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Abstract

Shrinkage is a well known and appealing denoising tech-
nique. The use of shrinkage is known to be optimal for
Gaussian white noise, provided that the sparsity on the sig-
nal’s representation is enforced using a unitary transform.
Still, shrinkage is also practiced successfully with non-
unitary, and even redundant representations. In this paper
we shed some light on this behavior. We show that simple
shrinkage could be interpreted as the first iteration of an
algorithm that solves the basis pursuit denoising (BPDN)
problem. Thus, this work leads to a novel iterative shrink-
age algorithm that can be considered as an effective pursuit
method. We demonstrate this algorithm, both on synthetic
data, and for the image denoising problem, where we learn
the image prior parameters directly from the given image.
The results in both cases are superior to several popular
alternatives.

1 Introduction

One way to pose the maximum a-posteriori probability
(MAP) estimator for the denoising problem is the minimiza-
tion of the function

f(x) =
1

2
· ‖x − y‖2

2 + λ · 1T · ρ {Tx} . (1)

The first term is known as the log-likelihood, describing the
relation between the desired (clean) signal,x ∈ IRN , and
a noisy version of it,y ∈ IRN . We assume the model
y = x + v, with v ∈ IRN a Gaussian zero mean white
noise. The term1T · ρ {Tx} stands for the prior posed on
the unknown signalx, based on sparsity of the unknown
signal with respect to its transformed (T) representation.

The functionρ is a scalar robust measure (e.g.,ρ(z) = |z|),
and when operating on a vector, it does so entry-wise. The
multiplication by1T sums those robust measures.

Donoho and Johnstone pioneered a wavelet based signal
denoising algorithm in line with the above structure. They
advocated the use of sparsity of the wavelet coefficients
Wx (i.e., hereT is the unitary matrixW) as a driving force
in recovering the desired signal [1, 2]. Later work in [3, 4, 5]
simplified these ideas and related them to the MAP formula-
tion as presented above. Interestingly, using such a prior in
Equation (1) leads to asimple closed-form solution, known
as shrinkage. This solution amounts to a wavelet transform
on the noisy signal, a look-up-table (LUT) function on the
coefficients (that depends on the functionρ), S{Wy}, and
an inverse wavelet transform to produce the outcomex̂. The
LUT operation promotes sparsity by nulling small coeffi-
cients to zero, which explains the name shrinkage. This op-
timality depends strongly on theℓ2-norm used in evaluating
the distancex − y, and this has direct roots in the white
Gaussianity assumptions on the noise. Also, crucial to the
optimality of this method is the orthogonality ofW.

A new trend of recent years is the use of overcom-
plete transforms, replacing the traditional unitary ones –see
[6, 7, 8, 9, 11, 12] for representative works. This trend
was partly motivated by the growing realization that or-
thogonal wavelets are weak in describing the singularities
found in images. Another driving force in the introduction
of redundant representations is the sparsity they can pro-
vide, which many applications find desirable [22]. Finally,
we should mention the desire to obtain shift-invariant trans-
forms, again calling for redundancy in the representation.
In these methods the transform is defined via a non-square
full rank matrixT ∈ IRL×N , with L > N . Such redundant
methods, like the un-decimated wavelet transform, curvelet,
contourlet, and steerable-wavelet, were shown to be more



effective in representing images, and other signal types.
Given a noisy signaly, one can still follow the shrinkage

procedure, by computing the forward transformTy, putting
the coefficients through a shrinkage LUT operationS{Ty},
and finally applying the inverse transform to obtain the de-
noised outcome,T+S{Ty}. Will this be the solution of
(1)? The answer is no! As we have said before, the orthog-
onality of the transform plays a crucial role in the construc-
tion of the shrinkage as an optimal procedure. Still, shrink-
age is practiced quite often with non-unitary, and even re-
dundant representations, typically leading to satisfactory re-
sults – see [6, 7, 8] for representative examples. Naturally,
we should wonder why this is so.

In this paper we shed some light on this behavior. Our
main argument is that such a shrinkage could be interpreted
as the first iteration of a converging algorithm that solves the
basis pursuit denoising (BPDN) problem [22]. The BPDN
forms a similar problem to the one posed in (1), replacing
the analysis prior with a generative one. While the desired
solution of BPDN is hard to obtain in general, a simple iter-
ative procedure that amounts to step-wise shrinkage can be
employed with quite successful performance. Thus, beyond
showing that shrinkage has justified roots in solid denoising
methodology, we also show how shrinkage can be iterated
in a simple form, to further strengthen the denoising effect.
As a byproduct, we get an effective pursuit algorithm that
minimizes the BPDN functional via simple steps.

