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   This Lecture   

Sparse and Redundant 
Representations 

… will review nearly 20 years of tremendous                
progress in the field of  

Theory 
Numerical 
Problems 

Applications 
(image processing and 

Machine Learning) 
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   This Lecture   

Michael Elad 
The Computer-Science Department  
The Technion 

… is Built of Three Parts: 
 

Part 1: A General Introduction to Sparseland: 

Presenting this Model and its Importance 
 

Part 2: Diving In: Theory and Applications  
in Sparse Representations 

 
Part 3: Relation to Deep-Learning:  

A Tale of three models: Sparseland CSC CNN 
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What This Field is All About ? 
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   The Answer is Not Trivial 

Depends whom you ask, as the researchers in this field 
come from various disciplines:  
 

o Mathematics 
o Applied Mathematics 
o Statistics 
o Signal & Image Processing: CS, EE, Bio-medical, … 
o Computer-Science Theory 
o Machine-Learning  
o Physics (optics)  
o Geo-Physics 
o Physics - Astronomy 
o Psychology (neuroscience) 
o … 
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   My Answer (For Now) 

A New Transform 
for Signals 

o We are all well-aware of the idea of transforming a signal and 
changing its representation 

o We apply a transform to gain something – efficiency, simplicity 
of the subsequent processing, speed, … 

o There are many known transforms: Fourier, DCT, Hadamard, 
Wavelets and its descendants, and more  

o Our message: There is a new transform in town, based on 
sparse and redundant representations 
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   Transforms – The General Picture  

Invertible Transforms  

Linear 

Unitary 

Separable 

Structured 
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n 

 x

n 
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   Redundancy? 

o In a redundant transform, the 
representation vector is longer 
(m>n) 

o This can still be done while 
preserving the linearity of the 
transform:  
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   Sparse & Redundant Representation  

m 

n 



x

n 

D
o We shall keep the linearity 

of the inverse-transform 

o As for the forward (computing  
 from x), there are infinitely  
many possible solutions 

o We shall seek the sparsest of  
all solutions – the one with  the fewest non-zeros  

o This makes the forward transform a highly  
non-linear operation  

o The field of sparse and redundant representations       
is all about defining clearly this transform, solving  various theoretical 
and numerical issues related to it, and showing how to use it in practice 

Sounds … Boring !!!!         
Who cares about                 
a new transform? 



What This Field is All About ? 
 

Take 2 
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   Lets Take a Wider Perspective 
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3D Objects 

Medical Imaging 

o We are surrounded by various  
sources of massive information 

o All these sources have some internal 
structure, which can be exploited 

o This structure, when identified, is the  
engine behind our ability to process this data 

Voice Signals 

Stock Market Biological Signals 

Videos 

Text Documents 

Radar Imaging 

Matrix Data 

     Social Networks 

Traffic info 

Still Images 
Seismic Data 

http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=qP6sc5F9CF2crM&tbnid=vNTslHLOR1tk1M:&ved=0CAUQjRw&url=http://www.vizago.ch/reconstructions.php&ei=weWNUZKQJ4KXtAbP_4GoDA&bvm=bv.46340616,d.Yms&psig=AFQjCNHmhI1dTCia7cxM-GT7LAi5PuR5gQ&ust=1368340276449695
http://24.149.138.246/_media/newsletters/USA/USA_Edition6_December09_files/Volume_Imaging.jpg
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   Model? 
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Effective removal of noise (and many other tasks)       
relies on an proper modeling of the signal 

Fact 1: 
This signal 

contains AWGN 
ℕ(0,1)  

 

Fact 2:  
The clean signal 

is believed to  
be PWC 
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   Which Model to Choose? 

Michael Elad 
The Computer-Science Department  
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o A model: a mathematical description 
of the underlying signal of interest, 
describing our beliefs regarding its 
structure 

o The following is a partial list of  
commonly used models for images 

o Good models should be simple while 
matching the signals 

Principal-Component-Analysis 

   Gaussian-Mixture 

Markov Random Field 

   Laplacian Smoothness 

DCT concentration 

   Wavelet Sparsity 

Piece-Wise-Smoothness 

   C2-smoothness 

Besov-Spaces 

   Total-Variation 

Beltrami-Flow 

 

Simplicity 
 

 

Reliability 
 

Models are almost always imperfect 
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   An Example: JPEG and DCT 

178KB – Raw data 

4KB 

8KB 

12KB 20KB 24KB 

How & why does it works?  

