kernel. It is usually implemented
by applying a Butterworth or a Shepp-Logan window in the
frequency domain. The optimal parameters of the low-pass
filter differ from one anatomical region to another. Their
preset values are kept fixed in the clinical CT scanners, and
the radiologist selects an appropriate one for each clinical
study. As a study in [15] shows, the image properties depend
nonnegligibly on this parameter.

3. Learned Shrinkage in a Transform Domain

We describe the learned shrinkage algorithm proposed by
Hel-Or and Shaked in [12] for signal denoising. A popular
Bayesian approach for recovery of a signal 𝑥 from measure-
ments 𝑦 = 𝑥 + 𝜉, contaminated with i.i.d. Gaussian noise,
consists in solving the penalized least squares optimization
problem,

�̂� = argmin
𝛼





𝑦 −D𝛼



2

2
+ 𝜆𝜌 (𝛼) , (6)

and computing the signal estimate by𝑥 = D�̂� [16]. Effectively,
the sought signal is encoded in terms of the dictionary D (a
linear transform, e.g., wavelets), whose properties encourage
noise reduction.The left summand in this expression is a data
fidelity term, and the right one expresses expected properties
of the signal’s coefficients. The classical assumption of a
rapid decay of their magnitudes corresponds to the following
penalty expression [17, Section 1.3]:

𝜌 (𝛼) = ‖𝛼‖
𝑝

𝑝
, with 0 ≤ 𝑝 ≤ 1. (7)
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For a unitary transform D, the problem (6) is separable and
admits a simple closed-form solution, which is described by a
scalar shrinkage functionS applied elementwise to the vector
of coefficients D−1𝑦. The formula for the shrinkage function
is derived analytically from the expression for 𝜌(𝛼) [18].Thus,
the signal estimate 𝑥 has the formula:

𝑥 = DSD−1𝑦. (8)

This technique was pioneered by Donoho and Johnston [19],
who developed it for the wavelet transform, and it is now
widely applied in the broader context of nonunitary operators
and even redundant dictionaries which are tight frames (see
[12, 16] for an overview). In those cases, any shrinkage
operation can provide only an approximate solution to (6).

For image denoising, the data dimensions are too large
to process the entire image if D is not a computationally
efficient structured transformation and also, while images
vary wildly, small image patches fall into a well-structured
statistical pattern. Therefore, the shrinkage idea is applied to
an image denoising by extracting overlapping square patches
and processing each of them separately. The overlaps help
avoiding block artifacts and stabilize the filtering action. Each
pixel is altered differently in each patch it belongs to; strong
differences are tamed by averaging over all those patches.

Technically, a patch 𝑝 of size 𝑑 × 𝑑, corresponding to a
location 𝑘 in the signal matrix 𝑦, is extracted by the linear
operator E

𝑘
and is reinstalled (after a processing) into a

signal-sized empty matrix by its transpose E⊤
𝑘
. Thus, the

patchwise denoising action for a 2D signal is described by

𝑥 = GD (𝑦) = M
−1

E ∑
𝑘

E⊤
𝑘
DSD−1E

𝑘
𝑦. (9)

Here ME = ∑𝑘 E
⊤

𝑘
E
𝑘
is compensating for the overlapping by

dividing each pixel by the number of patches containing it.
When the dictionary D is a nonunitary full-rank matrix,

the vector of coefficients is computed using the pseudoinverse
D+ of the dictionary. As mentioned before, in this case no
exact solution for the shape of the shrinkage function is
available. A practical solution for denoising in this setting is
proposed in [12]: the shape of the shrinkage function in (9)
is learned in an example-based process (rather than being
defined descriptively), by optimizing an objective function.
Also, for better results, it is preferable to use an array of
shrinkage functions, corresponding to the structure of the
transform D, rather than a single one. For instance, when
an𝑁-levels wavelet transform is used, separate functions are
dedicated to each level.The vector 𝛼 in this case is partitioned
into 𝑁 subsets, each processed with an individual shrinkage
function.

In [12], the shrinkage functions are modeled as linear
combinations of splines of order 1. In other words, these are
piecewise linear functions whose joints are configurable. The
𝑁 shrinkage functions S

1
, . . . ,S

𝑁
are defined by two sets

of vectors, q = [q
1
, . . . , q

𝑁
] and p = [p

1
, . . . , p

𝑁
]. The

vector q
𝑖
is an evenly spaced sequence of numbers, covering

the dynamic range of the 𝑖th subset in 𝛼; each S
𝑖
is the

antisymmetric piecewise linear function determined by the
following equations:

S
𝑖
(q
𝑖
(𝑗)) = p

𝑖
(𝑗) , S

𝑖
(−q
𝑖
(𝑗)) = −p

𝑖
(𝑗) , ∀𝑗

S
𝑖 (
0) = 0.

(10)

The antisymmetry assumption comes from the belief that
only the absolute values of the coefficients should affect the
amount of shrinkage applied. It was verified experimentally
both in the work of Hel-Or and Shaked and in ours.

The shrinkage operator now has a parameter set p,
assuming a fixed set of domains q. We define an estimator
Gp,D for the signal 𝑥, based on (9) with this addition:

𝑥 = Gp,D (𝑦) = M
−1

E ∑
𝑘

EΤ
𝑘
DSpD

+E
𝑘
𝑦. (11)

Let us denote by 𝛼
𝑘
= (D+E

𝑘
𝑦) the representation of the

𝑘th patch in the noisy signal.
The objective function for tuning the parameter set p

is the mean square error (MSE) of the signal estimate 𝑥 =
Gp,D(𝑦), with respect to the true signal 𝑥 available at the
training stage:

p∗ = argmin
p





Gp,D(𝑦) − 𝑥







2

2

= argmin
p












M−1E ∑
𝑘

E⊤
𝑘
DSp(𝛼𝑘) − 𝑥












2

2

,

𝛼
𝑘
= D+E

𝑘
𝑦.

(12)

Hel-Or and Shaked define the slice transform (SLT)
which is applied to 𝛼

𝑘
in order to reformulate the shrinkage

operation as a linear function in p. Explicitly, a large sparse
matrix𝑈q,𝛼𝑘 encoding this data is designed ([12, Section IV])
to perform the shrinkage via a matrix-vector product:

𝑈q,𝛼𝑘 ⋅ q = 𝛼𝑘, 𝑈q,𝛼𝑘 ⋅ p = Sp (𝛼𝑘) . (13)

Using this approach, the optimization of the objective func-
tion (12) turns into a simple least squares problem,

p∗ = argmin
p












M−1E ∑
𝑘

E⊤
𝑘
D𝑈q,𝛼𝑘 ⋅ p − 𝑥












2

2

. (14)

It is easily solved for p using the pseudo-inverse operator.
An application of this method to image denoising,

demonstrated in [12], shows very promising results. More-
over, the use of custom-built functions makes the shrinkage
operation more robust and suitable for signal processing
problems other than noise reduction. For instance, an algo-
rithm for single image super resolution, proposed in [20]
and based on the same principles, exhibits a state-of-the-art
performance.
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4. Error Measure in the Image Domain

4.1. Constructing the Error Measure. Before considering an
example-based training for CT reconstruction, one must
establish a viable error measure in the image domain,
minimization of which would lead to radiological images
of a good quality. We consider a quantitative error measure
for the deteriorated CT image ̃𝑓 (reconstructed with some
algorithm), which uses the ground truth image 𝑓. The basic
choice for such measure is the mean square error (MSE):

MSE ( ̃𝑓) = 

𝑓 −
̃
𝑓







2

2
. (15)

Pursuing a low MSE value is an accepted goal in the
general field of image processing; however, we observe in
our experiments that algorithms optimized for minimalMSE
produce images with reduced spatial resolution. The reason
is that the true image often contains large nearly constant
regions, which calls for extensive smoothing. Fine details,
washed off by this smoothing, do not increase the MSE
notably, so its net value over the entire image is low. We
therefore introduce an additional component to the error
measure, which encourages the preservation of fine edges in
the image.