In the next section we bridge between an analysis based
objective function and a synthesis one, leading to the
BPDN. Section 3 then develops the iterated shrinkage algo-
rithm that minimizes it. In Section 4 we present few simula-
tions to illustrate the algorithm proposed on both synthetic
and image data.

2 From Analysis to Synthesis-Based Prior

Starting with the penalty function posed in (1), we define
xT = Tx. Multiplying both sides byTT , and using the fact
thatT is full-rank, we get1 x = (TT T)−1TT xT = T+xT .
Using these relations to rearrange Equation (1), we obtain a
new function of the representation vectorxT ,

f̃(xT ) =
1

2
· ‖DxT − y‖2

2 + λ · 1T · ρ {xT } , (2)

where we have definedD = T+.
Denoising can be done by minimizingf and obtaining a

solutionx̂1. Alternatively, we can minimizẽf with respect
to xT and deduce the denoised outcome byx̂2 = Dx̂T .
Interestingly,these two results are not expected to be the
same in the general case, since in the conversion fromf to
f̃ we have expanded the set of feasible solutions by allow-
ing xT to be an arbitrary vector in IRL, whereas the original

1If T is a tight frame (αT
T
T = I), thenx = αT

T
xT .

definitionxT = Tx implies that it must be confined to the
column space ofT. Notice that this difference between the
two formulations disappears whenT is full rank square ma-
trix, which explains why this dichotomy of methods does
not bother us for the regular unitary wavelet transform.

Still, the formulation posed in (2) is a feasible alter-
native Bayesian method that uses a generative prior. In-
deed, for the choiceρ{z} = |z|, this formulation is known
as the basis pursuit denoising (BPDN) [22]. Referring to
D as a dictionary of signal prototypes (atoms) being its
columns, we assume that the desired signalx is a linear
construction of these atoms, with coefficients drawn inde-
pendently from a probability density function proportional
to exp{−Const· ρ{xT (j)}}. In the case ofρ(z) = |z| this
is the Laplace distribution, and we effectively promote spar-
sity in the representation.

3 Proposed Algorithm

3.1 A sequential approach

We desire the minimization of (2). Assume that in an
iterative process used to solve the above problem, we hold
the k-th solution ẑk. We are interested in updating itsj-
th entry,z(j), assuming all the others as fixed. Thus, we
obtain a one-dimensional optimization problem of the form

min
w

1

2
· ‖ [Dzk − djzk(j)] + djw − y‖2

2 + λ · ρ {w} . (3)

In the above expression,dj is thej-th column inD. The
term Dzk − djzk(j) uses the current solution for all the
coefficients, but discards of thej-th one, assumed to be re-
placed with a new value,w.

Since this is a 1D optimization task, it is relatively easy
to solve. Ifρ(w) = |w|, the derivative is

0 = dT
j (Dzk − djzk(j) + djw − y) + λ · sign{w} , (4)

leading to

w = zk(j) +
dT

j (y − Dzk)

‖dj‖2
2

− λ · sign{w}
‖dj‖2

2

(5)

= v(D,y, zk, j) − λ̂(j) · sign{w} .

Here we have defined

v(D,y, zk, j) =
dT

j (y − Dzk)

‖dj‖2
2

+ zk(j) and (6)

λ̂(j) =
λ

‖dj‖2
2

.

Both v(D,y, zk, j) and λ̂(j) are computable using the
known ingredients. Similarly to [2] for example, this leads



to a closed form formula for the optimal solution forw, be-
ing a shrinkage operation onv(D,y, zk, j),

wopt = S {v(D,y, zk, j)} (7)

=







v(D,y, zk, j) − λ̂(j) for v(D,y, zk, j) > λ̂(j)

0 for |v(D,y, zk, j)| ≤ λ̂(j)

v(D,y, zk, j) + λ̂(j) for v(D,y, zk, j) < −λ̂(j)

.

A similar LUT result can be developed for any many other
choices of the functionρ(·).

