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Abstract

We address the image denoising problem, where zero-
mean white and homogeneous Gaussian additive noise
should be removed from a given image. The approach taken
is based on sparse and redundant representations over a
trained dictionary. The proposed algorithm denoises the
image, while simultaneously trainining a dictionary on its
(corrupted) content using the K-SVD algorithm. As the
dictionary training algorithm is limited in handling small
image patches, we extend its deployment to arbitrary im-
age sizes by defining a global image prior that forces spar-
sity over patches in every location in the image. We show
how such Bayesian treatment leads to a simple and effec-
tive denoising algorithm, with state-of-the-art performance,
equivalent and sometimes surpassing recently published
leading alternative denoising methods.

1. Introduction

In this paper we address the classic image denoising
problem: An ideal image x is measured in the presence
of an additive zero-mean white and homogeneous Gaussian
noise, v, with standard deviation σ. The measured image,
y, is thus

y = x + v. (1)

We desire to design an algorithm that can remove the noise
from y, getting as close as possible to the original image, x.

The image denoising problem is important, and as such,
it has drawn a lot of research attention in the past 50 years or
so. In this paper we concentrate on one specific approach to-
wards the image denoising problem that we find to be highly
effective and promising: the use of sparse and redundant
representations over trained dictionaries.

Redundant representations and sparsity have been used
in the past decade successfully for the denoising problem.
Indeed, at first, sparsity of the unitary wavelet coefficients
has been considered, leading to the celebrated shrinkage al-
gorithm [1, 2, 3, 4, 5, 6]. One reason to turn to redundant

representations was the desire to have the shift invariance
property [7]. Also, with the growing realization that reg-
ular separable 1D wavelets are inappropriate for handling
images, several new tailored multi-scale and directional re-
dundant transforms were introduced, including the Curvelet
[8], Contourlet [9], Wedgelet [10], Bandlet [11], the steer-
able wavelet [12], and more. In parallel, the introduction
of the matching pursuit [13, 14] and the basis pursuit de-
noising [15], gave rise to the ability to address the image
denoising problem as a direct sparse decomposition tech-
nique over redundant dictionaries. All these lead to what
is considered today as some of the best available image de-
noising methods – see [16, 18, 19] for few representative
works.

While the work reported here is also built on the very
same sparsity and redundancy concepts, it is adopting a dif-
ferent point of view, drawing from yet-another recent line
of work that studies example-based restoration. In address-
ing general inverse problems in image processing using the
Bayesian approach, an image prior is necessary. Tradition-
ally, this has been handled by choosing a prior based on
some simplifying assumptions, such as spatial smoothness,
low-entropy, or sparsity in some transform domain. While
these common approaches lean on a guess of a mathemati-
cal expression for the image prior, the example-based tech-
niques suggest to learn the prior from images somehow. For
example, assuming a spatial smoothness-based Markov ran-
dom field prior of a specific structure, one can still question
(and thus train) the derivative filters to apply on the image,
and the robust function to use in weighting these filters’ out-
come [20, 21].

When this prior-learning idea is merged with sparsity
and redundancy, it is the dictionary to be used that we tar-
get as the learned set of parameters. Instead of the deploy-
ment of a pre-chosen set of basis functions as the Curvelet
or Contourlet would do, we propose to learn the dictionary
from examples. In this work we consider training the dic-
tionary using patches from the corrupted image itself. This
idea of learning a dictionary that yields sparse representa-
tions for a set of training image-patches, has been studied
in a sequence of works [22, 23, 24, 25, 26]. In this paper we



propose the use of the K-SVD algorithm [25, 26], because
of its simplicity and efficiency for this task. Also, due to its
structure, the training and the denoising fuse together natu-
rally into one coherent and iterated process, when training
on the given image directly.

Since dictionary learning is limited in handling small im-
age patches, we propose a global image prior that forces
sparsity over those small patches in every location in the
image (with overlaps). This aligns with a similar idea, ap-
pearing in [21], for turning a local MRF-based prior into a
global one. We define a maximum a-posteriori probability
(MAP) estimator as the minimizer of a well-defined global
penalty term. Its numerical solution leads to a simple iter-
ated patch-by-patch sparse coding and averaging algorithm,
that is closely related to the ideas explored in [27].

