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This Lecture

... Will review nearly 20 years of tremendous
progress in the field of
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This Lecture

... is Built of Three Parts:
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Welcome to Sparseland
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What This Field is All About ?
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The Answer is Not Trivial

Depends whom you ask, as the researchers in this field
come from various disciplines:

Mathematics

Applied Mathematics

Statistics

Signal & Image Processing: CS, EE, Bio-medical, ...
Computer-Science Theory

Machine-Learning

Physics (optics)

Geo-Physics

Physics - Astronomy

Psychology (neuroscience)

O O 0O O O O O O O O O
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My Answer

A New Transform
for Signals

o We are all well-aware of the idea of transforming a signal and
changing its representation

o We apply a transform to gain something — efficiency, simplicity
of the subsequent processing, speed, ...

o There are many known transforms: Fourier, DCT, Hadamard,
Wavelets and its descendants, and more

o Our message: There is a new transform in town, based on
sparse and redundant representations
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Transforms — The General Picture
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Redundancy?

o In a redundant transform, the
representation vector is longer
(m>n)

o This can still be done while
preserving the linearity of the

transform:
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Sparse & Redundant Representation

m

A
v

o We shall keep the linearity
of the inverse-transform

o As for the forward (computing 'n D
o from x), there are infinitely

many possible solutions v ) [ Jv

| ><

o We shall seek the sparsest of

2ol sounds ... Boring 111!
» MM Who cares about
o The fielc a new transform? ations

is all aboUc uciiiing vicaiy uns uansronin, $0lving various theoretical
and numerical issues related to it, and showing how to use it in practice
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What This Field is All About ?

Take 2
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Lets Take a Wider Perspective

Matrix Data

Text Documents

Stock Market

o We are surrounded by various
sources of massive information

o All these sources have some internal
structure, which can be exploited

o This structure, when identified, is the Voice in
engine behind our ability to process this data

als

N

3D Objects

Medical Imaging
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Fact 1:
This signal
contains AWGN
N(0,1)

Fact 2:
The clean signal

is believed to
be PWC

Effective removal of noise (and many other tasks)
relies on an proper modeling of the signal

. | Michael Elad 13
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Which Model to Choose?
o A model: a mathematical description

of the underlying signal of interest, Gaussian-Mixture
describing our beliefs regarding its Markov Random Field
structure Laplacian Smoothness
o The following is a partial list of DCT concentration
commonly used models for images Wavelet Sparsity

) i Piece-Wise-Smoothness
o Good models should be simple while

matching the signals
Simplicity @™ Reliability

Models are almost always imperfect
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An Example: JPEG and DCT

178KB — Raw data
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How & why does it works?

The model assumption: after DCT, the top left coefficients

Discrete

‘ Cosine

Trans.

—

to be dominant and the rest zeros

¥
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Research in Signal/Image Processing

Problem
(Application)

Numerical
Scheme

A New
Research
Work (and
Paper) is
Born
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The fields of signal & image processing are
essentially built of an evolution of models
and ways to use them for various tasks




Again: What This Field is all About?

A Data Model and
Its Use

o Almost any task in data processing requires a model —
true for denoising, deblurring, super-resolution, inpainting,
compression, anomaly-detection, sampling, recognition, ...
o There is a new model in town — sparse and redundant
representation — we will call it

Sparseland

o Thisis a flexible model that can adjust to the signal

P | Michael Elad
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A New Emerging Model

Signal

.
Processing Learning Mathematics
é Approximation
Theory
Multi-Scale Linear
Analysis Sparse[an ! Algebra
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A Closer Look at the

Sparseland
Model
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The Sparseland Model

o Task: model image patches of
size 8 X8 pixels

o We assume that a dictionary of
such image patches is given,

containing 256 atom images

o The Sparse[anc[ model assumption:

every image patch can be
described as a linear

combination of few atoms
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The Sparse[anc[ Model

Properties of this model:
Sparsity and Redundancy

o We start with a 8-by-8 pixels patch and
represent it using 256 numbers
— This is a redundant representation

o However, out of those 256 elements in the
representation, only 3 are non-zeros
— This is a sparse representation

o Bottom line in this case: 64 numbers
representing the patch are replaced by 6
(3 for the indices of the non-zeros, and 3
for their entries)
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Chemistry of Data

We could refer to the Sparse[anc[
model as the chemistry of information:

o Our dictionary stands for the Periodic Table
containing all the elements

o Our model follows a similar rationale:

Every molecule is built of few elements

e
o e 'n o [l
g s e s [
a5 i [V e i T o 6l 20 e e s e [
(s I Tz o o e o ot g € i S0 S e [ e .
oo+ ] i ] o o i ol g " o T o e .
e+ [if] Bl Sl [ ] ] B!l [ Do "1 D s o "

Michael Elad ‘.\.
The Computer-Science Department
The Technion

a "ee "pr N B S e 5t o oy o T o o eﬁ A A

CERET . B

—
L] 1
[ L

11
-

= ._: :ﬁ‘l' .: '|

—=\ AP -FMVY

=&

22



Model vs. Transform ?

v

o The relation between the
signal x and its representation

o is the following linear )
system, just as described earlier

o We shall be interested in !
seeking sparse solutions to
this system when deploying the sparse and redundant
representation model

o This is EXACTLY the transform we discussed earlier

A

~

Bottom Line: The transform and the model we

described above are the same thing, and their

impact on signal/image processing is profound
and worth studying

R
1<
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Difficulties with Sparseland

o Problem 1: Given an image patch, how
can we find its atom decomposition? : K

o Asimple example:

= There are 2000 atoms in the dictionary

= The signal is known to be built of 15 atoms ES'-'-E_ = TG
[P g e
2000 M e B e
( 1 j ~2.4e+37  possibilities =N e ¥
e ‘E- BER
U{n !- aq :’-
= |f each of these takes 1nano-sec to test, =g : '}ﬂﬁ? , E
will take ~7.5e20 years to finish 11111] o |'|=‘~‘.,§c.,_;”_' |
. _ . . M EAMNA /-
o Solution: Approximation algorithms 2 - N i e
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Difficulties with Sparseland

o Various algorithms exist. Their theoretical analysis
guarantees their success if the solution is sparse enough

o Here is an example — the Iterative Reweighted LS:

Iteration 6

400 800 1000 1200 1400 1600 1800 2000

P | \ichael Elad
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Difficulties with Sparseland

o Problem 2: Given a family of signals, how do
we find the dictionary to represent it well? I
a,

o Solution: Learn! Gather a large set of
signals (many thousands), and find the

dictionary that sparsifies them Lo ey s = ==
=-—=m=o m- -
o Many such algorithms were developed .':.-j";!h.‘. ="I L
in the past 10 years (e.g., K-SVD), and EEE e :';igh -
their performance is surprisingly good E&--‘ - _Eﬁl.ﬁ , E

o This is only the beginning of a new i,"!‘*. @A .-k}

era in signal processing ... . L

m- N
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Difficulties with Sparseland

o Problem 3:Is this model flexible enough to
describe various sources? e.g., Is it good > K
for images? Audio? Stocks? ...

o General answer: Yes, this model is
extremely effective in representing I =" m=
various sources —hmal N

Th | Rel h R oo
. eoretical answer: Relation to other 4 d -
=h™ - _ miklll L%
known models THCE3™ N B BEEC
d A, EEEa 5. .
= Empirical answer: we will see in this =._\ _' fj'ﬁﬁ? , %
- - . = -"ORE- .M -l
couFe, severalrl]magehproce(sjmlnlg | = . KWI'E.EQE
ications, where this m ' MER e AFE
applications, where this model leads to . e MR, ¢ mi
the best known results (benchmark tests) - W NETT N
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Difficulties with Sparseland ?
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Who Works on This ?

Michael Elad
The Computer-Science Department
The Technion



Who is Working in This Field ?