It is tempting to suggest an algorithm that applies the
above procedure forj = 1, 2, . . . , , L, updating one coeffi-
cient at a time in a sequential coordinate descent algorithm,
and cycle such process several times. While such algorithm
necessarily converges, and could be effective in minimiz-
ing the objective function using scalar shrinkage operations
only, it is impractical in most cases. The reason is the ne-
cessity to draw one column at a time fromD to perform
this computation. Consider, for example, the curvelet dic-
tionary. While the transform and its inverse can be inter-
preted as multiplications by the dictionary and its transpose
(because it is a tight frame), this matrix is never explicitly
constructed, and an attempt to draw basis functions from it
or store them could be devastating. Thus we take a different
route.

3.2 A parallel approach

Given the current solutionzk, let us assume that we use
the above update formulation to updateall the coefficientsin
parallel, rather than doing this sequentially. Obviously,this
process must be slower in minimizing the objective func-
tion, but with this slowness comes a blessed simplicity that
will be evident shortly.

First, let us convert the termsv(D,y, zk, j) in Equation
(6) to a vector form that accounts for all the updates at once.
Gathering these terms for allj ∈ [1, L], this reads

v(D,y, zk) = diag−1
{

DT D
}

DT (y − Dzk) + zk. (8)

If the transform we use is such that multiplication byD and
its adjoint are fast, then computing the above term is easy
and efficient. Notice that here we do not need to extract
some columns from the dictionary, and need not use these
matrices explicitly in any other way. The normalization by
the norms of the columns is simple to obtain and can be kept
as fixed parameters of the transform, computed once off-
line. In the case of tight frames, applying multiplications
by DT andD are the forward and the inverse transforms,
up to a constant. For a non-tight frame, the above formula
says that we need to be able to apply the adjointand not the
pseudo-inverseof D.

There is also a natural weakness to the above strategy.
One cannot take a shrinkage of the above vector with re-
spect to the threshold vectorλ · diag−1

{

DT D
}

· 1, and

expect the objective function to be minimized well. While
updating every scalar entrywj using the above shrinkage
formula is necessarily decreasing the function’s value, ap-
plying all those at once is likely to diverge, and cause an as-
cent in the objective. Thus, instead of applying a complete
shrinkage as Equation (7) suggests, we consider a relaxed
step of the form

zk+1 = zk + µ [S {v(D,y, zk)} − zk] = zk + µhk. (9)

This way, we compute the shrinkage vector as the formula
suggests, and use it to define a descent direction. The solu-
tion is starting from the current solutionzk and updates it by
“walking” towards the shrinkage result. For a sufficiently
smallµ > 0, this stepmustlead to a feasible descent in the
penalty function, because this direction is a non-negative
combination ofL descent directions.

We can apply a line search to find the proper choice for
the value ofµ. In general, a line search seeks the best step-
size as a 1D optimization procedure that solves

min
µ

1

2
· ‖D [zk + µhk] − y‖2

2 (10)

+ λ · 1T · ρ {zk + µhk} ,

where hk is a computable vector. Following the previ-
ous reasoning, the solution in this case is also given as a
shrinkage-like procedure.

As a final step, we consider the first iteration, and assume
that the algorithm is initialized withz0 = 0. Thus, the term
in Equation (8) becomes

v(D,y,0) = diag−1
{

DT D
}

DT y. (11)

The solutionz1 is obtained by first applying shrinkage to
the above vector, usingλdiag−1

{

DT D
}

1 as the thresh-
old vector, and then relaxing it, as in Equation (9). The
denoised outcome is thus

Dz1 = µDS
{

diag−1
{

DT D
}

DT y
}

, (12)

and the resemblance to the heuristic shrinkage is evident.
In fact, for tight frames with normalized columns the above
becomes exactly equal to the heuristic shrinkage.

4 Experimental Results

4.1 Synthetic data

We start with simple synthetic experiments that corre-
spond to the case of a tight frame with normalized columns.
We buildD as a union of10 random unitary matrices of size
100 × 100 each. We synthesize a sparse representationz0

with 15 non-zeros in random locations and Gaussian i.i.d.



entries, so as to match the sparsity prior we use. The clean
signal is defined asx0 = Dz0, and it is contaminated by a
Gaussian i.i.d noiseσ = 0.3 (parallels an SNR of≈ 1.3dB).

We consider several denoising algorithms: (A) a heuris-
tic shrinkage as described in the introduction; (B) the IRLS
algorithm, known to be computationally heavy, but for low
dimensions it is an effective algorithm, and thus good as
a reference [13]; (C) the sequential shrinkage algorithm de-
veloped above; and (D) the parallel counterpart. We assume
ρ(z) = |z|, and the results are reported in Figures 1- 3.