When considering the available global and multi-scale
alternative denoising schemes (e.g., based on Curvelet,
Contourlet, and steerable wavelet), it looks like there is
much to lose in working on small patches. In that respect,
the image denoising work reported in [16] is of great im-
portance. Beyond the specific novel and highly effective al-
gorithm described in that paper, Portilla and his co-authors
posed a clear set of comparative experiments that standard-
ize how image denoising algorithms should be assessed and
compared one versus the other. We make use of these exact
experiments and show that the newly proposed algorithm
performs similarly, and often better, compared to the de-
noising performance reported in [16].

In the next section we describe the way we use local spar-
sity and redundancy as ingredients in a global Bayesian ob-
jective. Section 3 then shows how training of the dictionary
can become part of this denoising process. In Section 4 we
show some experimental results that demonstrate the effec-
tiveness of this algorithm.

2 Local to Global Bayesian Reconstruction

We start the presentation of the proposed denoising al-
gorithm by first introducing how sparsity and redundancy
are brought to use. We do that via the introduction of the
Sparseland model. Once this is set, we will discuss how lo-
cal treatment on image patches turns into a global prior in a
Bayesian reconstruction framework.

We consider image patches of size
√

n ×√
n pixels, or-

dered lexicographically as column vectors x ∈ Rn. For the
construction of the Sparseland model, we need to define a
dictionary (matrix) of size D ∈ Rn×k (with k > n, imply-
ing that it is redundant). At the moment we shall assume
that this matrix is known and fixed. Put loosely, the pro-
posed model suggests that every image patch, x, could be
represented sparsely over this dictionary, i.e., the solution

of

α̂ = arg min
α

‖α‖0 subject to Dα ≈ x, (2)

is indeed very sparse, ‖α̂‖0 � n. The notation ‖α‖0 stands
for the count of the non-zero entries in α. The basic idea
here is that every signal instance from the family we con-
sider can be represented as a linear combination of few
columns (atoms) from the redundant dictionary D.

This model should be made more precise by replacing
the rough constraint Dα ≈ x with a clear requirement to al-
low a bounded representation error, ‖Dα − x‖2 ≤ ε. Also,
one needs to define how deep is the required sparsity, adding
a requirement of the form ‖α̂‖0 ≤ L � n, that states that
the sparse representation uses no more than L atoms from
the dictionary for every image patch instance. Alternatively,
a probabilistic characterization can be given, defining the
probability to obtain a representation with ‖α̂‖0 non-zeros
as a decaying function of some sort. Conisdering the sim-
pler option between the two, with the triplet (ε, L,D) in
place, our model is well-defined.

Now assume that x indeed belongs to the (ε, L,D)-
Sparseland signals. Consider a noisy version of it, y, con-
taminated by an additive zero-mean white Gaussian noise
with standard deviation σ. The MAP estimator for denois-
ing this image patch is built by solving

α̂ = arg min
α

‖α‖0 subject to ‖Dα − y‖2
2 ≤ T, (3)

where T is dictated by ε, σ, and L. The denoised image
is thus given by x̂ = Dα̂ [15, 28]. Notice that the above
optimization task can be changed to be

α̂ = arg min
α

‖Dα − y‖2
2 + µ‖α‖0, (4)

so that the constraint becomes a penalty. For a proper choice
of µ the two problems are equivalent. We will use this al-
ternative terminology from now on, as it makes the presen-
tation of later parts simpler to follow.

While this problem is in general very hard to solve be-
cause of its combinatorial nature, the matching and the basis
pursuit algorithms can be used quite effectively to get an ap-
proximated solution [13, 14, 15]. Recent work established
that those approximation techniques can be quite accurate,
if the solution is sparse enough to begin with [28]. In this
work we will make use of the orthonormal matching pursuit
(OMP) because of its simplicity [14].

If we want to handle a larger image, X, of size
√

N ×√
N (N � n), and we are still interested in using the above

described model, one option is to re-define the model with
a larger dictionary. Indeed, when using this model with a
dictionary emerging from the contourlet or curvelet trans-
forms, such scaling is simple and natural [19].