@ Donoho, Candes — Stanford ll Goyal — MIT

Mallat — ENS Paris

Tropp — CalTech

Gribonval, Fuchs — INRIA France Romberg — GaTech

Starck — CEA — France
(- Vandergheynst — EPFL Swiss

Rao, Delgado — UC San-Diego

@) Lustig, Wainwright — Berkeley

1 Do, Bresler — U-lllinois ﬁ;ej Tarokh — Harvard

wive
wiale

Sl

Davies — Edinburgh UK .Cohen, Combettes — Paris VI

i

P | Michael Elad
¥ The Computer-Science Department
The Technion

Elad, Zibulevsky, Bruckstein, Eldar, Segev, Mendelson — Technion


http://wwwex.prism.uvsq.fr/users/cedb/images/logo_inria.gif
http://images.google.co.il/imgres?imgurl=http://ischuller.ucsd.edu/arrowl.gif&imgrefurl=http://ischuller.ucsd.edu/Nanodots.html&h=38&w=50&sz=4&hl=iw&start=2&tbnid=8U5PfL2IdvJ2SM:&tbnh=38&tbnw=50&prev=/images?q=SEA+saclay&imgsz=icon&gbv=2&svnum=10&hl=iw
http://www.gpretro.ch/images/logo_epfl.gif
http://sopac.ucsd.edu/images/ucsdLogo2.gif
http://www.uiuc.edu/
http://images.google.co.il/imgres?imgurl=http://www.admin.technion.ac.il/engtelbook/images/TechnionSign.gif&imgrefurl=http://www.admin.technion.ac.il/engtelbook/left.html&h=64&w=40&sz=3&hl=iw&start=3&tbnid=f7w28y5JZ18DWM:&tbnh=64&tbnw=40&prev=/images?q=technion&imgsz=icon&gbv=2&svnum=10&hl=iw
http://web.mit.edu/engineering
http://www.association-tremplin.org/userfiles/image/polytechnique.png
http://www.yesatyale.org/asia/index_files/yale.jpg
http://www.bunniesandbows.com/collegiate_dreams/images/college_logos/georgia_tech.jpg
http://images.google.com/imgres?imgurl=http://www.bearspage.info/h/tra/ca/bc/va/i/se/ubclogo.jpg&imgrefurl=http://www.bearspage.info/h/tra/ca/bc/va/sea1.html&usg=__-kzDejFEJCAt1Tt3Oct1XKZG9nM=&h=800&w=600&sz=46&hl=iw&start=3&um=1&tbnid=3tFXiNB8shjqPM:&tbnh=143&tbnw=107&prev=/images?q=University+british+columnbia&hl=iw&rls=com.microsoft:he:IE-SearchBox&rlz=1I7SNYR_en&sa=N&um=1
http://www.prostatemrimagedatabase.com/Images/Harvard_shield-Medical.png
http://www.ed.ac.uk/

David L. Donoho

o An extremely talented mathematician and
statistician from the Stanford Statistics

Department
THE %
o Heis among the few HE SHAW PRIZE i3 K 58
WhO founded thlS fleld Announcement and Citation

Announcement

sparse and redundant
representations and its

The Shaw Prize in Mathematical Sciences 2013

S p i n _Off to p i C Of is awarded to

com preSSEd SenSi ng David L. Donoho
o In 2013 he won the

Shaw prize (“the

N O b e I Of t h e e a St” ) 28 May 2013 Hong Kong
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This Field is rapidly GROWI NG

o Searching ISI-Web-of-Science (December 26t 2016):
Topic= ((spars™* and (represent™® or approx™ or solution or
estimation) and (dictionary or pursuit or convex)) or

(compres™ and sens™ and spars™))

led to 6354 papers (it was ~4000 papers a year ago)

Published Items in Each Year Citations in Each Year

o Hereis how - (] "y i
they spread |8 -~
over time
(with ~146178 15,000
citations): 10,000

5,000

Michael Elad 32
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Which Countries?

Field: Countries/Territories Record Count % of6354 Bar Chart

PEOPLES R CHINA B 40.494 %
USA 2171 34167 %
FRANCE 416 6.547 %
ENGLAND 286 4.501 %
CANADA 272 4.281 %
GERMANY 257 4.045 %
ISRAEL 189 2.975 %
AUSTRALIA 170 2.675 %
SOUTH KOREA 160 2518 %
ITALY 154 2.424 %
SWITZERLAND 144 2.266 %
JAPAN 141 2.219 %
SINGAPORE 137 2.156 %
INDIA 115 1.810 %
IRAN 115 1.810 %
SPAIN 84 1.322 %
BELGIUM 73 1.149 %
SCOTLAND 72 1.133 %
TURKEY 72 1.133 %
TAIWAN 71 1.117 %
SWEDEN 64 1.007 %
AUSTRIA 58 0.913 %
= | \ichael Elad DENMARK 55 0.866 %

. NETHERLANDS 55 0.866 % 33
The Computer-Science Department onn o/
The Technion FINLAND 51 0.803 %




Books in this field

o The following book was published in 2010, and it has
served as the textbook for my advanced course

o Since then, it has been adopted by other courses
worldwide (Stanford, Duke, Oxford, I1Sc, UCSD, ... )

o Inthe past 8-9 years, many other books were published
in this and closely related fields

) spr'mge‘
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A M Open Online Course : Coming Up

LV lsrael X

Sparse Representations in Signa
and Image Processing

Learn the theory, tools and algorithms of sparse
representations and their impact on signal and image
processing.

Start the Professional Certificate Program
Courses in the Professional Certificate Program

Starts on October 25, 2017

Instructors

N
i )
Ay e
=y
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Several Examples:

Applications Leveraging
this Model

P | Michael Elad
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Image Separation jsurc, riad, & bonoho (04)

The original image
- Galaxy SBS 0335-
052 as
photographed by
Gemini

The texture part
spanned by global
DCT

Michael Elad
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The Cartoon part
spanned by wavelets

The residual
% being additive
1 noise
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In pa | nt| ng [Starck, Elad, and Donoho (‘05)]

W

Source
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DenoisSinNg iz, tlad & sapiro, (06)]

™y

Original

Michael Elad
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sult (30.75d

)

39



Poisson DenoisiNg (ciryes & eiad (14);

Original
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DEbl U rr| ng [Elad, Zibulevsky and Matalon, (‘07)]

original Measured Restored (right): ISNR=7.0322 dB

Michael Elad 41
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Blind Deblurring snaoandeiad (14

|
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Inpainting (Again!) i, ciac & sapiro, (06);

Result

Michael Elad
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To Summarize

An effective (yet simple)
model for signals/images is
key in getting better
algorithms for various
applications

Which
model to
choose?

Lets take a closer look at
this model, clarify what
we mean by the theory
behind it, and show
several of the algorithms
it leads to for handling
image processing tasks

Michael Elad
The Computer-Science Department
The Technion

Sparse and redundant
representations & trained
dictionaries are drawing a
considerable attention in

recent years, due to the
elegant theory and the
impressive applications

So, what next?

44
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More on these (including the slides and the relevant papers) can be
found in http://www.cs.technion.ac.il/~elad
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Welcome to Sparseland
Part 2: Diving In
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Agenda

Part |l — Theoretical &

Part | — Denoising Numerical Foundations

by Sparse &
Redundant
Representations

Part Ill — Dictionary Learning
& The K-SVD Algorithm

PartV - Part IV —Back to Denoising ... and Beyond —
Summary & « handling stills and video denoising & inpainting,
Conclusions demosaicing, super-res., and compression

O Sparsity and Redundancy are valuable and well-
founded tools for modeling data.

In this part we
will show that

Michael Elad
The Computer-Science Department
The Technion

O When used in image processing, they lead to
state-of-the-art results.




Denoising by
Sparse & Redundant
Representations
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Noise Removal?

Our story begins with image denoising ...

Remove
Additive

Noise -

o Important: (i) Practical application; (ii) A convenient platform (being the
simplest inverse problem) for testing basic ideas in image processing, and
(iii) If you can denoise, you can do much more — see Peyman’s talk

o Many Considered Directions: Partial differential equations, Statistical
estimators, Adaptive filters, Inverse problems & regularization,
Wavelets, Example-based techniques, Sparse representations, ...

Michael Elad 4
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Denoising by Energy Minimization

Many of the proposed image denoising algorithms are related to the
minimization of an energy function of the form

fx)= syl + 6(x)

y : Given measurements Relation to

Prior or regularization
X : Unknown to be recovered measurements

o This is in-fact a Bayesian point of view, adopting the
Maximum-A-posteriori Probability (MAP) estimation.

o Clearly, the wisdom in such an approach is within the

Thomas Bayes

choice of the prior — modeling the images of interest. 1702 - 1761

P | Michael Elad
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The Evolution of G(x)

During the past several decades we have made all sort of
guesses about the prior G(x) for images:

6(0) =} G0 =R} 6(x) =2 Juxf, G(;)ﬁ:xpm

W3 N
iff Energy “FSmoothness @Adapﬁ Smooth
M. ')'EL‘E 'E\* Vi M Statistics
G (X) _ }\‘ H|VK|H G (X) _ 7\, HWXH G (X) =A ||g||O * Hidden derkov Mo.dels, |
1 - —Ill1 for X = Do e Compression algorithms as priors,

f& - ¢ Fields of Experts
{{;"’ Total-Variation B?‘ Wavelet rﬂ Sparse &

% }Q Sparsity ;y Redundant

dy ;L i f\\‘?’
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Sparse Modeling of Signals

o Every columnin

D (dictionary) is
m M a prototype signal (atom)

A
A

t o The vector o is
generated
randomly with few
Jv  (say L) non-zeros
at random
locations and with
random values

h vector
(x' o We shall refer to this
model as Sparse[anc[

\4 \ p

A fixed Dictionary

|
| |
[ |
[ |
[ ]
[ |
[ ]
[ |
[ ]
[ |
[ ]
[ |
[ ]
E
51
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Sparseland Signals are Special

O Every generated
signal is built as a linear
combination of few atoms

M from our dictionary D

H A general model: the
a - . obtained signals are a union
— | Multiply of many low-dimensional
E ‘ by D - Gaussians
O We have been
E X _ Dg using this model in other

context for a while now
(wavelet, JPEG2000, ...)

P | \ichael Elad
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Sparse & Redundant Rep. Modeling?

As p —> O;"'Ist'g”;' X =Da where o is sparse
3 count « model Is thus:

. I=lip p
non-zeros in the 550 ||Qt||ID
vector p<1
> :

af,

ol

J_J.