Discrete 
Cosine 
Trans. 

The model assumption: after DCT, the top left coefficients 
to be dominant and the rest zeros 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Research in Signal/Image Processing 

Model 
Problem 

(Application) 
Signal 

Numerical 
Scheme 

A New 
Research 
Work (and 
Paper) is 
Born 

The fields of signal & image processing are 
essentially built of an evolution of models  
and ways to use them for various tasks 
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   Again: What This Field is all About?  

A Data Model and 
its Use 

o Almost any task in data processing requires a model –  
true for denoising, deblurring, super-resolution, inpainting, 
compression, anomaly-detection, sampling, recognition, … 

o There is a new model in town – sparse and redundant 
representation – we will call it  

                                        Sparseland  
 

o This is a flexible model that can adjust to the signal 

Michael Elad 
The Computer-Science Department  
The Technion 



Machine 
Learning 

18 

 

Mathematics 
Signal   

Processing 

   A New Emerging Model 

Sparseland 

Wavelet 
Theory 

Signal 
Transforms 

Multi-Scale 
Analysis 

Approximation 
Theory 

Linear  
Algebra 

Optimization 
Theory 
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Denoising 

Interpolation 

Prediction 
Compression 

Inference (solving 
inverse problems) 

Anomaly 
detection Clustering 

Summarizing 

Sensor-Fusion Source-
Separation 

Segmentation 

Recognition 

Semi-Supervised 
Learning 

Identification 

Classification 

Synthesis 



A Closer Look at the  

Sparseland  
Model 

Michael Elad 
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   The Sparseland  Model 

o Task: model image patches of                                               
size 8×8 pixels 

o We assume that a dictionary of  
such image patches is given,  

containing 256 atom  images 

o The Sparseland  model assumption:                          

every image patch can be                                              
described as a linear                                    

combination of few atoms 

α1 α2 α3 

Σ 

Michael Elad 
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   The Sparseland  Model 

o We start with a 8-by-8 pixels patch and 
represent it using 256 numbers         
   – This is a redundant representation 

o However, out of those 256 elements in the 
representation, only 3 are non-zeros  
    – This is a sparse representation 

o Bottom line in this case: 64 numbers 
representing the patch are replaced by 6  
(3 for the indices of the non-zeros, and 3  
for their entries) 

Properties of this model:                 
 Sparsity and Redundancy 

α1 α2 α3 

Σ 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Chemistry of Data 

α1 α2 α3 

Σ 

Michael Elad 
The Computer-Science Department  
The Technion 

o Our dictionary stands for the Periodic Table 
containing all the elements 

o Our model follows a similar rationale:                                            

Every molecule is built of  few elements 

We could refer to the Sparseland   
model as the chemistry of information: 
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   Model vs. Transform ?  

m 

n 


x

n 

D
o The relation between the                                                         

signal x and its representation 
 is the following linear  
system, just as described earlier 

o We shall be interested in                                                          
seeking sparse solutions to  
this system when deploying the sparse and redundant 
representation model 

o This is EXACTLY the transform we discussed earlier 

Bottom Line: The transform and the model we 
described above are the same thing, and their 
impact on signal/image processing is profound 

and worth studying  
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   Difficulties with Sparseland 

o Problem 1: Given an image patch, how                            

can we find its atom decomposition? 

o A simple example:  

 There are 2000 atoms in the dictionary 

 The signal is known to be built of 15 atoms 
 

                                                      possibilities  
 

 If each of these takes 1nano-sec to test,                                      this 
will take ~7.5e20 years to finish !!!!!!  

o Solution: Approximation algorithms 

α1 α2 α3 

Σ 

2000
2.4e 37

15

 
  

 