Consider an edge between two homogeneous regions in
the image,where the change in intensity is small comparing to
the global dynamic range. If the filter applied blurs this edge,
the MSE value is increased by a small amount; however, the
gradient norm at the edge ismuch smaller than in the original
image.Thus, it makes sense to penalize not only for difference
in intensity values between the reference image 𝑓

0
and the

reconstruction ̃𝑓 but for the difference in gradient norms:

Q
1
(𝑓
0
,
̃
𝑓) = ∑

𝑥












∇𝑓
0
(𝑥)





2

2
−






∇
̃
𝑓(𝑥)







2

2








. (16)

However, the stated error measure is still reduced by over-
smoothing the image: wherever the value of ‖∇ ̃𝑓(𝑥)‖

2

2
is

larger than ‖∇𝑓
0
(𝑥)‖
2

2
(which happens a lot in the noisy image

̃
𝑓), smoothing the image ̃𝑓 will reduce the error. Therefore,
we restrict our error measure only to the regions where
the original gradient norm is larger than the reconstructed
one; those regions are most problematic in the sense of lost
details. Thus, the following formula for a penalty component
is proposed:

Q (𝑓
0
,
̃
𝑓) = ∑

𝑥

𝑊(𝑥)max (0, 

∇𝑓
0 (
𝑥)





2

2
−






∇
̃
𝑓 (𝑥)







2

2
) .

(17)

The weight matrix𝑊, introduced here, is designed to remove
all the locations where the reference gradient norm is above
2% of its maximal value. This (empirically chosen) threshold
is applied in order to focus on the low-contrast edges and
not to waste the learning capacity of the filter on the strong
flesh-bone transitions. For a practical optimizationwe replace
the function (max(0, 𝑥) has a noncontinuous derivative in

0) max(0, 𝑥) with a smoothed version 𝜓(𝑥, 𝛿), based on the
Huber penalty function [21]:

𝜓
𝛿 (
𝑥) =

{
{
{
{
{

{
{
{
{
{

{

0, 𝑥 < 0

𝑥
2

2

, 0 ≤ 𝑥 < 𝛿

𝛿 |𝑥| −

𝛿
2

2

. 𝑥 ≥ 𝛿.

(18)

Another modification to the formula is introduced. Often the
radiologist is primarily interested in observing the clinical
images in a specific dynamic range; for instance, if soft
tissues are of interest, the relevant range seldom exceeds
the window of [−300, 300] Hounsfield units (HU). On other
hand, if bones are observed, the range should cover the bone
intensity; in this case, a range of [0, 1500]HUmaybe relevant.
We provide the ability to use this information in order to
concentrate the learning capacity of the filter in the required
dynamic range. Thus we introduce a binary mask H in the
image domain, which (in the training stage) is set to exhibit
only those image regions which fall into the relevant dynamic
range. Bottom line, we set themain penalty component to the
form of weighted 𝐿

2
norm, ‖𝑓 − ̃𝑓‖

2

2,H = (𝑓 −
̃
𝑓)
𝑇H(𝑓 − ̃𝑓).

The obtained error measure is named MSEg (mean square
error, augmented with the g gradient), and its final expression
is

MSEg (𝑓
0
,
̃
𝑓) =






𝑓
0
−
̃
𝑓







2

2,H + 𝜇Q (𝑓0,
̃
𝑓) ,

where Q (𝑓
0
,
̃
𝑓) = ∑

𝑥

𝑊(𝑥)𝜓𝛿
(




∇𝑓
0
(𝑥)





2

2
−






∇
̃
𝑓(𝑥)







2

2
) .

(19)

The reference image 𝑓
0
will be omitted from the notation

from now on. Using this function for training of data filters
produces CT images, which combine low MSE value with
high spatial resolution measure. In the following principle
experiment, it is compared to the basic MSE penalty in order
to demonstrate the effect of the proposed gradient-based
term.

4.2. Empirical Evaluation of the Proposed Measure. The fol-
lowing experiment shows the effect of the gradient-based
term in (19) on the visual impression from the “optimized”
image.The FBP algorithm is employed to perform CT recon-
struction from noisy observations.The cutoff frequency 𝜙

0
of

the low-pass filter in the Radon domain is gradually increased
to alter the variance-resolution tradeoff in the reconstructed
image. In Figure 1 we display a graph of MSE values of the
obtained image as a function of 𝜙

0
and a graph of Q(𝑓

0
,
̃
𝑓)

values. Both are unimodal graphswith a singleminimum. For
Q(𝑓
0
,
̃
𝑓), theminimum is obtained at a higher frequency than

for the MSE measure. In Figure 2 we display reconstructions
corresponding to these two optimal frequencies. A visual
inspection led us to the conclusion that the minimal-MSE
version (upper row, on the right) is a blurred image, where
spatial resolution is sacrificed for noise reduction.The version
minimizing the Q(𝑓

0
,
̃
𝑓) penalty (lower row, on the left) is
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visuallymore appealing since it has a higher spatial resolution
at the expense of stronger noise that is managed well by the
human eye. For comparison, we also display the reference
image (upper left) and two extreme cases corresponding to
low/high cutoff frequency (middle column).

The two conclusions drawn from this experiment are (1)
if we add the gradient-based penalty Q(𝑓

0
,
̃
𝑓) to the error

measure and train the reconstruction chain to minimize
its value, the obtained images are more informative to the
human eye, with higher spatial resolution, and the cost is a
higher noise level and (2) the values of Q(𝑓

0
,
̃
𝑓) are lower

by two orders of magnitude than the MSE; therefore, in a
balanced total error term (19), the value of theweight𝜇 should
be around 100 in order forQ(𝑓

0
,
̃
𝑓) to have an effect.

5. The Algorithm for CT Reconstruction

The algorithm consists of the sequence of steps, producing a
CT image from the measured photon counts. They are stated
here and detailed in the sequel.

(i) Data adjustment for signal processing: the photon
counts are altered so as to enable an approximate
modeling with only the Poisson random variable;
then, they undergo the Anscombe transform [22] to
normalize the noise variance.

(ii) Learned Shrinkage in the measurements domain: the
2D matrix of the adjusted measurements data is
processed patchwise using the learned shrinkage
algorithm (we modify the original method of Hel-Or
and Shaked, adjusting it to indirect measurements).

(iii) Standard FBP: the FBP transform with no low-pass
filter reconstructs the CT image from the restored
measurements data.

(iv) Learned Shrinkage in the image domain: a different
instance of the learned shrinkage algorithm is applied
on the obtained image, producing the final outcome.

We now extend the discussion on each of these steps.