;X

x =Do where |laf <L

P | Michael Elad
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Back to the MAP Energy Function

O

O

O

L, norm is effectively
counting the number of
non-zeros in a

The vector a is the
representation (sparse/redundant)

of the desired

signal x Dg_y —

The core idea: One cannot find a small set of atoms to
represent the noise and thus it is “thrown” to the residual.
— We obtain an effective projection of the noise onto a
very low-dimensional space, thus getting denoising effect

Michael Elad
The Computer-Science Department
The Technion
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Wait! There are Some Issues

o Numerical Problems: How should we solve or approximate the
solution of the problem

min |Pa —Xui st. o <L min e, st |Da —X”i < g?

min A al, + [Pa-y[; ?

o Theoretical Problems: Is there a unique sparse representation? If
we are to approximate the solution somehow, how close will we

get?

o Practical Problems: What dictionary D should we use, such that all
this leads to effective denoising? Will all this work in applications?

P | Michael Elad
¥ The Computer-Science Department
The Technion
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To Summarize So Far ...

Image denoising (and
many other problems
in image processing)
requires a model for
the desired image

We proposed a model
for signals/images
based on sparse and
redundant
representations

There are some issues:

1. Theoretical

2. How to approximate?
3. What about D?

Michael Elad
The Computer-Science Department
The Technion
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Lets Start with the Noiseless Problem

Suppose we build a signal
by the relation

Do =X

We aim to find the signal’s
representation:

G = ArgMin o s.t. x =Da

B Knhown

-
INEEENEN EEEEN T EEEEEEEEEETE
| . J

N

Why should we necessarily get O = OL?
Unigueness

It might happen that eventually HQHO < HQHO.

Michael Elad 14
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Matrix “Spark”

Donoho & E. (‘02)

Example:

* In tensor decomposition,
Kruskal defined something
similar already in 1989

Michael Elad 15
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o = O O
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Unigueness Rule

Suppose this problem has been solved somehow

o = Arg MianHO s.t. Xx=Da

Unigueness If we found a representation that satisfy

laf, <5
gLO

2

Then necessarily it is unigue (the sparsest).

This result implies that if 9V generates signals
using “sparse enough” o, the solution of the
above will find it exactly

16



Our Goal

Here is a recipe for solving this problem:

[Setl=1 |
There are ()

No Yes

Done

Michael Elad 17
The Computer-Science Department
The Technion




Lets Approximate

min o, st [P -yl <&

g N Q. i{

=
Relaxation methods Greedy methods
Smooth the L, and use Build the solution one
continuous optimization non-zero element at a
techniques time

P | Michael Elad
¥ The Computer-Science Department
The Technion
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Relaxation — The Basis Pursuit (BP)

WA e

o This is known as the Basis-Pursuit (BP) [Chen, Donoho & Saunders ('95)]

o The newly defined problem is convex (quad. programming)

o Very efficient solvers can be deployed:

= |nterior point methods [Chen, Donoho, & Saunders (‘95)] [Kim, Koh, Lustig, Boyd, & D.
Gorinevsky ('07)]

= Sequential shrinkage for union of ortho-bases [Bruce et.al. (98)]

= |terative shrinkage [Figuerido & Nowak (‘03)] [Daubechies, Defrise, & De-Mole (‘04)]
[E. (‘05)] [E., Matalon, & Zibulevsky (‘06)] [Beck & Teboulle ("09)] ...

Michael Elad 19
The Computer-Science Department
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Go Greedy: Matching Pursuit (MP)

( EEEEEEEEEEEEEEEEEEEEEEEEEEE) (H)

The MP is one of the greedy R
algorithms that finds one atom | SeEEeEe e e e e e

at a time [Mallat & Zhang ('93)] e e e e e

2

Step 1: f|nd the one atom th at SN EEEEEEEEEEEEEEEEEEEEEE
the signal

Next steps: given the previously found atoms,
find the next one to the residual

The algorithm stops when the error HDQ‘XHZ is below the
destination threshold.

The Orthogonal MP (OMP) is an improved version that re-
evaluates the coefficients by Least-Squares after each round.

Michael Elad
The Computer-Science Department
The Technion
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Pursuit Algorithms

There are various algorithms designed for approximating the
solution of this problem:

o Greedy Algorithms: Matching Pursuit, Orgg g& Matclifing Pursuit (OMP),
Least-Squares-OMP, Weak I\/Iat‘ItT lﬁs Iock Mat ing Pursuit [1993-

today]. S‘(\O
o Relaxation Alg\Nm RENE e&\ba LASSO ), Dnatzig Selector &
numerical ways to hac\t\l@& [1995 today].

o Hybrid Algorithms: StOMP, CoSaMP, Subspace Pursuit, Iterative Hard-
Thresholding [2007-today].

O ...

Michael Elad 21
The Computer-Science Department
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The Mutual-Coherence

o Compute ‘ D ]z
DT Assume 5
normalized T
columns DD

o The Mutual-Coherence pu is the largest off-diagonal entry in
absolute value

o The Mutual-Coherence is a property of the dictionary
(just like the “Spark”). In fact, the following relation can be

shown:
c>1+—
1L

P | Michael Elad
¥ The Computer-Science Department
The Technion



BP and MP Equivalence (No Noise)

Equivalence  Giyen a signal x with a representation X =Da,

assuming that o <0.5(1+1/pn), BP and MP

are guaranteed to find the sparsest solution.

o MP and Ig-are dlé M%(I%rl:(]eru u@l to Say whlc%-rs better) —

o The above result corresponds to the worst-case, and as such, it is too
pessimistic

o Average performance results are available too, showing much better

bounds [Donoho ('04)] [Candes et.al. (‘04)] [Tanner et.al. (‘05)] [E. (‘06)]
[Tropp et.al. (‘06)] ... [Candes et. al. (‘09)]

P | Michael Elad
¥ The Computer-Science Department
The Technion
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BP Stability for the Noisy Case

Ben-Haim, Eldar & E. (‘09) * With very high

probability

o For c=0 we get a wea

o This result is the orac

o Similar results exist for other pursuit algorithms (Dantzig Selector, Orthogonal
Matching Pursuit, CoSaMP, Subspace Pursuit, ...)

Michael Elad 24
The Computer-Science Department
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To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

The
Dictionary D
should be
found
somehow !!!

Michael Elad
The Computer-Science Department
The Technion

We have seen that there
are approximation
methods to find the sparsest
solution, and there are
theoretical results that
guarantee their success.

25



Dictionary Learning:
The K-SVD Algorithm

Michael Elad
The Computer-Science Department
The Technion



What Should D Be?

& = arggmianH0 s.t. %H Do -y Hi < g? X =D&

Our Assumption: Good-behaved Images
have a sparse representation

Y

D should be chosen such that it sparsifies the representations

\ 4 \ 4

One approach to choose D is from a The approach we will take for

known set of transforms (Steerable building D is training it, based
wavelet, Curvelet, Contourlets, on Learning from
Bandlets, Shearlets ...) Image Examples

P | Michael Elad
¥ The Computer-Science Department
The Technion
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Given these P examples and a
fixed size [nxm] dictionary D:
2. How would we find D?

1. Is D unique?

The Computer-Science Department

Michael Elad
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Dictionary Learning: Problem Setting
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K—Means For Clustering

Clustering: An extreme sparse representation

Initialize D

D

]

Sparse Coding

Nearest Neighbor T

1 X

Dictionary
Update

Column-by-Column by

30




The K=SVD Algorithm — General

[Aharon, E. & Bruckstein (‘04,'05)]

Initialize
D

]

D

Sparse Coding

Use Matching Pursuit

Dictionary
E Update
Column-by-Column by

SVD computation over
the relevant examples

P | Michael Elad
¥ The Computer-Science Department
The Technion
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K—=SVD: Sparse Coding Stage

Min Do

a-x

Solved by =~~~ iNeiiisiuAEiE| SmmmemmssssssAAssessmasss
A Pursuit Algorithm

[
Michael Elad 32
The Computer- Science Department
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K—=SVD: Dictionary Update Stage

We should solve:

P | \ichael Elad
¥ The Computer-Science Department
The Technion

We refer only to the
examples that use the
column d,

Fixing all A and D apart
from the kh column, and
seek both d, and the kt"
column in A to better fit

the residuall

33



A Synthetic Experiment

Create A 20x30 random dictionary Generate 2000 signal examples with Train a dictionary using the
with normalized columns 3 atoms per each and add noise KSVD and MOD and compare

°
c
3
[<]

L
%]
=
S
=
<
)

2
=
[}
o

MOD performance
K-SVD performance

. | Michael Elad 34
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Improved Dictionary Learning

P
I\Igl,ip ;HD%‘XJ“E S.t. V),

MOD Algorithm

Fix D and
update A

Fix A and
update D

och <L
=illo

K-SVD Algorithm

Fix D and update A

for j=1:1:m
- Fix A & D apart from the

j-th atom its coefficients
- Update gj and its coef. in A

end

35



Improved Dictionary Learning

P
i 3ou,-x ] st

OL-H <L
=illo

Improved Algorithm
[Smith & E. 2013]

is can be done in two ways:

1. Apply several rounds of the atoms’
update in the K-SVD, or

2. Extend the MOD to update the

non-zero elementsin A

. | Michael Elad 36
¥ The Computer-Science Department
The Technion



To Summarize So Far ...