Michael Elad 
The Computer-Science Department  
The Technion 



α1 α2 α3 

Σ 

25 

   Difficulties with Sparseland 
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o Various algorithms exist. Their theoretical analysis  
guarantees their success if the solution is sparse enough 

o Here is an example – the Iterative Reweighted LS: 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Difficulties with Sparseland 

α1 α2 α3 

Σ 
o Problem 2: Given a family of signals, how do                      

we find the dictionary to represent it well? 

o Solution: Learn! Gather a large set of                                
signals (many thousands), and find the                                                          
dictionary that sparsifies them 

o Many such algorithms were developed  
in the past 10 years (e.g., K-SVD), and  
their performance is surprisingly good 

o This is only the beginning of a new                                            
era in signal processing …  

Michael Elad 
The Computer-Science Department  
The Technion 
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   Difficulties with Sparseland 

α1 α2 α3 

Σ 
o Problem 3: Is this model flexible enough to                   

describe various sources? e.g., Is it good 
for images? Audio? Stocks? …  

o General answer: Yes, this model is                                
extremely effective in representing                                    
various sources 

 Theoretical answer: Relation to other  
known models 

 Empirical answer: we will see in this                                                       
course, several image processing                                              
applications, where this model leads to                                                     
the best known results (benchmark tests) 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Difficulties with Sparseland ? 

o Problem 1: Given an image patch, how   
can we find its atom decomposition ? 

o Problem 2: Given a family of signals,                                    
how do we find the dictionary to                                        
represent it well? 

o Problem 3: Is this model flexible                                      
enough to describe various sources?                                   
E.g., Is it good for images? audio? …  

α1 α2 α3 

Σ 

Michael Elad 
The Computer-Science Department  
The Technion 



Who Works on This ? 
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   Who is Working in This Field ?   

Donoho, Candes – Stanford  

Tropp – CalTech 

Baraniuk, W. Yin – Rice Texas 

Gilbert, Vershynin, Plan– U-Michigan 

Gribonval, Fuchs – INRIA France  

Starck – CEA – France  

Vandergheynst – EPFL Swiss 

Rao, Delgado  – UC San-Diego 

Do, Bresler – U-Illinois 

Davies – Edinburgh UK 

Elad, Zibulevsky, Bruckstein, Eldar, Segev, Mendelson – Technion 

Goyal – MIT 

Mallat – ENS Paris 

Nowak, Willet – Wisconsin 

Coifman – Yale 

Romberg – GaTech 

Lustig, Wainwright – Berkeley 

Sapiro, Daubachies – Duke 

Friedlander  – UBC Canada 

Tarokh – Harvard 

Cohen, Combettes – Paris VI 

Michael Elad 
The Computer-Science Department  
The Technion 

Donoho 
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http://www.gpretro.ch/images/logo_epfl.gif
http://sopac.ucsd.edu/images/ucsdLogo2.gif
http://www.uiuc.edu/
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http://web.mit.edu/engineering
http://www.association-tremplin.org/userfiles/image/polytechnique.png
http://www.yesatyale.org/asia/index_files/yale.jpg
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http://images.google.com/imgres?imgurl=http://www.bearspage.info/h/tra/ca/bc/va/i/se/ubclogo.jpg&imgrefurl=http://www.bearspage.info/h/tra/ca/bc/va/sea1.html&usg=__-kzDejFEJCAt1Tt3Oct1XKZG9nM=&h=800&w=600&sz=46&hl=iw&start=3&um=1&tbnid=3tFXiNB8shjqPM:&tbnh=143&tbnw=107&prev=/images?q=University+british+columnbia&hl=iw&rls=com.microsoft:he:IE-SearchBox&rlz=1I7SNYR_en&sa=N&um=1
http://www.prostatemrimagedatabase.com/Images/Harvard_shield-Medical.png
http://www.ed.ac.uk/
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   David L. Donoho 

o An extremely talented mathematician and 
statistician from the Stanford Statistics 
Department 
 

o He is among the few                                            
who founded this field          
sparse and redundant                                   
representations and its                                            
spin-off topic of                                           
compressed sensing 
 

o In 2013 he won the                                             
Shaw prize (“the          
Nobel of the east”) 