However, when using a specific fixed and small size dic-
tionary D ∈ Rn×k, this option does not exist. Reasons to



confine the algorithm to use such a small dictionary could
be: (i) When training takes place (as we will show in the
next section), only small dictionaries can be composed; and
furthermore, (ii) A small dictionary implies a locality of
the resulting algorithms, which simplifies the overall im-
age treatment. A heuristic approach for using such small
dictionary is to work on smaller patches of size

√
n × √

n
and tile the results. In doing so, visible artifacts may occur
on block boundaries. One could also propose to work on
overlapping patches and average the results in order to pre-
vent such blockiness artifacts, as indeed practiced in [27].
As we shall see next, a systematic global approach towards
this problem leads to this very option as a core ingredient in
an overall algorithm.

If our knowledge on the unknown large image X is fully
expressed in the fact that every patch in it belongs to the
(ε, L,D)-Sparseland model, then the natural generalization
of the above MAP estimator is the replacement of (4) with

{
α̂ij , X̂

}
= arg min

αij ,X
λ‖X − Y‖2

2 (5)

+
∑
ij

µij‖αij‖0 +
∑
ij

‖Dαij − RijX‖2
2.

In this expression the first term is the log-likelihood global
force that demands the proximity between the measured im-
age, Y, and its denoised (and unknown) version X. Put as
a constraint, this penalty would have read ‖X − Y‖2

2 ≤
Const · σ2, and this reflects the direct relationship between
λ and σ. The second and the third terms are parts of the
image prior that makes sure that in the constructed image,
X, every patch xij = RijX of size

√
n×√

n in every loca-
tion (thus the summation by i, j) has a sparse representation
with bounded error. Similar conversion has been also prac-
ticed by Roth and Black when handling an MRF prior [21].
In our notations, the matrix Rij is an n × N matrix that
extracts the (ij) block from the image. For an

√
N × √

N
image X, the summation over i, j includes (

√
N−√

n+1)2

items, considering all image patches of size
√

n×√
n in X

with overlaps. As to the coefficients µij , those must be lo-
cation dependent, so as to comply with a set of constraints
of the form ‖Dαij − xij‖2

2 ≤ T .

3 Example-Based Sparsity and Redundancy

The entire discussion so far has been based on the as-
sumption that the dictionary D ∈ Rn×k is known. We can
certainly make some educated guesses as to which dictio-
naries to use. In fact, following Guleryuz’s work, the DCT
seems like such a plausible choice [27]. Indeed, we might
do better by using a redundant version of the DCT1, as prac-

1Such a version is created by using a redundant Fourier dictionary and
a mirror extension of the signal to restrict the transform to real entries.

ticed in [25]. Still, the question remains: can we make a bet-
ter choice for D based on training? We now turn to discuss
such option.

a close inspection of the global MAP penalty in (5) re-
veals a way to incorporate the dictionary learning into the
denoising task. Returning to this equation, we can regard D
as an unknown as well, and define our problem as

{
D̂, α̂ij , X̂

}
= arg min

D̂,αij ,X
λ‖X − Y‖2

2 (6)

+
∑
ij

µij‖αij‖0 +
∑
ij

‖Dαij − RijX‖2
2.

This penalty has three kinds of unknowns: the sparse
representations α̂ij per each location, the dictionary D, and
the overall output image X. Instead of addressing all at
once, we can apply a block-coordinate minimization algo-
rithm that fixes two of the unknowns, and searching for the
optimal third.

We start with an initialization X = Y and a pre-chosen
and fixed dictionary D, seeking the optimal α̂ij . In doing
so, we get a complete decoupling of the minimization task
to many smaller ones, of the form

α̂ij = arg min
α

µij‖α‖0 + ‖Dα − xij‖2
2, (7)

each handling one image patch. Solving this using the or-
thonormal matching pursuit [14] is easy, gathering one atom
at a time, and stopping when the error ‖Dα − xij‖2

2 goes
below T . This way, the choice of µij has been handled im-
plicitly. Thus, this stage works as a sliding window sparse
coding stage, operated on each block of

√
n×√

n at a time.
Given those representations, we can turn to update the

dictionary D. Following the K-SVD algorithm, we con-
sider updating the dictionary one column at a time [25, 26].
As it turns out, this update can be done optimally, leading to
the need to perform a singular value decomposition (SVD)
operation on residual data matrices, computed only on the
image patches that use this atom (column). This way, the
value of our penalty term is guaranteed to drop per an up-
date of each dictionary atom, and along with this update,
the representation coefficients change as well (see [25, 26]
for more details), while keeping their sparsity structure.