Image denoising (and
many other problems
in image processing)
requires a model for
the desired image

We proposed a model
for signals/images
based on sparse and
redundant
representations

Will it all work
in
applications?

Michael Elad
The Computer-Science Department
The Technion

We have seen approximation
methods that find the sparsest
solution, and theoretical results

that guarantee their success.

We also saw a way to learn D

37
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Back to Denoisi

and Beyond — Combi

Michael Elad
The Computer-Science Department
The Technion

ng ...

ning it All
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Bringing Sparseland to Applications

o While the Sparseland model is clear and well-defined, there are
various ways to bring it into an actual algorithm in applications

o The bad news: It is not

obvious how to turn this
m model into a successful
algorithm
ol . o The good news: As we are
— Multiply about to see, there is a lot

' by D l of room for ingenuity &

originality in designing
X = Dg algorithms in image

processing
P | Michael Elad
¥ The Computer-Science Department
The Technion
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From Local to Global Treatment

o The K-SVD is reasonable for low-dimension ) m X
signals (n in the range 10-400). As n grows, 1
the complexity and the memory i D
requirements of the K-SVD are prohibitive

o So, how should large images be handled?

o The solution: Force shift-invariant sparsity — operate on patches
of size n-by-n (n=8) in the image, including overlaps

n 1]
X = ArgMin EHX - XHi +

X { o Jij

Our prior

Michael Elad
The Computer-Science Department
The Technion
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What Data to Train On?

Option 1:

@)

Use a database of images

o We tried that, and it works fine (~0.5-1dB

below the state-of-the-art)

Option 2:

O

O

Use the corrupted image itself !!

Simply sweep through all patches of size
\m-by- \n (overlapping blocks)

Image of size 10002 pixels == ~10°
examples to use — more than enough

This works much better!

Michael Elad
The Computer-Science Department
The Technion

AR S T L 0 T )
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K-SVD Image Denoising

x=y and D known x and a,; known D and o; known

: 4 4 4

Michael Elad 43
The Computer-Science Department
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Image Denoising (Gray) (e & anaron (06)

= % Source

The results of this algorithm compete favorably with the
state-of-the-art

This algorithm can be extended by using joint sparse
representation on the patches, introducing a non-local
force in the denoising, thus leading to improved results
[Mairal, Bach, Ponce, Sapiro & Zisserman (‘09)]

What about EPLL ? ... 'I'IIIIIMW

. _— AW AN
P R LTSNS T | B

Noisy image The obtained dictionary after

10 iterations
c =20

Michael Elad

The Computer-Science Department

The Technion
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EPLL Improvement (suiamande. (15)]

Arngn 2x - yH +uZHRX D_,JH s.t.

I{ |J }|J /

o The algorithm we proposed
updates x only once at the end

o Why not repeat the whole
process several times?

o The rationale: The sparse
representation model should be
imposed on the patches of the
FINAL image. After averaging,
this is ruined

P | Michael Elad
¥ The Computer-Science Department
The Technion

Updates the
Dictionary

Updates the
sparse repr.

Updates
the
Output
image

45



EPLL Improvement (suamande. (15)

O

O

Expected Patch Log Likelihood (EPLL) is an algorithm that came
to fix this problem [zoran and weiss, ('11)] , originally in the context
of a GMM prior

An extension of EPLL to Sparsland is proposed in
[Sulam and E. (‘15)]. The core idea is:

= After the image has been computed, we proceed the iterative process,
and apply several such overall rounds of updates

=  Sparse coding must be done with a new threshold, based on the
remaining noise in the image. This is done by evaluating the noise level
based on the linear projections (disregarding the support detection by
the OMP)

= This algorithm leads to state-of-the-art results, with 0.5-1dB
improvement over the regular K-SVD algorithm shown before

Michael Elad
The Computer-Science Department
The Technion
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EPLL Improvement (suamande. (15)

Original Image Noisy Image. PSNR = 18.59 dB K-SVD. PSNR = 34.45 dB

L

Noisy image
has 0=25

KSVD PSNR
31.42 dB

EPLL PSNR
31.83dB |

=y ‘ -J'" =3 "‘ ‘ -";.- —* ¢ /1 % S
Michael Elad
The Computer-Science Department
The Technion
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Denoising (Color) vairal, e & sapiro (08)

d When turning to handle color images, the main

IO,

»Original ‘ Noféy(ZO.dB) Result

Michael Elad 48
The Computer-Science Department
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Denoising (Color) vairal, e & sapiro (08)

Our experiments lead to state-of-the-art denoising results,
giving ~1dB better results compared to [vicauley et al. (‘06)] which
implements a learned MRF model (Field-of-Experts)

Original Noisy (12.77dB) Result (29.87dB)

Michael Elad
The Computer-Science Department
The Technion
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Video Denoising irroter & k. (09)

>y

Our experiments lead to state-of-the-art video
denoising results, giving ~0.5dB better results on

average compared to [Boades, Coll & Morel (105)]
and compa rable to [Rusanovskyy, Dabov, & Egiazarian (‘06)]

™ o . S i el s A AP ] A J - R o
oy 9 e 55 o L1 AT s Ay IR z 7 it Sl ¥ ‘- oy .
t . \ g 2 x N t

Original

Michael Elad 50
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Low-Dosage Tomography ishiok, zibulevsky & . (10)]

1 In Computer-Tomography (CT) reconstruction, an image is
recovered from a set of its projections

1 In medicine, CT projections are obtained by X-ray, and it
typically requires a high dosage of radiation in order to
obtain a good quality reconstruction

J A lower-dosage projection implies a stronger noise
(Poisson distributed) in data to work with

J Armed with sparse and redundant representation
modeling, we can denoise the data and the final
reconstruction ... enabling CT with lower dosage

. | Michael Elad 51
¥ The Computer-Science Department
The Technion



mage Inpainting — The Basics

Assume: the signal x has been created
by x=Da,, with very sparse a, (XO —_—

Missing values in x imply

missing rows in this linear

system

By removing these rows, we get

Do = X
Now solve MianHO S.t. XZ'SQL

If a, was spars_e enough, it will be the solution of the above
problem! Thus, computing DQ,, recovers x perfectly

X

52



Side Note: Compressed-Sensing

o Compressed Sensing is leaning on the very same principal, leading to
alternative sampling theorems.

o Assume: the signal x has been created by x=Da, with very sparse a,.

o Multiply this set of equations by the matrix Q which reduces the
number of rows.

o The new, smaller, system of equations is - B
QDo = Qx == Do =X X

o If a, was sparse enough, it will be the sparsest solution of the new

system, thus, computing DQ,, recovers x perézctly.

o Compressed sensing focuses on conditions for this to happen,
guaranteeing such recovery.

- >

. | Michael Elad 53
¥ The Computer-Science Department
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Inpainting Formulation (waira, e. & sapiro (08)3

) i AN ee ey | []

The matrix M is a mask = =
matr'_X' Obta"_md _by the | | = g
identity matrix with | S _=
some of its rows e T
omitted, corresponding  SESSEERESTEEE e 5§
to the missing samples  SESSEEEETEEE E O
OO O - [l

M Xy

Michael Elad 54
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Inpainting Formulation i, e & sapiro (08)

x=y and D known x and a,; known D and o;; known

: 4 : 4 4

Michael Elad 55
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InpaiNting viairal, £. & sapiro (08);

Original Image Masked Image

This is a more challenging case,
where the DCT is not a suitable
dictionary.

* For Redundant DCT we get
RMSE=16.13, and

 For K-SVD (15 iterations) we get
RMSE=12.74

DCT Result K—SVD Result

Michael Elad 56
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In pa | nt| ng [Mairal, E. & Sapiro (‘08)]

Michael Elad 57
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In pa | nt| ng [Mairal, E. & Sapiro (‘08)]

The same can be done for video, very much like the denoising
treatment: (i) 3D patches, (ii) no need to compute the
dictionary from scratch for each frame, and (iii) no need for
explicit motion estimation

Original 80% missing Result

Michael Elad
The Computer-Science Department
The Technion
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DemosaiCing iviairal, £. & sapiro (08);

Our experiments lead to state of-the-art de

D 118 a¥esu?merﬁ‘/?na revéei‘d*ﬁ‘ﬁe‘%?& Pe”s%lts on a
color per pixel, eawnagrelaec rest fo

. (0) [Chang & Chan (‘06)]
interpolated

Michael Elad 59
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Image Compression srytande. (0g)]

o The problem: Compressing photo-ID images

o General purpose methods (JPEG, JPEG2000)
do not take into account the specific family

o By adapting to the image-content (PCA/K-SVD),
better results could be obtained

o For these techniques to operate well, train
locally (per patch) using a
training set of images is required

o In PCA, only the (quantized) coefficients are stored,
the K-SVD requires storage of the indices

o Geometric alignment of the image is very helpful
should be done [Goldenberg, Kimmel, & E. (‘05)]

. | Michael Elad 60
¥ The Computer-Science Department
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Image Compression

Detect main features and warp the Training set (2500 images)
images to a common reference (20

parameters)