Michael Elad 
The Computer-Science Department  
The Technion 
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   This Field is rapidly GROWING …  

Michael Elad 
The Computer-Science Department  
The Technion 

o Searching ISI-Web-of-Science (December 26th 2016):  
 Topic= ((spars* and (represent* or approx* or solution or  
           estimation) and (dictionary or pursuit or convex)) or  
                      (compres* and sens* and spars*)) 

    led to 6354 papers (it was ~4000 papers a year ago) 
 

o Here is how                                                                                             
they spread                                                                                 
over time                                                                           
(with ~146178 
citations): 



33 Michael Elad 
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   Which Countries?   
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   Books in this field 

o The following book was published in 2010, and it has 
served as the textbook for my advanced course 

o Since then, it has been adopted by other courses 
worldwide (Stanford, Duke, Oxford, IISc, UCSD, … ) 

o In the past 8-9 years, many other books were published 
in this and closely related fields 

Michael Elad 
The Computer-Science Department  
The Technion 



35 

   A Massive Open Online Course : Coming Up 

Michael Elad 
The Computer-Science Department  
The Technion 



Several Examples:  
Applications Leveraging  

this Model  

Michael Elad 
The Computer-Science Department  
The Technion 
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   Image Separation [Starck, Elad, & Donoho (`04)] 

The original image 
- Galaxy SBS 0335-

052 as 
photographed by 

Gemini 

The texture part 
spanned by global 

DCT 

The residual 
being additive 
noise 

The Cartoon part 
spanned by wavelets  
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   Inpainting [Starck, Elad, and Donoho (‘05)] 

Outcome Source 
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  Original                            Noisy (12.77dB)            Result  (29.87dB) 

   Denoising [Mairal, Elad & Sapiro, (‘06)] 

  Original                       Noisy (20.43dB)             Result  (30.75dB) 
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   Poisson Denoising [Giryes & Elad (‘14)]  

        Original                           Noisy (peak=2)        Result (PSNR=24.76dB)  

      Original                    Noisy (peak=0.2)        Result (PSNR=24.16dB)  

Michael Elad 
The Computer-Science Department  
The Technion 
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   Deblurring [Elad, Zibulevsky and Matalon, (‘07)] 

original                               Measured              Restored (right):  ISNR=7.0322 dB 
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   Blind Deblurring [Shao and Elad (‘14)] 

Michael Elad 
The Computer-Science Department  
The Technion 
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Result   Original               80% missing 

   Inpainting (Again!) [Mairal, Elad & Sapiro, (‘06)] 

  Original            80% missing Result 



Lets take a closer look at 
this model, clarify what 
we mean by the theory 

behind it, and show 
several of the algorithms 

it leads to for handling 
image processing tasks 

Michael Elad 
The Computer-Science Department  
The Technion 
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So, what next? 

   To Summarize 

Sparse and redundant 
representations & trained 
dictionaries are drawing a 
considerable attention in 
recent years, due to the 
elegant theory and the 
impressive applications 

Which   
model to 
choose? 

An effective (yet simple) 
model for signals/images is 

key in getting better 
algorithms for various 

applications 



45 Michael Elad 
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More on these (including the slides and the relevant papers) can be 
found in http://www.cs.technion.ac.il/~elad  
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   Agenda 

Part I – Denoising 
by Sparse & 
Redundant 

Representations 
Part III – Dictionary Learning         

& The K-SVD Algorithm  

Part II – Theoretical & 
Numerical Foundations 

Part IV  – Back to Denoising … and Beyond – 
handling stills and video denoising & inpainting, 

demosaicing, super-res., and compression 

Part V  –
Summary & 
Conclusions 

 Sparsity and Redundancy are valuable and well-
founded tools for modeling data.  

 When used in image processing, they lead to 
state-of-the-art results.  

In this part we 
will show that  

Michael Elad 
The Computer-Science Department  
The Technion 
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Denoising by                               
Sparse & Redundant                 

Representations 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Noise Removal? 