5.1. Adjusted Measurements. The first step is to remove the
Gaussian component from the measurements model stated
in (1). Following [1], we compute the adjusted variables 𝑦:

𝑦
ℓ
= [𝑦
ℓ
− 𝑑 + 𝜎

2

𝑛
]
+
, (20)

where the [𝑥]
+
= max{𝑥, 0}. It is easily seen that the

expectation and the variance of this distribution are equal to
those of the single Poisson variable with the parameter ̂𝜆

ℓ
=

𝜆
ℓ
+𝜎
2

𝑛
, and so for the purposes of noise normalization,wewill

assume that this is the distribution modeling for the adjusted
measurements 𝑦

ℓ
. Also, we assume a zero-mean electronic

noise (𝑑 = 0), and therefore the positivity correction is not
relevant.

The variance of the Poisson random variable equals its
expectation ̂𝜆

ℓ
= 𝜆
ℓ
+ 𝜎
2

𝑛
and can be approximated by

the measured value 𝑦
ℓ
. We assume that the noise reduction

by the learned shrinkage works best when the noise is
homogeneous (constant variance in all points). The reason is
that the representations of all the patches in the data matrix
are processed by the same scalar function, and if the noise
energy in each patch was different, it would require a spatially
varying shrinkage. In order to achieve unit variance in all
the measurements, we use the Anscombe transform [22],
intended to normalize the Poisson variable:

𝜙 (𝑥) = 2√𝑥 +

3

8

. (21)

To summarize, the overall data adjustment is performed
elementwise by the following scalar function 𝜔(𝑥):

𝑧
ℓ
= 𝜔 (𝑦

ℓ
) = 𝜙 (𝑦

ℓ
+ 𝜎
2

𝑛
) = 2√𝑦

ℓ
+ 𝜎
2

𝑛
+

3

8

. (22)

5.2. The Objective Function for Training. Let 𝑧 = 𝜔(𝑦) denote
thematrix of adjustedmeasurements.We state the expression
for the image ̃𝑓 reconstructed with our algorithm, before
the postprocessing stage. The noise reduction in 𝑧 is done
by the nonlinear filter Gp = Gp,D, defined in (11). Here the
dictionary D is a fixed linear transformation (we use the
unitary discrete cosine transform), and therefore it is omitted
from the notation. After the filtering, the data is transformed
to the Radon domain by applying the 𝜔−1(𝑥), followed by the
− log function.Then the FBP operatorT is applied to produce
the CT image ̃𝑓. To summarize, the image is computed as
follows:

̃
𝑓p (𝑧) = −T(log(

1

𝜆
0

𝜔
−1G
𝑝 (
𝑧))) . (23)

The objective function for the training of the parameter set p
is the proposed error measure from (19), regularized with an
additional factor:

Γp (𝑧) ≡ MSEg (𝑓, ̃𝑓p (𝑧)) + 𝛾‖p − q‖2

=






𝑓 −
̃
𝑓p (𝑧)







2

2,H + 𝜇Q (𝑓0,
̃
𝑓p (𝑧))

+ 𝛾‖p − q‖
2
.

(24)

Here 𝛾‖p − q‖
2
is a regularization term penalizing the devia-

tion of each shrinkage function from the identity. Its purpose
is to make the shape of the shrinkage functions more robust
to outlier examples.

In order to minimize the function Γp(𝑧) with respect to
the argument p, we use the memory-efficient ℓ-BFGS convex
optimization method [23], which requires computing the
value and the gradient of the function being minimized.
The implementation of the algorithm is by the courtesy
of Mark Schmidt (see http://www.di.ens.fr/mschmidt/Soft-
ware/minFunc.html). Since our objective function is not
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Figure 1: Graphs of the MSE values ‖𝑓
0
−
̃
𝑓‖

2

2
(a) and the gradient penalty values Q(𝑓

0
,
̃
𝑓) (b) as a function of the cutoff frequency.

Figure 2: Left to right, upper to lower: reference image, FBP
reconstructions obtained with low-pass filter with 𝜙

0
= 0.4 (very

low), 𝜙
0
= 0.8 (optimal for MSE), 𝜙

0
= 1.55 (optimal for gradient-

based measureQ(𝑓
0
,
̃
𝑓)), and 𝜙

0
= 4 (very high).

convex, there is a theoretical question regarding the con-
vergence of this numerical scheme. In practice, we have
observed that the method converges in ∼100 iterations, and
the obtained parameter set enables producing CT images
of a good quality (in comparison to other reconstruction
methods).

The gradient of the function G
𝑝
(𝑧) (defined in (11))

with respect to p can be expressed with the help of the
slice transform proposed in [12]. Recall that 𝛼

𝑘
= D+E

𝑘
𝑧

is a representation of the 𝑘th patch in 𝑧. The shrinkage
operation Sp𝛼𝑘 is replaced by an equivalent matrix-vector
multiplication 𝑈q,𝛼𝑘p. Then G

𝑝
(𝑧) has the form

Gp (𝑦) = M
−1

E ∑
𝑘

E⊤
𝑘
D𝑈q,𝛼𝑘p, (25)

which is linear in p. Now, if we consider the estimator ̃𝑓p(𝑧)
as a function of �̃� = G

𝑝
(𝑧), we see that this is a composition

of elementwise scalar function − log(1/𝜆
0
)𝜔
−1 and the linear

operator T. Thus, the gradient here is also easily computed.
Finally, the gradient of the functional MSEg with respect to ̃𝑓
consists of 𝐿

2
norms and derivative operators, so its expres-

sion is derived using standardmethods.We conclude that the
gradient ∇pΓp(𝑧) has a closed-form analytical expression and
can be readily computed.

The expressions presented above involve only one image
𝑓, just for a better readability; in practice, we may sum the
errors over a training set of many images 𝑓.

Another important remark is this: when this training
objective is used, the parameters of the shrinkage operator
Sp are tuned to not to reduce the photon count noise in the
measured data 𝑦 (via the processing of the adjusted data 𝑧)
but to prepare the data in the best way for the specific recon-
struction operatorT. Here lies the key difference between this
algorithmand existingmethods formeasurements denoising,
which target high signal quality in the raw data but do not
consider the final CT image.

5.3. Image Postprocessing. At this point, after the pre-
processing filter is tuned, we have a working reconstruction
chain that produces CT images. The stated objective is pur-
sued by its components somewhat indirectly, by changing the
rawmeasurements. A further reduction of the reconstruction
error can be achieved by administering another filter, acting
on the obtained CT images themselves. We use again the
method of learned shrinkage. The training data comprises of
the set of CT images ̃𝑓p(𝑧), reconstructed from the original
noisy measurements, as described before.The corresponding
reference images serve again as the ground truth. Over-
lapping patches are extracted from an image, processed by
the shrinkage functions in the transform domain and are
reinstalled back. The noise statistics in the obtained CT
images are difficult to estimate because of the preprocessing
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stage. Therefore, we do not attempt to normalize the noise in
the image patches.

We formulate the training objective for the parameter
set p𝐼 of the image domain shrinkage similarl to the case of
measurements domain:

Γ
𝐼

p𝐼 (
̃
𝑓) = MSEg (𝑓,Gp𝐼 (

̃
𝑓)) + 𝛾

𝐼






p𝐼 − q𝐼

2

=






𝑓 − Gp𝐼 (

̃
𝑓)







2

2,H + 𝜇Q (𝑓0,Gp𝐼 (
̃
𝑓))

+ 𝛾
𝐼






p𝐼 − q𝐼

2
.