@)
* >
—t
-
Divide the image into disjoint 15- ®
by-15 patches. For each compute )
T - ) 1
mean and dictionary > TEEE T
0 NEEEEP™ T N EEEEN
* - ENEEP "
[ b [ [J 1T L[ [/
. . o ERW esmeee md
Per each patch find the operating ERE aEnEEESES: WA
EEN 0 AEEENC e
parameters (number of atoms L, EE?}. i"ﬁisiiii*ﬁ" ,}gi
. . L dil & 8 r/uhil &) -
quantization Q) (||| |-

* Illlilll!ﬁddllll‘ll

EREERTTaE - = JII..
Warp, remove the mean from each On th EEmwEE . SeSH
h de using L nthe BEEr L e
patch, sparse code using L atoms, test image LLED ‘Eiiiﬁﬁir'
apply Q, and dewarp W EEE
A T

. | Michael Elad 61
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Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD

Results
for 820
Bytes per
each file

Michael Elad 62
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Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD

Results
for 550
Bytes per
each file

Michael Elad 63
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Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD

Results
for 400
Bytes per
each file

Michael Elad 64
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Deblocking the Results (e ande. (09

550 bytes
K-SVD results
with and
without
deblocking

E ‘L -~ .
R

K-SVD (6.60) K-SVD (5.49) K-SVD (6.45) K-SVD (11.67)

A2

Deblock (6.24) Deblo::k (E.Z7) Deblock (6.03) Deblock (11.32)

Michael Elad 65
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Super-Resolution izeyde, protter, & €. (1)

o Given a low-resolution image, we desire to enlarge it while
producing a sharp looking result. This problem is referred to
as “Single-Image Super-Resolution”

o Image scale-up using bicubic interpolation is far from being
satisfactory for this task

o A brilliant and very different sparse and redundant
representation technigue was proposed [Yang, Wright, Huang,
and Ma ('08)] for solving this problem, by training a coupled-
dictionaries for the low- and high res. images

o We extended and improved their algorithms and results

P | \ichael Elad
¥ The Computer-Science Department
The Technion
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Super-Resolution — Results (1)

|deal
Image

, supply
ations is st

ks the 1

89 training pat

Given Image

P | Michael Elad 67
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Super-Resolution — Results (2)

N A\ n(/r/ .;u“ ” c...“” ,‘. =
/,///. ‘dﬂlu“ =

ST ™ . W W
RS SRRy

N\ N - oA
NS O
R\

8\ MR

Given image

Scaled-Up (factor 2:1) using the proposed algorithm,
PSNR=29.32dB (3.32dB improvement over bicubic)

68

The Computer-Science Department

Michael Elad
The Technion



Super-Resolution — Results (2)

The Original Bicubic Interpolation SR result

Michael Elad 69
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Super-Resolution — Results (2)

The Original Bicubic Interpolation SR result

Michael Elad 70
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Poisson Denoising

y

P(ylx)z%e‘X

peak £ max 1

Michael Elad val
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PO'SSO” DenO|S| ng [Salmon et. al., 2011] [Giryes et. al., 2013]

o Anscombe transform converts Poisson distributed noise into an
approximately Gaussian one, with variance 1 using the following

formula [Anscombe, 1948]: / 3
f:Anscombe (y) =2 y + g

o However, this is of reasonable accuracy only if peak>4.

o For lower peaks (poor illumination), we use the patch-based
approach with dictionary learning, BUT ... in the exponent

domain: x = Do (X = exp{Da } \
where ||a/| <L ' where Jof <L

. | Michael Elad 72
¥ The Computer-Science Department
The Technion
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Poisson Denoising — Results (1)

- *:*:*:*:*:1 = .:t:t:t:t:t
- -
—_— **********1 = ..'...'..'1
IR _—
ERIGFEW NS === =
ISR 71 |

Original Noisy (peak=1) Result (PSNR=22.59dB)

Dictionary learned atoms:
"
K

= =N

P | Michael Elad
The Computer-Science Department
The Technion
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Poisson Denoising — Results (2)

Original Result (PSNR=24.16dB)

Original

Michael Elad 74
The Computer-Science Department
The Technion



Other Applications?

1 Poisson Denoising & Inpainting
 Blind deblurring

J Audio inpainting

[ Dynamic MRI reconstruction
 Clutter reduction in ultrasound
 Single image interpolation

J Anomaly detection

g ..

P | Michael Elad
¥ The Computer-Science Department
The Technion
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Conclusio
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A

76



In this Part we Have Seen that ...

Sparsity, Redundancy,
and the use of examples
are important ideas that can
be used in designing better
tools in signal/image
processing

Many of the results we
got focused on patch-
based methods — it is time
to understand better this
choice and its limitations,
with the hope to
lead to new insights

Michael Elad
The Computer-Science Department
The Technion

In our work on we cover
theoretical, numerical, and
applicative issues related to

this model and its use in

practice

We keep working on:
= Improving the model
= Improve the dictionaries

= Demonstrate on other
applications
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Thank You

All this Work is Made Possible Due to

my teachers and mentors

A.M. Bruckstein D.L. Donoho

colleagues & friends collaborating with me

and my students

M. Aharon O. Bryt

J. Mairal M. Protter R. Rubinstein J. Shtok

Michael Elad 78
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=Application

functiondenoising

s eCtor [patches

Isgﬁg:‘la?xl)tg I C I O n a ryF)El)E%ecis%stlmat|on
“egﬁﬁi sis atoarn[S-e UEH

penalty probablllty
texture codmg

cardinali ark
Sparse- Lang *. Ory M[\;]SE C0|umnsmOdel

non-ze
random l 4
compression "
sparsity
thresholdmg
! redundant bounds u p po rt S | g na I

K-SVD

inpaintir{g value nO|Se
shrinkage OMP MAP
local Ilnvgglgt

More on these (including the slides and the relevant papers) can be

found in http://www.cs.technion.ac.il/~elad

Michael Elad
The Computer-Science Department
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Welcome to Sparseland

Part 3: A Tale of Three Models
Sparseland—CSC—CNN

Michael Elad

The Computer Science Department

The Technion — Israel Institute of Technology

Haifa 32000, Israel

Michael Elad The research leading to these results has been received funding
from the European union's Seventh Framework Program

The Computer-Science Department
The Technion (FP/2007-2013) ERC grant Agreement ERC-SPARSE- 320649



In This Talk

Sparseland CSC

Sparse

Convolutional
Representation Sparse

Theory Coding

The Underlying Idea

Generative Modeling

of data sources enable
o A systematic algorithm development, &
o A theoretical analysis of their performance

P | \ichael Elad
¥ The Computer-Science Department
The Technion

CNN-

Convolutional

Neural
Networks

* Only CNN?
What about other
architectures ?



The Results Presented

Michael Elad
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Part |
Motivation and Background



Our Starting Point: Image Denoising

Original Image White Gaussian Noise Noisy Image
E

Many (thousands) image denoising algorithms |EEEEEEECERIZENEE,
have been proposed over the years, some of ., | Topicmimage and

noise and (removal

which are extremely effective 510 | or denoising)

» Denoising

Y :
Algorithm
Michael Elad

g The Computer-Science Department
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Leading Image Denoising Methods...

are built upon powerful patch-based local models:

Popular local models: cGMmm

Sparse-Representation
Example-based
Low-rank
Field-of-Experts &
Neural networks

Michael Elad
The Computer-Science Department 6
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Patch-Based Image Denoising

o BM3D: combines sparsity and self-similarity
[Dabov, Foi, Katkovnik & Egiazarian ‘07]

o EPLL: uses GMM of the image patches
[Zoran & Weiss ‘11]

o MLP: multi-layer perceptron
[Burger, Schuler & Harmeling ‘12]

o NCSR: non-local sparsity with centralized coefficients
[Dong, Zhang, Shi & Li “13]

o WNNM: weighted nuclear norm of image patches
[Gu, Zhang, Zuo & Feng ‘14]

o SSC—-GSM: nonlocal sparsity with a GSM coefficient model
[Dong, Shi, Ma & Li “15]

Michael Elad
The Computer-Science Department 7
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Recall K-SVD Denoising [Elad & Aharon, ‘06]

Initial Dictionary Using K-SVD

Update the
dictionary

Noisy Image

Denoise
each patch

Using OMP

o Despite its simplicity, this is a very well-performing algorithm

o Its origins can be traced back to Guleryuz’s local DCT recovery

o A small modification of this method leads to state-of-the-art
results [Mairal, Bach, Ponce, Spairo, Zisserman, 09]

Michael Elad
The Computer-Science Department 10
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What is Missing? %

o Over the years, many kept revisiting this algorithm
and its line of thinking, with a clear feeling that key
features are still lacking

o What is missing? Here is what WE thought of...