First, we show how effective are these algorithms (B-
D) in minimizing the objective in Equation (2). Figure 1
presents the value of the objective as a function of the it-
eration number. Here we have implemented the parallel
shrinkage algorithm both with a fixedµ = 1/α 2 and with
a line-search. As expected, the IRLS performs the best in
terms of convergence speed. The sequential and the paral-
lel (with line-search) coordinate descent are comparable to
each other, being somewhat inferior to the IRLS.
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Figure 1. The objective as a function of the
iteration – algorithms B-D.

When implementing these algorithms for denoising, we
sweep through the possible values ofλ to find the best
choice. In assessing the denoising effect, we use the mea-
surer(x̂,x0,y) = ‖x̂ − x0‖2

2/‖y − x0‖2
2, which gives the

ratio between the final reconstruction error and the noise
power. Thus, a value smaller than1 implies a decay in the
noise, and the closer it is to zero the better the result.

We compare the IRLS results (after the1-st and the5-th
iterations) to the simple shrinkage algorithm. The simple
shrinkage in this case uses a threshold beingλ/α = 10λ,
so as to match to the objective function that usesλ in its
formulation. Figure 2 presents this comparison, showing
the noise decay factor versusλ. Interestingly, it appears
than the simple shrinkage manages to utilize most of the
denoising potential, and5 iterations of the IRLS give only
slightly better results.

2See its definition at the beginning of Section 2.

Figure 3 presents a similar comparison of the simple
shrinkage with the parallel shrinkage with a fixedµ chosen
asµ = 1/α. We see that the first iteration of the parallel
shrinkage aligns perfectly with the simple shrinkage when
µ = 1/α, as predicted, and having5 iterations gives a slight
improvement. Other experiments with the other algorithms
were done with similar results, and are omitted here due to
space constraints.
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Figure 2. The denoising effect of the IRLS ver-
sus simple shrinkage.
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Figure 3. The denoising effect of the parallel
coordinate descent algorithm versus simple
shrinkage.

4.2 Image denoising

The BPDN formulation in Equation (2) can be used for
removing noise from images. We use the Contourlet Trans-
form [8] (CT), which is one of several transforms developed
in recent years, aimed at improving the representation spar-
sity of images over the Wavelet Transform (WT). The main
feature of these transforms is the potential to efficiently han-
dle 2-D singularities, i.e. edges, unlike wavelets which can



deal with point singularities exclusively. A newer version
of the CT, allowing better performance, was recently devel-
oped in [10], and was thus employed throughout our simu-
lations (where the inverse transform operator is used as the
dictionaryD).

Experiments made on natural images show that the Con-
tourlet coefficients at different scales and directions have
different average variance. Hence the varianceσ2

i of each
coefficient should depend on the scale and direction, and
perhaps on the spatial position as well. This observation
justifies a modification in the BPDN formulation, such that
each coefficientz(i) is normalized byσi, yielding

f̃(z) =
1

2
· ‖Dz − y‖2

2 + λ ·
∑

i

|z(i)/σi|, (13)

after replacingxT by z and assumingρ(z) = |z|.
The implementation of this algorithm requires learning

of the image prior parameters directly from the given image,
i.e. estimation of the variances{σ2

i }. We employ here a
method introduced by Changet al. [14] for the WT, though
it remains valid for any multiscale transform like the CT. To
explain the idea behind this method, first take a look at Fig-
ure 4, showing the distribution of a coefficient conditioned
on its neighbor’s value. According to this figure, which re-
sembles a bow-tie shape, a coefficients’ standard deviation
scales roughly linearly with its neighbor’s absolute value.
Consequently, all of the coefficients whose neighbors have
roughly the same absolute value, may be attributed with the
same variance, which is then estimated.

In detail, consider a subband withM coefficients, and
denotēzi as ap×1 vector containing theabsolute valuesof
p neighbors ofz(i), e.g. its eight nearest spatial neighbors
and one parent. Thecontextof z(i) is defined as a weighted
average of its neighbors’ absolute values,c(i) = wtz̄i.The
weights vectorw is calculated by the least squares (LS) es-
timate over the whole subband, i.e.

wLS = (ZtZ)−1Zt|zsb|, (14)

whereZ is a M × p matrix with rows{z̄i}, andzsb is a
M × 1 vector of the subband’s coefficients.