(26)

Here the upper script 𝐼 denotes the image domain. The
input image ̃𝑓 is computed via the formula in (23) using the
vector p of shrinkage parameters, learned earlier. This way
the postprocessing is tuned for the very same kind of images
it will be getting in the operational mode. As previously
stated, the training stage consists of minimizing the value
of Γ𝐼p𝐼( ̃𝑓) with respect to p𝐼. This task is simpler than the
optimization in the measurements’ domain since no data
adjustment or reconstruction is required.Using an expression
for the gradient ∇p𝐼Γ

𝐼, we invoke again the ℓ-BFGS method
to solve the optimization problem. The convergence here is
faster than in the measurements domain, and it takes about
30 iterations to the convergence.

We remark that the postprocessing method could be
evaluated in its own right, when the corrupted input images
may come from the standard FBP or from any other recon-
struction method. This evaluation is left for a future study.

5.4. The Training Set. The example-based training approach
requires a collection of high quality reference images, each
accompanied with a degraded set of measurements. It is
preferable to compose the training set from clinical images
obtained from a CT scan of a human body, rather than
from images of synthetic phantoms. In any case, the example
object has to be scanned twice: one time with a very high X-
ray dose to compute a high-quality reference image (using
standard FBP, for instance), and another time with the low
dose desired for the practical scan performed on patients.
This configuration is feasible with human cadavers: there is
no restriction on the X-ray dosage, and there is no problem
of registration between the two consecutive scans for a still
object (in our experience, with a clinical scanner of General
Electric). Another approach for producing the training pairs
is to start with given high-quality CT slices and simulate the
low-dose measurements by reproducing the machine’s X-ray
operation as faithfully as possible. This is the approach we
took in our work.

We suggest that the training set should be composed of
CT images representing a specific anatomical region. This
is in light of the observation that the characteristics of CT
images vary substantially between different such regions.
This leads to building a collection of learned parameter sets,
specialized for head, lungs, abdomen, arms, and so forth.
During the reconstruction, the operator of the CT scanner
should choose the relevant version of the parameter set, just
like it is done todaywith the different smoothing filters for the

standard FBP. Nevertheless, in our numerical experiments we
also show that a filter specialized on one anatomic region also
makes a good performance on other ones. A deeper study of
dependence of the learned filter on the training set should be
carried out by professional radiologists.

A training set we build for a specific anatomic region
consists of a sequence of axial slices from that region,
uniformly distributed in 𝑧-axis. The size of the training set
is also a parameter to be investigated; we found that 9–12
images suffice for a stable optimization and a consecutive
robust reconstruction of the thighs or the abdomen regions.
However, in regions rich with small details where there are
important but subtle differences between nearby slices (the
brain, for instance) a larger collection of images is possibly
required.

5.5. Computational Complexity. The number of operations
required for the 𝑛×𝑛 image reconstructionwith our algorithm
is O(𝑛3), which is the same complexity as required by the
regular FBP alone.

The measurements’ matrix consists of 2𝑛 × √2𝑛 = 2.82𝑛2
elements.The learned shrinkage applied to themeasurements
consists in applying the analysis operator D+ at each patch
of size 𝑑 × 𝑑, then applying the scalar shrinkage function
on each of the 𝑑2 coefficients and recomputing the patch
by a multiplication with D. The dictionary D we use is the
unitary 2D discrete cosine transform (DCT), which requires
O(2𝑑2 log(𝑑)) operations. We use patches of size 𝑑 = 11;
thus, computing a representation of each patch requires about
2𝑑
2 log(𝑑) = 580 operations and the same amount of work

to convert the representation back to the signal. Further,
applying a shrinkage function takes O(𝑐 ⋅ 𝑑2) operations,
where the constant 𝑐 is about 20, governed by the length of the
vector q in (10).The number of patches, extracted from an 𝑛×
𝑛 image, depends on the chosen amount of overlapping; up to
𝑛
2 patches can be processed. To summarize, the application of

the learned shrinkage filter has the computational complexity
of O(4𝑐 ⋅ 𝑛2𝑑2(log(𝑑) + 1)). The standard size of clinical CT
images is 𝑛 = 512, so the number 𝑑2(log(𝑑) + 1) is of the
same order of magnitude as 𝑛 (for 𝑑 = 11, this number
equals 822). Therefore, it takes about 80𝑛3 operations, which
is comparable to the O(𝑛3) complexity of the FBP transform.

We notice that the processing of individual patches can
be naturally parallelized on multiple core or GPU, reducing
the computation time by a nonnegligible factor (depending
on the available hardware).

6. Empirical Study

6.1. Experimental Setup. The algorithm was implemented
using the Matlab environment and tested on sets of clinical
CT images (axial slices). These were extracted from a CT
scan of a male, from regions of the head, abdomen, and
thighs.The images are courtesy of the Visible Human Project
(See http://www.nlm.nih.gov/research/visible/visible human
.html). The images are of dimensions 512 × 512, acquired
with 1mm intervals along the 𝑧-axis. The intensity levels
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Figure 3: Examples of clinical images used in the experiments.
Upper row: axial head slices displayed in the range (HU window)
of [−170, 250]), middle row: abdomen images, lower row: thigh
images. The two lower rows are displayed in the HU window
[−220, 350]. Head images are slightly enlarged relative to other
regions for better visibility.

correspond to Hounsfield units (HU), given with the
accuracy of 12 bits per pixel. Representatives of these sets we
have assembled are displayed in Figure 3. We wish to point
out that the reference images used for the training stage are
not perfect since they were obtained using a standard X-ray
dosage. If very-high-quality images were available for the
training, we would expect our algorithm to perform better.

In absence of raw measurements’ data from a CT
scanner we simulate the scan process by computing
projections of given CT images (considered to be the ground
truth) as follows. First, the intensity values in the image
are converted from the Hounsfield units to the units of
reciprocal length, corresponding to the linear attenuation
coefficient 𝜇. The relation between the two scales is
(http://www.medcyclopaedia.com/library/topics/volume i/
h/hounsfield unit.aspx/)

HU (𝑥) =
𝜇 (𝑥) − 𝜇 (water)
𝜇 (water) − 𝜇 (air)

⋅ 1000, (27)

where 𝜇(water) = 0.19 cm−1, 𝜇(air) = 0 cm−1. The original
512 × 512 images are cropped to dimensions 461 × 461 by
removing the empty background (to save computation time).
Then, noiseless sinogram 𝑔 = R𝑓 is simulated by applying
to the reference image a pixel-driven implementation of the
discrete 2DRadon transform.The algorithm for forward- and
back projection uses linear interpolation in the locations of
bins/pixels. Explicitly, each bin in a projection is a weighted
sum of a few (temporary) finer bins, which are computed
by integrating image intensities over a narrow (quarter of a
pixel) ray in the image domain. The weights are linear in the
distance between the center of the coarse bin and the centers
of the fine bins.

For 𝑛 × 𝑛 images, we have used 𝑛 views (projections),
evenly distributed over the angle range [0, 𝜋]. Each projection

consists of √2𝑛 bins. Ideal photon counts are computed
from the sinogram entries via the relation 𝜆

ℓ
= 𝜆
0
𝑒
−𝑔
ℓ .