Given all α̂ij and the updated dictionary, we can fix those
and turn to update X. Returning to (7), we need to solve

X̂ = arg min
x

λ‖X − Y‖2
2 +

∑
ij

‖Dα̂ij − RijX‖2
2. (8)

This is a simple quadratic term that has a closed-form solu-
tion of the form

X̂ =


λI +

∑
ij

RT
ijRij




−1 
λY +

∑
ij

RT
ijDα̂ij


 . (9)



This rather cumbersome expression may mislead, as all it
says is that averaging of the denoised patches is to be done,
with some relaxation obtained by averaging with the origi-
nal noisy image. The matrix to invert in the above expres-
sion is a diagonal one, and thus the calculation of (9) can
be also done on a pixel-by-pixel basis, following the previ-
ously described sliding window sparse coding steps.

So far we have seen that the obtained denoising algo-
rithm calls for sparse coding of small patches, a dictio-
nary update stage, and an averaging of the resulting im-
age patches. However, if minimization of (6) is our goal,
then this process should be iterated. Given the updated X,
we can repeat the sparse coding stage, this time working
on patches from the already denoised image. However, in
doing so, we need to use an updated value for σ, as the
noise level is now necessarily smaller. Since this value is
unknown, in our experiments we chose to restrict the iter-
ations to include sparse coding and dictionary update steps
only. The averaging process in (9) was applied only once,
as a final step in the algorithm.

In evaluating the computational complexity of the algo-
rithm, we consider all the three stages - coefficient calcu-
lation (OMP process), dictionary update, and final averag-
ing process. All stages can be done efficiently, requiring
O(nLS) operations per pixel, where n is the block dimen-
sion (64 in our experiments), L is the number of nonzero
elements in each coefficient vector, and S is the number of
iterations (10 in our experiments). L depends strongly on
the noise level, e.g., for σ = 10, the average L is 2.96, and
for σ = 20, the average L is 1.12.

4 Results

In this section we demonstrate the results achieved by
applying the above methods on several test images. The
tested images, as also the tested noise levels, are all the same
ones as those used in the denoising experiments reported in
[16], in order to enable a fair comparison.

Table 1 summarizes these denoising results. In this set
of experiments, the dictionary used was of size 64 × 256,
designed to handle image patches of size 8 × 8 pixels
(n = 64, k = 256). Every result reported is an average over
5 experiments. The redundant DCT dictionary was used as
an initialization. This dictionary is described on the left side
of Figure 2, where each of its atoms is shown as an 8 × 8
pixel image. We should note that a recently published work
by Buades et. al. [17] proposes a highly effective denois-
ing algorithm. Their method is based on the bilateral filter
with a novel way of computing the weights based on block
matching. Their approach, coined NL-Means, gives denois-
ing results slightly superior to ours, but requires much more
computational effort.

In all experiments, the denoising process included a

sparse-coding of the patches using the OMP. The stopping
rule was an average error passing a threshold, chosen em-
pirically to be ε = 1.15 · σ. This means that our algo-
rithm assumes the knowledge of σ – very much like as-
sumed in [16]. When updating the dictionary, (256− 7)2 =
62, 001 patches (all available patches from the 256 × 256
images, and every second patch from every second row
in the 512 × 512 size images) were used. The denoised
patches were averaged, as described in Equation (9), using
λ = 30/σ (this was found empirically to perform well and
be robust to the various cases tried). The results shown cor-
respond to 10 iterations of the {sparse-coding, dictionary-
update} process, followed by a computation of the output
image based on (9).

As can be seen from Table 1, the results of the two meth-
ods are very close to each other in general. Averaging the
results that correspond to [16] in this table for noise levels
lower than2 σ = 50, the value is 34.62 dB. A similar aver-
aging over our results shows an average advantage of 0.24
dB over Portilla’s method per experiment. For the higher
noise power experiments, our approach deteriorates faster
and achieves weaker results.