Following the context calculation, a coefficients’ vari-
ance is estimated based on all of the coefficients in the sub-
band with similar context, just as we have explained ear-
lier. More precisely, the contexts{c(j)} in each subband
are sorted in an increasing order, and the coefficients{z(j)}
whose context are at mostL values away fromc(i) are cho-
sen (i.e.2L + 1 coefficients). The variance estimate ofz(i)
is then given by

σ̂2
i = max

{ 1

2L + 1

∑

j(i)

z2(j) − σ2
n,i , 0

}

, (15)

whereσ2
n,i is the noise variance at the i-th coefficient (it is

in fact constant over a subband). This is a simple heuris-
tic variance estimator, compensating for the additive Gaus-
sian noise and imposing nonnegativity. In practice, we take
some smallε > 0 instead of0 in the above formula, to pre-
vent zero-division in the objective function (13). Similarly
to [14], we chooseL = max {100, 0.02M} to guarantee a
reliable estimation, along with adaptivity to varying charac-
teristics, as well asp = 9 (eight spatial neighbors and one
parent in the immediate coarser scale).

Figure 4. Distribution of a coefficient (verti-
cal) conditioned on its neighbor’s value (hor-
izontal), estimated from one CT subband of
Peppers (each column has been separately
rescaled to fit the display range).

To choose the parameterλ, recall that Equation (13) cor-
responds to the MAP estimator, assuming an independent
Laplacian prior model, i.e.p(z(i)) ∝ exp(−

√
2

σi

|z(i)|).
This yields the objective function

f̃(z) =
1

2σ2
n

· ‖Dz − y‖2
2 +

√
2 ·

∑

i

|z(i)/σi|, (16)

whereσ2
n is the noise variance at the image domain. By

comparing (13) and (16), the a-priori value ofλ should be
λ0 =

√
2σ2

n. This value turned out to be indeed the optimal
one performance-wise. Notice that our iterative-shrinkage
algorithm should be modified slightly to account for the
inclusion of{λj}. This is done by simply replacingλ in
Equation (4) withλj , and continuing accordingly.

To evaluate the performance of our algorithm in mini-
mizing the function in (13), we have compared several al-
gorithms (see [15]): (i) Steepest Descent; (ii) Conjugate
Gradients; (iii) Truncated Newton; and (iv) our parallel
iterative-shrinkage algorithm. All of the algorithms were
employed with exact line-search, for comparability. We did
not simulate the IRLS algorithm, because of its impracti-
cal complexity for large images. Similarly, the sequential
shrinkage algorithm was not experimented, since obtaining
the columns of the CT dictionary is computationally expen-
sive.



Although the hereafter results were confirmed for many
images and noise levels, because of space considerations
we present only representative results. Figure 5 shows the
objective function minimization progress of the tested al-
gorithms for the imagePeppers, contaminated by a white
Gaussian noise ofσn = 20. Normally, the more com-
plex the calculation of the descent direction, the faster the
minimization (in terms of the iteration’s number). Apart
from the Truncated Newton algorithm, all algorithms in-
volve only a synthesis and an analysis operation per iter-
ation (in addition to some insignificant calculations), thus
being numerically equivalent. In contrast, Truncated New-
ton requires some inner Conjugate Gradients iterations (the
number of which typically increases with the signal size).
Nevertheless, we let the inner optimization to converge (re-
quiring at least 20 iterations), to eliminate any ambiguities.
The figure clearly shows that our iterative shrinkage algo-
rithm minimizes the objective function the fastest, while be-
ing as cheap as any other method.
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Figure 5. Image denoising: the objective vs.
the iteration number (starting from 1).

Our new algorithm excels not only in terms of minimiza-
tion rate, but also in terms of PSNR. As Figure 6 demon-
strates, the PSNR rises faster using our algorithm than us-
ing any other minimization method. In fact, only the much
more computationally expensive Truncated Newton algo-
rithm comes close to it. The denoising results of our algo-
rithm are presented in Figures 7 and 8. These results show
that excellent denoising can be obtained with as little as two
successive shrinkage operations. It should be noted that the
CT is not well-suited for textured images likeBarbara, and
a different dictionary (or a mixture two) may further im-
prove the results.

Although this paper does not claim that BPDN is the best
denoising tool (in terms of PSNR), we nonetheless present
here a brief comparison with two other denoising methods.
One simple method is hard-thresholding (HT), namely zero-
forcing z(i) if it is smaller than a thresholdKσn,i. As in
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Figure 6. Image denoising: the PSNR vs. the
iteration number (starting from 1).