The measured photon counts 𝑦
ℓ
are produced by generating

random Poisson variables with expectations 𝜆
ℓ
and zero-

meanGaussian variables with a chosen standard deviation𝜎
𝑛
.

The X-ray dose is controlled by the maximal photon count 𝜆
0

and the value of 𝜎
𝑛
.

The design parameters of the proposed algorithm are
set as follows. The filter, based on the learned shrinkage, is
implemented using the 2D unitary discrete cosine transform
(DCT) (see Figure 5). It is implemented using 𝑑2 elements
composing a linear basis, which are matrices of dimensions
𝑑×𝑑.The representation of a𝑑×𝑑 signal is computed as the set
of inner products between the signal and each basis element.
This approach allows computing the representation of the
entire collection of image patches in a batch, by convolving
the image with each basis element. In our work we set 𝑑 = 11.

Each of the 121 corresponding shrinkage functions of the
operator Sp consists of 2 × 20 linear pieces (the factor of
2 is for the negative and the positive parts; recall that the
shrinkage functions are antisymmetric by design, so there
is just 20 degrees of freedom); this number was established
empirically and is similar to the one used in [12]. Graphs of
shrinkage functions, obtained in one of the training sessions,
are displayed in Figure 4. The regularization parameters in
(24), (26) were set to 𝛾 = 10−4, 𝛾

𝐼
= 250. Use of the

regularization has helped to constrain the shapes of the
pre- and postprocessing shrinkage functions, avoiding jumps
resulting fromoutlier samples.We discuss the process of their
tuning in the sequel.

We mention that numerical experiments were also car-
ried out with the nondecimated 3-level Haar Wavelet frame,
but they are not presented here due to slightly inferior results
(comparing to those obtained with the DCT). However,
our impression is that a particular choice of the transform
is not of a crucial importance. Another remark we shall
make concerns the redundancy of the dictionary. We have
compared the performance of the algorithmusing the unitary
DCT against its version with an overcomplete DCT. In our
experiments, no improvement was induced by this change.

6.2. Implementation of the Existing Algorithms. We imple-
ment three existing reconstruction algorithms. First is the
standard FBP, with the classical noise reduction done by
a sinogram smoothing. Second is an iterative, statistically-
based algorithm, approximating the penalized likelihood
solution; specifically, it is the penalizedweighted least squares
(PWLS), proposed in [6]. The third method is the adaptive
truncatedmedian (ATM)filter [8]. It is close in its spirit to our
work—a fast nonlinear preprocessing method, designed to
improve the performance of FBP in a low-dose scan scenario.

6.2.1. Implementation of the FBP Algorithm. The FBP was
realized according to the following formula:

T = R∗ ∘ Flow ∘ FRL. (28)
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Figure 4: Shrinkage functions obtained via the learning process on a training set consisting of male thighs images. Only the odd rows and
columns from the original 11 × 11 array of functions are displayed due to space considerations. Due to the antisymmetry, only the positive
half of the 𝑥-axis is drawn.

FRL is a convolution filter with the discrete Ram-Lak kernel 𝜅
of𝑚 taps, computed via the following formula ([24, equation
(5.5)]):

𝜅 (𝑝) = sinc (𝑝) − 1
2

(sinc(
𝑝

2

))

2

, 𝑝 = −

𝑚

2

:

𝑚

2

,

sinc (𝑥) = sin (𝑥)
𝑥

.

(29)

The low-pass filter Flow is implemented by composing the
Ram-Lak filter with the Butterworth window [25] in the
Fourier domain. An expression for this window is

|𝐻 (𝜔)| = (1 + (

𝜔

𝜙
0

)

2𝑝

)

−1/2

. (30)

The two defining parameters are the cutoff frequency 𝜙
0
,

which controls the frequency response of the filter and the
order 𝑝, which affects the steepness of its roll-off. In the
experiments, these two parameters are tuned manually for

the best visual impression on the training set (this issue is
discussed in the sequel).

6.2.2. Implementation of the PWLS Algorithm. We used the
objective function stated in Equation (14) of [6], which
represents an approximation to the log-likelihood function
of the CT image ̃𝑓, with an addition of a penalty component
𝑅
𝛿
(
̃
𝑓). In our notation it is stated as follows:

𝐿 (𝑦 |
̃
𝑓) =

1

2

∑

ℓ

𝑊
ℓ
([R ̃𝑓]

ℓ
− 𝑔
ℓ
)

2

+ 𝛾𝑅
𝛿
(
̃
𝑓) , where

𝑊
ℓ
=

𝑦
2

ℓ

𝑦
ℓ
+ 𝜎
2

𝑛

, 𝑔
ℓ
= − log

𝑦
ℓ

𝜆
0

.

(31)

The expression for the regularization is

𝑅 (
̃
𝑓) = ∑

𝑝

∑

𝑘∈N(𝑝)

𝜓 (
̃
𝑓
𝑝
−
̃
𝑓
𝑘
) . (32)
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Figure 5: Two-dimensional discrete cosines basis. Each square in
the 11 × 11 array is a 2D function representing a basis element.

Here 𝜓(𝑥) is the convex edge-preserving Huber penalty

𝜓 (𝑥, 𝛿) =

{
{
{

{
{
{

{

𝑥
2

2

, 𝑥 < 𝛿

𝛿 |𝑥| −

𝛿
2

2

, 𝑥 ≥ 𝛿

(33)

andN(𝑝) is the set of the four nearest neighbors of 𝑝. Param-
eters 𝛾, 𝛿 of the penalty component were tuned manually for
best the visual impression on training images.

6.2.3. Implementation of the ATM Filter. The ATM filter was
briefly described in the introduction. Technically, its action
on a location 𝑝 in a signal 𝑆 is defined by two parameters: the
number𝑀 of data values in the neighborhood of 𝑝, involved
in the filtering and the fraction 𝛼 of outliers assumed in this
data. The filtered value at 𝑝 is computed as the average of
this neighborhood, taken after removing the𝑀𝛼 highest and
the 𝑀𝛼 lowest values. This filter is made adaptive by using
data-dependent parameters 𝑀 and 𝛼, computed for each
location of the measurements matrix. The formulas for ATM
parameters, given in [8], involve the signal value (photon
count) 𝑥 = 𝑆(𝑝):

𝑀 =

2𝛽𝜆

2𝜆 +max (0, 𝑥 − 𝛿)
, 𝛼 =

𝛼
𝑚
𝑥

𝜆

. (34)

In [8] it is not specified what is the shape of the neighborhood
of the pixel 𝑝, involved in its filtering. In our implementation,
we assume it is a discrete disc. Also, nomethod for computing
the inner parameters 𝛽, 𝜆, 𝛿, 𝛼

𝑚
is proposed; a set of

prescribed values is given instead. In our implementation,
these parameters are tuned to minimize the net MSE on the
training set, by sweeping two-dimensional grids, built for
different pairs of parameters. This is done in iterations, each
time a different pair out of the four parameters is changed.