= A multi-scale treatment [Ophir, Lustig & Elad ‘11] [Sulam, Ophir & Elad ‘14]
[Papyan & Elad ‘15]

= Exploiting self-similarities [Ram & Elad ‘13] [Romano, Protter & Elad ‘14]

= Pushing to better agreement on the overlaps [Romano & Elad ‘13]
[Romano & Elad ‘15]

= Enforcing the local model on the final patches (EPLL) [Sulam & Elad ‘15]

o Eventually, we realized that the key part that is missing is

A Theoretical Backbone

Michael Elad
The Computer-Science Department 11
The Technion




Missing Theoretical Backbone?

o The core global-local model assumption on X € R/ :

Vi RIX — le where ”Yl”() <k

» Every patch in the unknown signal is expected to have a
sparse representation w.r.t. the same dictionary ()

o Questions to consider:
= Who are the signals belonging to this model? Do they exist?
= How should we project a signal on this model (pursuit)?
= Could we offer theoretical guarantees for this model/algorithms?
= Could we offer a global pursuit algorithm that operates locally?
= How should we learn Q if this is indeed the model?

o As we will see, all these questions are very relevant to recent
developments in signal processing and machine learning

. | Michael Elad
¥ The Computer-Science Department 12
The Technion
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Coming Up = w
Limitations of

imitati Convolutional Sparse
patch averaging Coding (CSC) model
Theoretical

Multi-Layer Convolutional « '
Sparse Coding (ML-CSC) study of CSC

Convolutional neural » Fresh view of CNN through
networks (CNN) the eyes of sparsity

Michael Elad
The Computer-Science Department 13
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Part |l
Convolutional
Sparse Coding

(IEEE-TSP)
Working Locally Thinking Globally:

Theoretical Guarantees for Convolutional Sparse Coding
Vardan Papyan, Jeremias Sulam and Michael Elad

(ICCV 2017)

Convolutional Dictionary Learning via Local Processing
Vardan Papyan, Yaniv Romano, Jeremias Sulam, and Michael Elad

Michael Elad
The Computer-Science Department
The Technion

14



Convolutional Sparse Coding (CSC)

m filters convolved with their i-th feature-map:
sparse representations An image of the
\L same size as X

holding the sparse

m representation
X — 2 d % 7. related to the i-filter
| | o |'|_III H--H:
i=1 b
An image held as e
a column vector el . ==
of length N é?E The j-th filter of RET

rA=@e small supportn

Michael Elad
The Computer-Science Department 15
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Intuitively ...

o 1 )
Y

The first filter The second filter

P | \ichael Elad
¥ The Computer-Science Department 16
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CSC in Matrix Form

o Here is an alternative global sparsity-based model formulation

) = E Crt = : | = DI
i=1 |
o C! € RM*N js a banded and Circulant matrix containing a single
atom with all of its shifts mm EEEEEE )
[ EREEEN
[ [ & o [
n||"stm_ Em
[ [ [ [ | [ |
| [ [ [
[ OEENEEN |
[ | . N [ [ [
o » Cl CELCEEE
— R [ [
[ — o T ] [
| [ [ [
. CEEEEEE
[ T ] [
[T [ [
AREEEENT
- . . Sn cm m
oT'!' € RY are the corresponding coefficients .. SR
N

Michael Elad
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stripe- dlctlonaryrstrlpe vector —J
X D l“ Every patch has a sparse :
representation w.r.t. to the
same local dictionary (Q,
RIX le just as we have assumed
Michael Elad
g The Computer-Science Department 19
The Technion




CSC Relation to Our Story

o A clear global model: every patch has a sparse representation
w.r.t. to the same local dictionary , just as we have assumed

o No notion of disagreement on the patch overlaps

o Related to the current common practice of patch averaging (R}
- put the patch Qy; back in the i-th location of the global vector)

1 T
X=DI‘:£ZRiQyi
1

oWhat about the Pursuit?

= “Patch averaging”: independent sparse coding for each patch
= CSC: should seek all the representations together

o Is there a bridge between the two? We'll come back to this later ...

P | \lichael Elad
¥ The Computer-Science Department 20
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o This model has been used in the past [Lewicki & Sejnowski ‘99]
[Hashimoto & Kurata, ‘00]

o Most works have focused on solving efficiently its associated pursuit,
called convolutional sparse coding, using the BP algorithm

(Pf): min ||IT|l{ + AllY = DIJ|5 Convolutional
r dictionary

o Several applications were demonstrated:

= Pattern detection in images and the analysis of instruments in music
signals [Mgrup, Schmidt & Hansen '08]

" |npainting [Heide, Heidrich & Wetzstein ‘15]
= Super-resolution [Gu, Zuo, Xie, Meng, Feng & Zhang ‘15]

o However, little is known regrading its theoretical aspects. Why?
Perhaps because the regular SparsLand theory is sufficient?

. | Michael Elad
¥ The Computer-Science Department 21
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Classical Sparse Theory (Noiseless)

(Py): mFin IT|lg s.t. X=DI

Definition: Mutual-Coherence: u(D) = max |ddej|
1#] [Donoho & Elad ‘03]

Theorem: For a signal X = DT, if ||T||, < (1 T ﬁ)

then this solution is necessarily the sparsest
[Donoho & Elad ‘03]

Theorem: The OMP and BP are guaranteed to recover the

true sparse code assuming that |[T'|[q < (1 T ﬁ)

[Tropp ‘04], [Donoho & Elad ‘03]

. | Michael Elad
¥ The Computer-Science Department 22
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The Need for a Theoretical Study

o Assuming that m = 2 and n = 64 we have that [Welch, '74]
w(D) = 0.063

o As a result, uniqueness and success of pursuits is guaranteed
as long as

IIT|| <1 1+ - <1 1+ - 8
0=2 w(D)/ =~ 2 0.063)

o Less than 8 non-zeros GLOBALLY are allowed!!!
This is a very pessimistic result!

o Repeating the above for the noisy case leads to
even worse performance predictions

o Bottom line: Classic SparseLand Theory cannot
provide good explanations for the CSC model

Michael Elad
The Computer-Science Department 23
The Technion




Moving to Local Sparsity: Stripes

£0.00 Norm: [|T[|§ o = max lvillo

(Pow):  min [IT[l5e s.t. X =DI

IT|[3,00 is low — all y; are sparse — every
patch has a sparse representation over £

The Main Questions we Aim to Address:

Is the solution to this problem unique ?

Can we recover the solution via a global OMP/BP ?

Michael Elad
The Computer-Science Department
The Technion
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Stripe-Spark and Uniqueness

(Poo):  min [IT§e s.t. X =Dr

A+0

Theorem: If a solution I' is found for (Pg ) such that:

Definition: Stripe Spark 1 (D) :mAin IA]l5 0 -t {

Theorem: The relation between the

» Stripe-Spark and the Mutual Coherence is:
|
New(D) =1+ ——

u(D)

:

DA=O}

1
TS 0 < 5 Moo

then it is necessarily the optimal solution to this problem




Uniqueness via Mutual Coherence

(Pg.0): min IT|I§ o s-t. X=DI

Theorem: If a solution I' is found for (P ) such that:

1 1
IT[5,00 < —(1 + —)
7 u(D)

then this is necessarily the unique optimal solution to
this problem

: : — ; For k non-zeros per
This result is exciting: This and later results stripe, and filters of
pose a constraint for a global guarantee, length 1, we get
and as such, they are far more optimistic 1Tl = N
compared to the global guarantees T 2n-1
non-zeros globally

:



Recovery Guarantees

(Pow):  min [IF[l5e s.t. X =D

Lets solve this problem via OMP or BP, applied globally

»

Theorem: If a solution I' of (P o) satisfies:

| |
IT[[5,00 < —(1 i —>
2 u(D)

then global OMP and BP are guaranteed to find it

Both OMP and BP do not assume ocal sparsity but
still guaranteed to succeed. One could propose
algorithms that rely on this assumption

* How about variants that would exploit the local sparsity?

:



From Ideal to Noisy Signals

o So far, we have assumed an ideal signal X = DI'

o However, in practice we usually have Y = DI' + E where E is due to
noise or model deviations

o To handle this, we redefine our problem as:

(P§o): min [IT[§e s.t. IY=Drll; <e
o The Main Questions We Aim to Address:
|.  Stability of the solution to this problem ?
Il.  Stability of the solution obtained via global OMP/BP ?
lll.  Could the same recovery be done via local (patch) operations ?

~wr

Y4
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Stability of via Stripe-RIP

(PSe):  min [IFllSe s.t. IY—DFll; <e @m» T

Theorem: If the true representation I' satisfies

IIT|]3 —k<1(1+ - )
» e 2 u(D)
then a solution T for (Pg ) must be close to it

Y 2 - 462
IT=rll, < ==

If you carefully review this result, you should be disappointed,
as we see a noise magnification !! Is this true ?