[8], we setK = 4 for the finest scale, andK = 3 oth-
erwise. Another method is the state-of-the-art BLS-GSM
(see [11]), adapted to the CT (see [21] for details). The
results, summarized in Table 1, show that BPDN is a rea-
sonable tool for image denoising, especially considering its
fast convergence with our iterative shrinkage method.

Table 1. PSNR values comparison ( σn = 20)
Peppers256 Peppers Lena Barbara

HT 28.21 30.87 31.46 28.36
BPDN 29.21 31.14 31.49 29.61
BLS-GSM 29.27 31.69 32.06 30.19

5 Related Work

Interestingly, a sequence of recent contributions pro-
posed a similar iterative shrinkage algorithm. First, the
work reported in [16, 17] uses such an algorithm for find-
ing the sparsest representation over redundant dictionaries
(such as the curvelet, or combination of dictionaries). These
papers motivated such algorithm heuristically, relying on
the resemblance to the unitary case, on one hand, and on
the block-coordinate-relaxation method, on the other [18].

The work by Steidl et. al. [24] studied the connec-
tions between Total-Variation (TV) techniques and wavelet-
shrinkage. They showed that shift-invariant wavelet shrink-
age is equivalent to a single step diffusion filtering or regu-
larization of the Laplacian pyramid of the signal. Moreover,
iterating the wavelet shrinkage may improve the denoising
performance, a concept lying at the heart of our method as
well. However, their work is currently relevant to the 1D
Haar wavelet case, and is yet to be fully generalized, al-
though a first step at this direction was made in [25].

Two recent works have proposed similar algorithms to
ours, albeit with an entirely different motivation. Figueiredo



Figure 7. Denoising results (using iterative-
shrinkage) of a 200 × 200 slice of Peppers(for
σn = 20). From left to right and top to bot-
tom: Original; Noisy ( PSNR = 22.10dB); Iter-
ation no. 1 ( PSNR = 28.30dB); Iteration no. 2
(PSNR = 31.05dB).

and Nowak suggested a constructive method for image de-
blurring, based on iterated shrinkage [19]. Their algorithm
aims at minimizing the penalty function

fB(x) =
1

2
· ‖Kx − y‖2

2 + λ · 1T · ρ {Wx} , (17)

whereK represents a blur operator, andW is a unitary
wavelet transform. Their sequential shrinkage method is
derived via expectation-maximization (EM), and its corre-
sponding structure is very similar to our method. Another
work, by Daubechies, Defrise, and De-Mol [20], addresses
the same objective function as in (17). However, their way
of developing the algorithm is entirely different, leaningon
the definition of a sequence of surrogate functions that are
minimized via shrinkage.

Both algorithms can be generalized to handle the mini-
mization of the objective posed in (2). By definingxW =
Wx, the above penalty function becomes

f̃B(xW ) =
1

2
· ‖KWT xW − y‖2

2 + λ · 1T · ρ {xW } . (18)

DefiningD = KWT , both methods can cope with the very
same problem we have discussed here. The subsequent al-
gorithms are disparate from ours only in the role the norms
of the atoms play, the thresholds chosen in the shrinkage,
and the necessity of a line-search. The implications of these
differences will be thoroughly discussed in a future work.

Figure 8. Denoising results (using iterative-
shrinkage) of a 256 × 256 slice of Barbara (for
σn = 20). From left to right and top to bot-
tom: Original; Noisy ( PSNR = 22.10dB); Iter-
ation no. 1 ( PSNR = 27.03dB); Iteration no. 2
(PSNR = 29.46dB).

6 Conclusion

We have shown that the heuristic shrinkage has origins in
Bayesian denoising, being the first iteration of a sequential
shrinkage denoising algorithm. This leads to several con-
sequences: (i) we are able to extend the heuristic shrinkage
and get better denoising; (ii) we obtain alternative shrinkage
algorithms that use the transform and its adjoint, rather than
its pseudo-inverse; (iii) the new interpretation may help in
addressing the question of choosing the threshold in shrink-
age, and how to adapt it between scales; (iv) the obtained al-
gorithm can be used as an effective pursuit for the BPDN for
other applications; and (v) due to the close relation to [20],
the proposed algorithm can handle general inverse problems
of the form (hereKD is the effective dictionary):

f̃(xT ) =
1

2
· ‖KDxT − y‖2

2 + λ · 1T · ρ {xT } . (19)
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