6.3. Visual Evaluation and Comparison of the Algorithms.
The existing and proposed methods are compared on the

reconstruction of a test image of thighs’ section. The noise
on the projection data was generated by setting 𝜆

0
= 1.5 ⋅

10
5
, 𝜎
𝑛
= 5. The visual comparison of is given in Figure 7,

where the corresponding reconstructed images are presented.
We display an enlarged region of the image, for better observ-
ability. The displayed dynamic range is set to [−220, 350]
Hounsfield units (HU), chosen for best visualization of the
particular axial slice. In general, there is no predefined HU-
window radiologists use to look at theCT images; thewindow
is tuned manually in an interactive fashion, and it depends
on the anatomical region, diagnostic purposes, and personal
preferences.The reference image is depicted in Figure 6 in few
different windows to display the effect of such tuning.

The FBP image (Figure 7, lower right) suffers from
streak artifacts, which corrupt its content—especially, the fine
details. The strength of the artifacts can be reduced at the
cost of blurring the image; here the strength of the low-pass
filter in FBPwas tunedmanually for visually plausible images.
The ATM algorithm (middle right) displays a significant
reduction in the strength of the streaks, which implies that
most outliers in the Radon domain were removed. However,
some residual noise and detailed corruption are still present.

The slow, iterative PWLS algorithm (upper row, right)
provides a better version of the image, with improved
sharpness and complete lack of streaks. The latter property
is expected since the image is built as a MAP optimizer
and there is no smear of the raw-data errors by the back
projection. Still, there is a noise texture in the image. The
PWLS performance can be tuned by varying the penalty
weight, Huber parameter, and the number of iterations.These
parameters were set manually to produce a high spatial
resolution, at the cost of manageable noise; specifically, we
used 90 iterations, and the value 𝛾 = 8 ⋅10−5 in (31). Different,
MSE-optimized reconstructions by the compared methods
are given in Figure 16.

Finally, we refer to the two images produced by our
method.The stage-I image (lower left) was obtained by apply-
ing the FBP to the preprocessed data. The postprocessing
of this image results in the stage-II version (middle left).
The FBP streaks are significantly reduced in stage-I image,
similarl to the ATM method; however, some of the streaks
are sharply visible around the bone area. The reason for
their appearance is that the filter is not removing all of the
problematic streak effects; since our method is based on FBP,
some of its artifacts remain. Moreover, they are better visible
on resulting the image due to reduced background noise and
lack of the rest of the streaks. We should note that the general
noise level is visibly lower than that appearing in the rest of
the images. The noise is further reduced in stage-II image,
without introducing additional blur.

The error images are displayed in Figure 8. With our
method (stage II), the error image has less of the uniform
noise than any of the three compared methods, and the
edges appearing in the error image (they point to the loss of
spatial resolution) are as weak as those observed in the PWLS
reconstruction.

In Table 1, some quantitative measures of reconstruction
quality are provided. The signal-to-noise Ratio (SNR) is
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Table 1: Quantitative measures for the compared algorithms.

Method FBP ATM PWLS Shrinkage
Thighs

MSEg =
MSE + grad 16.12 + 11.64 11.81 + 12.54 7.98 + 5.31 6.99 + 11.17

MSEg total 27.76 14.35 13.29 18.16
SNR (dB) 26.56 28.70 29.56 30.73
SSIM 0.8643 0.9124 0.9219 0.9398

Abdomen
MSEg =
MSE + grad 14.96 + 6.88 11.78 + 6.73 7.12 + 7.49 6.80 + 7.18

MSEg total 21.83 18.52 14.61 13.99
SNR (dB) 26.42 27.34 29.53 30.41
SSIM 0.8832 0.8985 0.9326 0.9483

Head
MSEg =
MSE + grad 6.99 + 11.40 6.99 + 11.39 3.31 + 7.99 2.77 + 6.38

MSEg total 18.40 18.38 11.30 9.15
SNR (dB) 30.84 30.84 31.94 33.74
SSIM 0.9764 0.9764 0.9783 0.9864

defined for the ideal signal 𝑓 and a deteriorated version ̂𝑓
by SNR(𝑓, ̂𝑓) = −20 log

10
(‖𝑓 −

̂
𝑓‖
2
/‖𝑓‖
2
). In practice, we

consider the signal ̂𝑓 up to a multiplicative constant and
compute

SNR (𝑓, ̂𝑓) = min
𝛼
− 20 log

10
(
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̂
𝑓





2
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2

) . (35)

The structured similarity (SSIM) measure was introduced
in [26] as an alternative to MSE which is more relevant
to human perception of the images. The explicit formula
involves first and secondmoments of the local image statistics
and the correlation between the two compared images.
In our numerical experiments, we have used the Matlab
code provided by the authors of [26], which is available at
http://www.cns.nyu.edu/∼lcv/ssim/.

Finally, the MSEg measure is introduced in this paper,
(19).

The SNR and MSEg values are measured in the range of
[−220, 350] (HU).TheMSEg value is detailed as a sum of the
MSE component and the gradient-based component in order
to show the balance between the two factors in the different
cases. All three of the computed measure consistently point
to the gradual quality improvement as one passes from FBP
to ATM and to PWLS and finally to the proposed method.

To appreciate the effect of the postprocessing (stage II
of our method), we display the absolute-valued difference
between the two stages in Figure 9. Almost no structure can
be observed in this error image, and this implies that very
little of the image content is lost during the postprocessing.

Figure 6: Left to right, upper to lower: test image with a marked
zoom-in window, a zoom-in region depicted in dynamic ranges
[−1000, 1500], [100, 700], [−100, 150] HU, respectively. Yet another
version of this image appears in Figure 7 (upper left), in [−220, 350]
HU.

Figure 7: Reconstruction of a test image (thighs’ section). Images
are listed left to right and displayed in HU range of [−220, 350].
Upper row: reference image, PWLS. Middle row: our method (stage
II), ATM. Lower row: our method (stage I), FBP.
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Figure 8: Absolute-valued differences between the reconstructions
and the reference image. Darker shade corresponds to a larger error.
Left to right, upper to lower: FBP, PWLS, ATM, and our method
(stage II).

Figure 9: Absolute-valued difference between stage-I and stage-II
of our method.

6.4. Behavior in Different Anatomical Regions. An important
issue of the example-based training approach is the depen-
dence of the reconstruction quality on the training set and
the anatomical region. Recall that the reference images for
training were taken from the thighs’ region; we now use
the trained shrinkage functions to restore axial head and
abdomen sections. The compared reconstruction methods
are also applied (without changing their parameters) to the
new regions. The results are displayed in Figures 10–13. The
test image from the head region, along with some other
examples of head sections, is given in Figure 10. In the FBP
reconstruction (Figure 11, lower right), the quality of the fine
details is reduced due to the streak noise; both PWLS (upper
right) and our method (middle and lower left) exhibit better
restoration of these details (see, for instance, the thin vein-
like lines on the left and right sides of the image, as well as

Figure 10: Few example images of head sections.Themarked region
in the test image (on the left) is zoomed on in Figure 11.

Figure 11: Head reconstruction. Images are listed left to right and
displayed in HU range of [−170, 250]. First row: reference image,
PWLS. Second row: our method (stage II), ATM. Third row: our
method (stage I), FBP.