In order to better visualize the results and their compari-
son to those in [16], Figure 1 presents the denoising results
as curves, for the images ‘Peppers’, ‘House’ and ‘Barbara’.
Notice that for these images, our approach outperforms the
reported results of Portilla et al. for all noise levels lower
than σ = 50.

Figure 4 further describes the behavior of the proposed
denoising algorithm that trains the dictionary. Each itera-
tion (containing the sparse coding and the dictionary up-
date) improves the denoising results, where the initial dic-
tionary is set to be the overcomplete DCT. A graph present-
ing this consistent improvement for several noise levels is
presented in Figure 4. All graphs present the improvement
over the first iteration, and therefore all curves start at zero.
As can be seen, a gain of up to 1.1 dB is achievable. Figure 3
shows the results of the proposed algorithms for ‘Barbara’,
and for σ = 15. Figure 2 presents the dictionary obtained
by our training–denoising algorithm for this experiment.

5 Conclusions

This work have presented a simple method for image de-
noising, whose results have a state-of-the-art performance,
equivalent and sometimes surpassing recently published
leading alternatives. The proposed method is based on local
operations and involves sparse decompositions of each im-
age block under an evolving over-complete dictionary, and

2The strong noise experiments are problematic to analyze, because clip-
ping of the dynamic range to [0, 255], as often done, causes a severe devi-
ation from the Gaussian distribution model assumed.



σ/PSNR Lena Barb Boats Fgrpt House Pepers σP SNR

2/42.11 43.23 43.58 43.29 43.67 42.99 43.14 43.05 42.99 44.07 44.47 43.00 43.33 0.012 0.017
5/34.15 38.49 38.60 37.79 38.08 36.97 38.08 36.68 36.65 38.65 39.37 37.31 37.78 0.014 0.017
10/28.13 35.61 35.47 34.03 34.42 33.58 33.64 32.45 32.39 35.35 35.98 33.77 34.28 0.017 0.027
15/24.61 33.90 33.70 31.86 32.37 31.70 31.73 30.14 30.06 33.64 34.32 31.74 32.22 0.024 0.035
20/22.11 32.66 32.38 30.32 30.83 30.38 30.36 28.60 28.47 32.39 33.20 30.31 30.82 0.031 0.027
25/20.17 31.69 31.32 29.13 29.60 29.37 29.28 27.45 27.26 31.40 32.15 29.21 29.73 0.037 0.036
50/14.15 28.61 27.79 25.48 25.47 26.38 25.95 24.16 23.24 28.26 27.95 25.90 26.13 0.049 0.058
75/10.63 26.84 25.80 23.65 23.01 24.79 23.98 22.40 19.97 26.41 25.22 24.00 23.69 0.061 0.060
100/8.13 25.64 24.46 22.61 21.89 23.75 22.81 21.22 18.30 25.11 23.71 22.66 21.75 0.070 0.046

Table 1. Summary of the denoising PSNR results in [dB]. In each cell, the left value is Portilla et al.
result [16], and the right refers to the proposed method. The last column presents the variance in
the denoising results.
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Figure 1. Comparison between Overcomplete
DCT (dotted), trained dictionary (solid), and
the results by [16] posed as a reference base-
line.

Figure 2. The overcomplete DCT dictionary
(left). The trained dictionary for ‘Barbara’
with σ = 15, after 10 iterations (right).

Original Image Noisy Image (24.6 dB, σ=15)

Denoised Image Using Trained Dictionary (32.39 dB)

Figure 3. Zoom views of the denoising results
for the image ‘Barbara’.

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

D
if

fe
re

nc
e 

in
 d

B

# of iterations

↓ σ = 100

↓ σ = 75

↓ σ = 50

↓ σ = 25

↓ σ = 20

↑ σ = 15

↓ σ = 10

↓ σ = 5

↓ σ = 2

↓ σ = 1

21.7855

23.5873

26.1585

29.8478

30.8889

32.3291

34.312

37.8994

43.3404

48.3947

Figure 4. The improvement in the denoising
results after each iteration.



a simple average calculations. The content of the dictio-
nary is of prime importance for the denoising process – we
have shown that a dictionary trained on patches of the noisy
image itself performs very well.
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