Answer: No!!! This is a worst-case (with adversarial noise) analysis

* | Michael Elad
¥ The Computer-Science Department 30
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Local Noise Assumption

o Thus far, our analysis relied on the local sparsity of the underlying
solution I, which was enforced through the £ o, norm

o In what follows, we present stability guarantees for both OMP and
BP that will also depend on the local energy in the noise vector E

o This will be enforced via the ¢, o, norm, defined as:

IEII3 o = max ||R;E||;

Michael Elad
The Computer-Science Department 31
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Stability of OMP

Michael Elad
The Computer-Science Department 32
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Stability of Lagrangian BP

1
(P1): Tgp=min SIY - DI(13 + AllTlly

Theorem: ForY = DI + E, if A = 4llEIP and
1 Theoretical foundation for
ITI[?, 00 < 3 (1 +{ recent works tackling the
convolutional sparse coding

» Then we are guaranteed that problem via BP

1. The support of I'gp is contain{ [Bristow, Eriksson & Lucey “13]

D [Wohlberg ‘14]
2. |ITgp — Il < 7-5”E”2,oo [Kong & Fowlkes “14]

[Bristow & Lucey ‘14]
[Heide, Heidrich & Wetzstein ‘15]
4. Tgp is unique [Sorel & Sroubek ‘16]

Proof relies on the work of [Tropp ‘06]
33
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Global Pursuit via Local Processing

1
(Pf):  Typ =min =[|Y = DIII3 + /Tl

o While CSCis a global model,
its theoretical guarantees
rely on local properties

o We aim to show
that this
global-local
relation can also
be exploited for
solving the global BP
problem using only local operations

Michael Elad
The Computer-Science Department 35
The Technion
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Global Pursuit via Local Processing (2)

1
(Pf):  Typ =min =[|Y = DIII3 + /Tl

~H

o S; are slices — local
patches that overlap
to form the full image

— — T _ T
X—DI‘—ERiDLai— R's;
i i
Michael Elad
The Computer-Science Department 40
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Global Pursuit via Local Processing (2)

R |
(PP Typ =min =[|Y = DIII3 + AT,

Turning to the local form
and using the Augmented
Lagrangian

2
min ZRTsl " (Mol +2 lsi-Drog + ugl3)
121 i

o These two problems are equivalent, and convex w.r.t their variables

o The new formulation targets the local slices, and their sparse
representations

o The vectors u; are the Lagrange multipliers for the constraints s;=D; «;

P | \ichael Elad
¥ The Computer-Science Department 41
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Global Pursuit via

z RTsl

min -—
Qa;,Si

1
o Slice-update: min -

Sj

2

ADMM

Y —

1
Separable and local LARS problems

Processing (2)

2, (Ml + S s-Ducs + )

Comment: One
iteration of this
procedure
amounts to ...
the very same
patch-averaging
algorithm we
started with

42



Two Comments About this Scheme

P | \ichael Elad
¥ The Computer-Science Department
The Technion

43



Partial Summary of CSC

o What we have seen so far is a new way to analyze the global
CSC model using local sparsity constraints. We proved:

%@ Uniqueness of the solution for the noiseless problem
% Stability of the solution for the noisy problem

% Guarantee of success and stability of both OMP and BP

We obtained guarantees and algorithms that operate locally
while claiming global optimality

%\? We mentioned briefly the mater of learning the model (i.e.
dictionary learning for CSC), and presented our competitive
approach which is based on simple local steps

P | \ichael Elad
¥ The Computer-Science Department 44
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Michael Elad

Part |l
Going Deeper

(JMLR 2017)
Convolutional Neural Networks Analyzed via

Convolutional Sparse Coding
Vardan Papyan, Yaniv Romano and Michael Elad

The Computer-Science Department

The Technion
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CSC and CNN

o There seems to be a connection between CSC and CNN:
= Convolutional structure
= Data driven models
= RelU is a sparsifying operator

o We propose a principled way to analyze CNN

o But first, a short review of CNN...

Michael Elad
The Computer-Science Department
The Technion
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CNN

RelLU

=

[LeCun, Bottou, Bengio and Haffner ‘98]

/1
[Krizhevsky, Sutskever & Hinton ‘12]
[Simonyan & Zisserman ‘14]

[He, Zhang, Ren & Sun ‘15] ReLU(z) = max(Thr, z)

Michael Elad
The Computer-Science Department 47
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CNN

Y my m,
VN VN VN
N
Vo W,
V1o

Notice that we do not include a pooling stage:

o Can be replaced by a convolutional layer with increased stride without
loss in performance [Springenberg, Dosovitskiy, Brox & Riedmiller ‘14]

o The current state-of-the-art in image recognition does not use it
[He, Zhang, Ren & Sun ‘15]

P | Michael Elad
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Mathematically...

(Y, {W;},{b;}) = ReLU(b, + W, ReLU(b; + W/X))

Z, e RV™2 b, € RV™2 W, € RVMm2xNm

=GN <

Michael Elad

T

nimy

m;

The Computer-Science Department

The Technion

b, € RN™

&3 ReLU<

o

W:'LI‘ E RNT’TllXN

Ny

YeRN

&3

49
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Training Stage of CNN

o Consider the task of classification

o Given a set of signals {Yj}j and their corresponding labels
{h(Yj)}j, the CNN learns an end-to-end mapping

(Y, AW {b3)

—

True label Classifier Output of last layer

* | Michael Elad
¥ The Computer-Science Department 50
The Technion



Back to CSC

XeRY D; e RY*V™ T, € RV™ We propose to impose the
same structure on the
representations themselves

mq

| no .

[

Fl € [Rle D2 € Rlemez FZ € IRNmZ

) mj )
nimq |_|_|_
(CSC) assumes an I
inherent structure is — my {___

present in natural
signals

|
|
|
|
|
|
|
|
Convolutional sparsity :
|
|
|
|
|
|
|
|

) Multi-Layer CSC (ML-CSC)

P | \ichael Elad
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Intuition: From Atoms to Molecules

XeR' D, e RVNm T, € BYE RV™M*Nm2 T, € RV™:

aii]] LI

 —
 —

o We can chain the all the dictionaries

into one effective dictionary i

Detr = D1DoD3 - D — X = Degr Ik
o This is a special Sparseland (indeed, a CSC) model, however:

= A key property in this model: N

\/

sparsity of intermediate representations N
I, € RV™

= The effective atoms are combinations of the
original atoms — molecules — cell — tissue — body-part ...

P | \ichael Elad
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A Small Taste: Model Training (MNIST

Michael Elad
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A Small Taste: Model Training (CFAR)

D, (5x5x3)

EMESMETL

FEFa3agEE"™
FEuEENEEN
RHUEEEDEE
FANEOEEEE

METMHAMEH |

BIAENEETAN
FEFTOAEN

CIFAR Dictionary:
* D,: 64 filters of size 5x5x3, stride of 2
dense
* D,: 256 filters of size 5x5x64, stride of 2
82.99 % sparse
* D,: 1024 filters of size 5x5x256
90.66 % sparse

Michael Elad

D;D, (13x13)
EMR DS eEFCEGEEm

PeslArPEADNERCEE Lpese

A DT WY =
FETENENEONENFEASR
AMAFERN ST EAVE IO
DOFENAFNECOL ENE ..
NN ANFASNE M
ANSEWELFWFEFENEGY
FaTOFatyspEYIaP2

The Computer-Science Department
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D,D,D, (32x32)

EACSOmSNILENSOESSESHN P2 -1 SONER
FhuPI ez ™Sl aaZic s SARIRNUETZRND
NEsTSamUNmRisSESEE <OEMNE LHRORAE LS
EE Y IETESNELrEN RS SEEUTE JNSESR
R CERNENE T L. A ENE SN = NSS O ER
E-DII-EIEE!HIHIDI (LF FAR P IO S & )
_ %ﬁi"l!'ﬂ‘lﬁ!iﬂﬂﬂ]ﬂ'ﬂli

B = XN -

Eglﬂ-ﬂliimﬁﬂ.!‘l!!llﬂﬂ..'!l-mlnﬂ
I.I-Ilﬁiﬁ!.!lﬂlﬂlll:l.ll RNEEORTL
BE¥E sEvoRrpuFETcasPRSASs BONSEEall
laglnﬂ!SI!llEIilEIﬂlIﬂIIEBIHSDI.

L]
ﬂ-lrlllﬂ-HIIEDIEIlﬂEIE-ﬂIIEIIﬂA
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ML-CSC: Pursuit

o Deep—Coding Problem (DCP, ) (dictionaries are known):
[ X=D,I ITL 1,00 < 24 )

— S <
Flnd {F]}]K_l S.t. < Fl .DZFZ ||r2||0,oo -~ )\2

k-1 = DxlIk Tkl 0 < Ak J

o Or, more realistically for noisy signals,
(lY-D.Lill, <€ ITL 115,00 < A1)

= S <
Flnd {F]}]Kzl S. t. < Fl .DZI‘Z ||F2||O,oo — }\.2

| Tk-1 =DxIx  lTkllo,e < Ax)

P | \ichael Elad
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A Small Taste: Pursuit

Michael Elad
The Computer-Science Department
The Technion

I
94.51 % sparse .

X=D1F1
X=D1 D2 Fz

X=D1 DZ D3 F3
IS

199.52% sparse
i (30nn2)

99.51% sparse
(5 nnz)
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ML-CSC: Dictionary Learning

o Deep-Learning Problem (DLP,):

(v, _ j j
HY] D1F1H2 Sg rl 0,00
K I’ = p,r? o
Find {Di}izl S.t. < 2 271 2 0,00
. . . . s.
| ) )
| Tk= Dyl Ik .