Figure 12: Head reconstruction errors with respect to the reference
image (darker shade corresponds to a larger error). Left: PWLS,
right: our method (stage II).
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Figure 13: Abdomen reconstruction. Images are listed left to right
and displayed in HU range of [−220, 350]. First row: reference
image, PWLS. Second row: our method (stage II), ATM.Third row:
our method (stage I), FBP.

the small bright spots in the upper central region). With our
method the noise texture still exhibits streaks (since this is
an FBP-based method), but the noise energy is lower than
that in the PWLS, which is reflected in higher SNR value.The
parameters of the ATM method should apparently be differ-
ent for the head scan data since the resulting image is almost
the same as the FBP without preprocessing. We conclude
that ATM is sensitive to the choice of an anatomical region
and has to be tuned using relevant training sets. Quantitative
measures, presented in Table 1, also show the similarity
between FBP and ATM images and point to improved quality
of images produced by the shrinkagemethod. An exception is
theMSEgmeasurement in the thighs’ image, where the PWLS
achieves a lower value of the gradient-based penalty.

In the abdomen image reconstruction (Figure 13) the
ATMperforms better than the FBP but both ATM and PWLS
do not succeed to reduce the noise like the shrinkage method
does. Figures 12 and 14 depict the reconstruction error for the
PWLS and our algorithm (other methods are omitted here
out of space economy) and support the observations above.

Figure 14: Abdomen reconstruction errors with respect to the
reference image (darker shade corresponds to a larger error). Left:
PWLS, right: our method (stage II).

Figure 15: Columns, left to right: reconstruction by FBP, PWLS,
and stage-II of our method. Rows, upper to lower: increasing signal
energy corresponding to exposure levels of 𝜆
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6.5. Behavior at Different Noise Levels. The impact of noise
level on reconstruction quality is demonstrated via an array
of images in Figure 15 with FBP, PWLS, and our method.
Table 2 contains the standard quality measures—MSE and
SSIM values for each noise level. The X-ray dose is increased
exponentially from 𝜆

0
= 3 ⋅ 10

4 to 𝜆
0
= 3 ⋅ 10

6 (first to last
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Figure 16: Upper row, left to right: reconstructions optimized
for SNR values—FBP (28.5 dB), PWLS (30.6 dB), our method
(31.41 dB). Lower row: reconstruction with higher spatial
resolution—FBP (26.5 dB), PWLS (29.6 dB), ourmethod (30.73 dB).

rows in the figure), which results in linear improvement of the
visual perception. The parameters of FBP were adjusted for
each noise level; the parameters of the PWLS and ourmethod
are tuned for the exposure level of 𝜆

0
= 1.5 ⋅ 10

5. This is the
noise level used to simulate the training set in our algorithm.

In the strongest noise (row 1), our approach exhibits
more streaks than the PWLS version since it is an FBP-based
method (because our methods was not trained for this level
of noise). In other cases the visual impression is similar for
both algorithms. As the X-ray intensity increased, the quality
of images produced by our method rises promptly to attain
a nearly perfect image at the highest exposure. This testifies
for the robustness of the training procedure with respect to
noise level since the reconstruction results are adequate for
X-ray doses which are either significantly higher or lower
than the dose in the training set. Notice that the parameters
of the PWLS algorithm are not optimal for the lowest noise
level, where an oversmoothing is observed. The SNR values
of PWLS images lead the charts at very low and very high
exposure levels, while in rows 2, 3 of the table our method
shows superior results. The SSIM measure implies that the
performance of PWLS is very close to that of ourmethod. FBP
is comparable to these two algorithms at high X-ray intensity
and is way below in the low-dose scenario.

6.6. Aiming for Lowest MSE. Now we return to the question
of whether MSE is an error measure relevant to radiological
images. The images, presented earlier in Figure 7, were
obtained by tuning the algorithms for high spatial resolution,
at the price of noise level and the SNR value. Here we
display three algorithms—FBP, PWLS, and our method—
with parameters optimized for maximal SNR (we were not
able to control the ATM filter behavior that way). With FBP,
it is achieved by tuning the cut-off frequency of its sinogram
filter; for PWLS, we have increased the weight of the Huber
penalty component. Our method is manipulated by tuning
the weight 𝜇 of the gradient-based component in (24), (26).
In the upper row of Figure 16, reconstruction of the test image
by those three methods with SNR-optimized parameters is
displayed. The lower row contains the image versions from

Figure 17: Detectability test for a small inserted lesion. Upper to
lower rows, right to left: reference image, our method, PWLS, ATM,
and FBP images. The HU window is [−220, 350].

Figure 7; they were produced with parameters optimized
for visual perception. Specifically, the spatial resolution was
improved at expense of a tolerable additional noise. This
display is given to show the tradeoff between the noise
reduction and spatial resolution and visualize our stimulus
in pursuing the latter virtue rather than the former.

6.7. Detecting Lesions in Noisy Images. A lesion detectability
experiment is designed as follows: we add a small disk-
shaped blob in the homogeneous region of test image. The
average intensity of the lesion is 105HU on the background
tissue of average 54HU. The experiment is conducted in
conditions of strong noise, concealing the lesion spot in the
FBP reconstruction. Explicitly, it corresponds to 𝜆

0
= 7 ⋅

10
4 photons. In Figure 17 the reconstruction of a region,

containing the lesion, is displayed.We compare our algorithm
with the PWLS, ATM, and the FBP. The parameters of the
learned shrinkage were trained offline on the training data
with the same noise energy; the PWLS and ATM were used
with the same parameters as earlier for the following reasons.
For PWLS, a manual tuning of the smoothing weight did not
result in any improvement of visibility. For ATM, there is
no intuitive way to change the four parameters for a higher
noise level. The FBP was used with same cut-off frequency
but higher order of the Butterworth window, whichmade the
lesion more observable.
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Table 2: Quantitative measures corresponding to the image array in Figure 15. The SNR is measured in HU window of [−220, 350].

Noise level 𝜆
0

FBP PWLS Shrinkage
SNR SSIM SNR SSIM SNR SSIM

3 ⋅ 10
4 21.87 0.75 27.82 0.90 25.39 0.86

9.5 ⋅ 10
4 26.53 0.86 28.97 0.91 29.88 0.92

3 ⋅ 10
5 28.86 0.91 30.59 0.93 31.65 0.94

9.5 ⋅ 10
5 30.67 0.93 32.62 0.95 32.43 0.95

3 ⋅ 10
6 32.29 0.95 33.93 0.96 32.85 0.96

Figure 18: Error maps for the lesion detectability test, built with
respect to the reference image. Upper to lower rows, left to right: our
method, PWLS, ATM, and FBP images. Darker shade corresponds
to higher error. The lesion is not observed in any version, which
means it is recovered correctly by all the methods; however, in FBP
image the lesion is obscured by streaks.

One can observe that the synthetic lesion (no similar
structure was present in the training data) is recovered
correctly and, in contrast with the FBP image, it can be clearly
observed. PWLS produces an image which is more sharp
and noisy than our result, and the ATM image is of a lower
quality. The error images in Figure 18 (difference between
the reconstruction and the reference) imply that the noise
in the image produced by our method is lower than that in
the PWLS reconstruction (this experiment is also the chance
to compare the algorithms at a stronger noise). The lesion is
not observed in any error image which means it is not lost
in reconstruction; the problem with FBP is not that it fails to
recover the lesion but the high streak-shaped noise obscuring
it.

6.8. Design Parameters of the Proposed Method. We now
study the impact of various parameters appearing in the
reconstruction chain. First we consider the objective function
in (24). The weight 𝜇 controls the influence of the gradient-
based component; when set to zero, the training leads to
best MSE reduction. The influence of this component on the

Figure 19: Reconstruction with learned shrinkage trained with the
different values of the weight 𝜇. Upper to lower rows, left to right:
images corresponding to 𝜇 = [14.3, 105.6, 205.5, 400].

visual appearance of the image is observed in Figure 19. The
presented sequence of images corresponds to values (these
values are a subset of an exponential sequence of the 𝜇
range, swept in a numerical experiment. We chose these four
values because they provide visibly different reconstructions.)
𝜇 = [14.3, 105.6, 205.5, 400]. As 𝜇 grows, the blur, introduced
by the reconstruction, is reduced; however, new artifacts
arise. They result from strong influence of the gradient-
based component. After a finer tuning we chose to use
𝜇 = 100, which produces the most visually appealing image.
Its sharpness is near best, and artifacts are on the level of
background noise. For real-life application, a more elaborate
study by a radiologist may be needed to tune this parameter
for clinical needs.

Another aspect of the training process is the regular-
ization weights 𝛾 in (24) and 𝛾

𝐼
in (26), which restrict the

deviation of the shrinkage functions from identity. In general,
using such regularization is a good practice to increase
the robustness of the method by preventing the overfitting.
Also, this helps reducing the impact of outlier examples on
the shape of shrinkage functions. In our experiments, the
influence of those regularization terms was not significant:
when the weights 𝛾, 𝛾

𝐼
are decreased, the effect of learned

shrinkage becomes stronger but no negative phenomena
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Figure 20: Left to right: reconstruction with learned
shrinkage trained using varying regularization weight,
𝛾
𝐼
= [0.001, 0.0032, 0.0316, 0.1].

appear. This is observed in Figure 20, where a number of
versions of a test image, associated with different values of 𝛾

𝐼
,

are shown.

6.9. Local Impulse Response. The evaluation of spatial resolu-
tion in the CT images is carried out by computing the local
impulse responses (LIR) of the projection-reconstruction
operator in the image domain. The reference image is pro-
jected twice, one time in its original form and another with a
random set of 212 single-pixel implants, scattered randomly
in the image. The intensity of the implants is set to the
maximal value present in the image. In Figure 21 we display
an example region in a test image with added spikes and the
corresponding maps of LIRs obtained by subtracting the two
reconstructions—with and without spikes—by the compared
methods. All the parameters of the compared methods are
set as in the very first experiment. For each method, the full-
width half-maximum (FWHM) measure is computed in all
the locations and averaged. It is defined as follows: first, a 2-
D image patch containing the response spot is resized into a
×16 larger image in order to reduce the discretization effect.
Then, the number of pixels, which intensity is higher than half
of the maximal value in the patch, is counted and divided by
the refinement factor of 16.

The computation was done for FBP, PLWS, and our
algorithm. An average FWHM value produced by stage I of
our method is 2.11 pixels; the resolution is slightly improved
to 2.06 pixels by the stage II. Notice that this postprocessing
step simultaneously reduces the noise and increases the image
sharpness; this virtue is attributed to the design of our error
measure. The FBP exhibits the same average FWHM value—
2.04 pixels. In Figure 21 both FBP and our method are seen
to produce disk-shaped LIRs without distortions everywhere
in the image. The situation is different with the data-adaptive
PWLS, which achieves lower FWHM values—1.61 pixels on

Figure 21: Upper left: reference image with added spikes. The LIR
maps are shown in the marked region. Upper right: LIRs obtained
with FBP reconstruction. Lower row, left to right: LIRmaps obtained
with our algorithm and the PWLS.
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Figure 22: FWHM values in 212 random image locations.

average—but displays an anisotropic smearing of the spikes.
The graphs of FWHM values for all the LIRs are given in the
Figure 22.

6.10. Effective X-Ray Dose Reduction. The reduction of noise
and artifacts enables, effectively, reduction of the X-ray dose
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Figure 23: Effective dose reduction by the proposed method, with respect to the optimally tuned FBP algorithm. (a), (b) Regular X-ray dose.
(c), (d) low X-ray dose. (a), (c) MSEg measure. (b), (d): SNR measure.

while keeping the level of image quality. We estimate the
reduction factor by comparing the SNR and MSEg values
of the reconstructed image, acquired with different X-ray
doses (controlled by the source intensity 𝜆

0
).The comparison

is conducted between the standard FBP and the proposed
reconstruction method.

For each dose level, we tune the FBP parameters to
choose a reconstruction with minimal MSEg value. In a
second experiment, for each noise level, the FBP is tuned
to maximize the SNR value. In Figure 23 we present the
resulting comparison of these two measures for a low dose
and a regular dose scan.The 𝑥-axis is scaled to show the dose
reduction factor, while theMSEg or SNR values change along
the 𝑦-axis. In the SNR graph we plot the values achieved by
SNR-optimized FBP, and, in MSEg graph, the performance

of MSEg-optimized FBP is displayed. Those are compared to
the single SNR/MSEg value, achieved by our algorithm in the
noise level it was trained for; the 𝑥-axis of the graphs was
scaled to display the ratio between the X-ray dose levels for
FBP and ourmethod. All the four graphs point to the effective
dose savings of factor ∼4 when switching from the optimally
tuned FBP to our method.

7. Discussion and Conclusions

We have introduced a practical CT reconstruction algorithm
which performs a non linear processing of the measurements
and the reconstructed image. Both actions are aimed at
high-quality reconstruction from data corrupted with shot
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noise and electronic noise. The defining parameters of the
learned shrinkage are trained in an offline session on a set
of available reference images. When applied to deteriorated
measurements of new images, the algorithm produces a
reconstruction which improves upon the standard FBP out-
put and the nonlinear ATM filter and is comparable to the
iterative PWLS reconstruction.

The learned shrinkage in the transform domain is a
nonlinear two-dimensional filter applied in the domain of the
noisymeasurements. It is shown to be capable of substantially
reducing the streak artifacts caused by the measurements’
noise. Further postprocessing action is essentially a classical
image denoising task, which is carried out without a compre-
hensive noisemodel and is aimed tominimize a specific error
measure. It is also performed with the learned shrinkage.
Our observations, supported by quantitative measures, point
to the quality improvement this technique brings to the
reconstructed images.

We remark that a potentially greater quality improvement
would be achieved by exploiting data correlation in three
dimensions (instead of processing 2D slices), similarl to
three-dimensional adaptive filtering presented in [9]. Our
algorithm naturally generalizes to the 3D setup—the exten-
sionwould involve 3D discrete cosine transform and a quality
measure computed in some volumes of the training data.

As with any algorithm, based on supervised learning,
there is a concern of whether the medical anomalies and
special objects will be faithfully recovered. In our simulations,
the visual comparison of the images reconstructed with our
method to the reference images confirms that the content
is faithfully recovered. Also, we point to the fact that the
processing is performed locally (11 × 11 squares) and in a
transform domain; the action of the shrinkage operation is of
statistical rather than geometric nature; thus it is improbable
and it will be biased by specific anatomical structures. Still,
only the practical realization of the algorithm and verification
by clinical radiologists can resolve this concern.

The proposed algorithm requires no hardware changes in
a working CT scanner and can be easily incorporated into
the reconstruction software of one; thus, in practice it can be
implemented in existing clinical machinery with small effort.
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