J=1

o While the above is an _ .
unsupervised DL, a mn Z t (h(Y])' U, DCP*(Y;, {Di}))
J

. . {Di};(:l'U
supervised version can t
be envisioned The deepest representation I'k

P | \ichael Elad
¥ The Computer-Science Department
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ML-CSC: The Simplest Pursuit

o The simplest pursuit algorithm (single-layer case) is
the THR algorithm, which operates on a given input signal Y by:

10 | | | |
Y = Dl"_|_E 8_—H5(z)—Hard *
. Sp(z) - Soft o
and I is sparse 611 « 82(3) - Soft Nonnegative . T
1 »
9 ¥
[]*—n-—#—-n—w—-n—u—*—w—w—«—#—l-
~ _ T ) —2
[ =Pg(DTY b
—6
—8
—10

-10 -8 -6 -4 -2 0 2 4 6 8 10

* | Michael Elad
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Consider this for Solving the DCP

o Layered thresholding (LT):
Estimate I'; via the THR algorithm

AL

T, =P, (D'ZF ?Bl(DIY)) <

i 1\
(DCP{): Find {rj}j=1 s.t.

(IY =Dyl <€
I =D,I,

e

Estimate I, via the THR algorithm

o Forward pass of CNN:
f(X) = ReLU(b, + W, ReLU(b; + W]Y))

L k-1 = DIk

T 13,00 < 21 )
IT2116,00 < 22

~"

ITll3 oo < A

Michael Elad
The Computer-Science Department
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Consider this for Solving the DLP

o DLP (supervised™): .
e tnresnolds 1or
min Ze(h(v,-), U, DCP*(Y},{D;}))  the bcP shout

(D U also learned

Estimate via the layered THR algorithm

o CNN training:
in o 2, (h(%), U7 (%, (Wi (b))

J

The problem solved by the .tralnlng stage * Recall that for the ML-CSC,
of CNN and the DLP are equivalent as well, there exists an unsupervised
assuming that the DCP is approximated via avenue for training the

. . dictionaries that has no
the layered thresholding algorithm simple parallel in CNN

P | \ichael Elad
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Theoretical Path

i
. 4 K
+ {Fi}i=1
X Y

Armed with this view of a generative source model, we
may ask new and daring questions

e |
Michael Elad
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Theoretical Path: Possible Questions

o Having established the importance of the ML-CSC model and its
associated pursuit, the DCP problem, we now turn to its analysis

o The main questions we aim to address:

l.  Uniqueness of the solution (set of representations) to the (DCP;)?
Il. Stability of the solution to the (DCP;%) problem ?

lll. Stability of the solution obtained via the hard and soft layered THR
algorithms (forward pass) ?

IV. Limitations of this (very simple) algorithm and alternative pursuit?

V. Algorithms for training the dictionaries {D;}i~; vs. CNN ?
VI. New insights on how to operate on signals via CNN ?

:



Uniqueness of (DCP,)

(DCP,): Find a set of representations satisfying
X=D;I} I 115,00 < 24

Ih = D,I5 I 015,00 < Az

Is this set
unique?

Ik = DIk ITkll5 0 < Ak

Theorem: If a set of solutions {I;}~, is found for
(DCP,) such that:

1 1
Ll SA<=(1+
” 1”0, 1 2( M(Dl))
then these are necessarily the unique solution to
the DCP problem

»

The feature maps CNN aims to recover are unique

P | Michael Elad
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Stability of (DCP§

o The problem we aim to solve is this

Is this set

stable?

o Suppose that we manage to solve the
(DCP;‘f) and find a feasible set of
representations satisfying all the conditions

o The question we pose is How close is T} to I;?

Michael Elad
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Stability of (DCPy)

Theorem: If the true representations {I; le satisfy

1 1
ITi 115,00 < 24 <—<1+ )

2 u(D;)
» then the set of solutions {ri}:; obtained by solving

this problem (somehow) must obey

ITi — Fi”i < & for
_ £,
11— - Dy

Ef = 4E%, &

The problem CNN aims to solve is Observe this annoying effect

. .. of error magnification as we
stable under certain conditions asn
dive into the model

i
Y .




Stability of Layered-THR

»

1

u(Dy) [rPaX| | p(py) [rPax|
then the layered hard THR (with the proper thresholds) will
find the correct supports and

IriT -5, <l

rinin i—
Theorem: If ||T}|[3 o < %(1 4t | |> 1 g

where we have defined €, = [|E||; , and

el = J INIE - (£t + p() (IG5 o — 1)IT2%])

Problems:

1. Contrast

2. Error growth

3. Error even if no noise

o
Y .

The stability of the forward pass is guaranteed
if the underlying representations are
sparse and the noise is bounded




Better Pursuit ?

o (DCP, ) Noiseless: Find a set of representations satisfying
X=DI} 1T 16,00 = A4
I = D,I, IT2115.00 < A2
k1 = Dxlk  [ITkllo,0 < 2k

o So far we proposed the Layered THR:
T _ T T T
Ty = Pp, (DK .Pg, (D] ?Bl(l)lx)))

o The motivation is clear — getting close to what CNN use

o However, this is the simplest and weakest pursuit known in
the field of sparsity — Can we offer something better?

P | \lichael Elad
¥ The Computer-Science Department
The Technion
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Layered Basis Pursuit (Noiseless)

o Our Goal: (DCP,): Find a set of representations satisfying

X — D1F1
I’ = D,I;

'k = DIk  ITkllg 0 < Ak

IT11[0,00 < A1
”FZ”S,OO = )\2

o We can propose a Layered Basis Pursuit Algorithm:

[ BP = rrllin Il [l; s.t

P !
[ = min Il st

P | \ichael Elad
¥ The Computer-Science Department
The Technion

X=D1 Fl

I‘1LBP = DI

Deconvolutional

networks

[Zeiler, Krishnan, Taylor
& Fergus ‘10]
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Guarantee for Success of Layered BP

o As opposed to prior work in CNN, we can do far more than just
proposing an algorithm — we can analyze its terms for success:

»

Theorem: If a set of representations {I}}i~, of the
Multi-Layered CSC model satisfy

1 1
||F-||SOOSA-<—(1+ )
0 b2 u(D;)

then the Layered BP is guaranteed to find them

o Consequences:

* The layered BP can retrieve the underlying representations in the noiseless
case, a task in which the forward pass fails to provide

= The Layered-BP’s success does not depend on the ratio || /|rax|

:



Layered Basis Pursuit (Noisy)

1
1

LBP _ [LBP 2
| mln ” —D2F2||2+7\2”F2||1
° MM.WW"“””M;:M% .
Y _;,@sm;%%éw% E For Y = DF + E, |f
We can invoke a §%;%fiﬂ” 1 1
result we have seen 115,00 < (1 + (D))
already, referring to then we are guaranteed that
the BP for the CSC [——
model: “Allz o — <75 EL ”r”g,oo

P | \ichael Elad
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Stability of Layered BP

Theorem: Assuming that |[|Tj[[3 o

<5(1+5)

then for correctly chosen {A;}iv, we are guaranteed that

1. The support of I‘{‘BP is contained in that of I

» 2. The erroris bounded: ||I‘LBP I‘-S

< g, Where

,00

el = 7.5 |E||2 HJ

3. Every entryinIj greater than

eh/ I will be found

I,

0,00

I

Problems:

1 AV~ TP V-X 3
W \JTICT UJIL

2. Error growth

3 I:IFV'I\V‘ o\ WraV'ay I'F " Wal
. =TT UT CWCVLOTT 11 11TV 11vViIioGo
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Layered lterative Thresholding

Layered BP: I‘]-LBP = mln || LBP D]Tj||§ T EJ'||FJ'”1 ]

. ~

Layered Iterative Soft-Thresholding:

Note that our suggestion
implies that groups of layers
share the same dictionaries

P | \ichael Elad
¥ The Computer-Science Department
The Technion

rt-14 _DT( . —D:I¢ 1)

t _
¢ I‘J' — ‘SEj/Cj ( j

1 ~ — ]
lerl y )

Can be seen as a recurrent neural network
[Gregor & LeCun ‘10]

* ¢ > 0.5 Apax(DID)
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Time to Conclude
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This Talk

Independent « Local
~CSC was shown to patch-processing Sparsity

A il
N, storgswith new insights

Convolutional
Neural
Networks

Novel View of
Convolutional i |
Sparse Coding P |l

o

S

Multi-Layer
Convolutional The underlying idea:

SErSE el Modeling the data source

in order to be able to
We i iy iskicotpanalyze
Rfdd ' ithms’ performance
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A Massive Open Online Course: COmIﬂg Up

eX Courses v Programs v Schools & Partners About ~ ‘ Search: Sign In

Sparse Representations in Signa
and Image Processing

Learn the theory, tools and algorithms of sparse
representations and their impact on signal and image
processing.

Start the Professional Certificate Program
Courses in the Professional Certificate Program

Starts on October 25, 2017

Instructors

V %

Yaniv Romano Michael Elad




fun t| °"“"°Elen0|smg

perfo mance t patches /4
;r:;g;z:gt: IC I arysg%rgxnrona ion

lxelsestlmatlon

“eS'H'EI S|s| Qt A 1- atrIX

P probabllrty
Eam— r&gf(’tg?é codmg
Sparse- Lamri‘on_zue heory COI m ") f“ r_ l
random pmsmt
CompreSSIOn
sparsity
thresholdlng
: redundant . boundsupport S|gna|
f<\ = \\ \ L )
inpaintin value nO|Se
shrirrm)kage ° OMP MAP
ocal linear
wavelie

More on these (including the slides and the relevant papers) can be
found in http://www.cs.technion.ac.il/~elad
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