Our story begins with image denoising … 

Remove 
Additive 

Noise ? 
o Important: (i) Practical application; (ii) A convenient platform (being the 

simplest inverse problem) for testing basic ideas in image processing, and  
(iii) If you can denoise, you can do much more – see Peyman’s talk  

o Many Considered Directions: Partial differential equations, Statistical 
estimators, Adaptive filters, Inverse problems & regularization,           
Wavelets, Example-based techniques, Sparse representations, … 

Michael Elad 
The Computer-Science Department  
The Technion 
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 Relation to 
measurements 

   Denoising by Energy Minimization  

Thomas Bayes                                    
1702 - 1761 

Prior or regularization 
y : Given measurements   

x : Unknown to be recovered 

     
2

2

1
f x x y G x

2

Many of the proposed image denoising algorithms are related to the 
minimization of an energy function of the form 

o This is in-fact a Bayesian point of view, adopting the 
Maximum-A-posteriori Probability (MAP) estimation. 

o Clearly, the wisdom in such an approach is within the 
choice of the prior – modeling the images of interest.  

Michael Elad 
The Computer-Science Department  
The Technion 
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   The Evolution of G(x) 

During the past several decades we have made all sort of 
guesses about the prior G(x) for images:    

• Hidden Markov Models, 

• Compression algorithms as priors, 

• Fields of Experts 

• … 

 
2

2
G x x 

Energy 

 
2

2
G x x  L

Smoothness 

 
2

G x x 
W

L

Adapt+ Smooth 

   G x x  L

Robust 
Statistics 

 
1

G x x  

Total-Variation 

 
1

G x x  W

Wavelet 
Sparsity 

 
0

G x   

Sparse & 
Redundant 

 Dxfor

Michael Elad 
The Computer-Science Department  
The Technion 
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   Sparse Modeling of Signals  

M m 

n 

D
A fixed Dictionary 

o Every column in     
D (dictionary) is     
a prototype signal (atom) 

o The vector  is 
generated  
randomly with few 
(say L) non-zeros  
at random  
locations and with 
random values 

A sparse  
& 
random 
vector 



α

x

n 

o We shall refer to this 

model as Sparseland 
Michael Elad 
The Computer-Science Department  
The Technion 
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o Simple: Every generated   
signal is built as a linear 
combination of few atoms   
from our dictionary D 

o Rich: A general model: the 
obtained signals are a union     
of many low-dimensional 
Gaussians 

o Familiar: We have been    
using this model in other 
context for a while now 
(wavelet, JPEG2000, …) 

   Sparseland  Signals are Special 

Multiply 
by D 

αDx

M 
α

Michael Elad 
The Computer-Science Department  
The Technion 
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-1 +1 

1 

  pf x x

x

   Sparse & Redundant Rep. Modeling? 

m pp

jp
j 1

  

1

1


2

2


p

p

p 1





0p

p

p





As p  0 we  get 
a count of the 
non-zeros in the 
vector 

0

0


x where is sparse  DOur signal   
model is thus:  

0
x where L   D

Michael Elad 
The Computer-Science Department  
The Technion 
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2

02

1
argmin y s.t. Lˆ

2

x̂ ˆ



     

 

D

D

D-y =                 -           

   Back to the MAP Energy Function  

o L0 norm is effectively                                                                  
counting the number of                                                                  
non-zeros in  

o The vector  is the                                                            
representation (sparse/redundant)                                                     
of the desired                                                                                               
signal x 

 

o The core idea: One cannot find a small set of atoms to 
represent the noise and thus it is “thrown” to the residual. 
 We obtain an effective projection of the noise onto a 
very low-dimensional space, thus getting denoising effect 

x

Michael Elad 
The Computer-Science Department  
The Technion 



11 

   Wait! There are Some Issues  

o Numerical Problems: How should we solve or approximate the 
solution of the problem 

 

            or                                                   
 

                                                                                 ? 

o Theoretical Problems: Is there a unique sparse representation? If 
we are to approximate the solution somehow, how close will we 
get?  

o Practical Problems: What dictionary D should we use, such that all 
this leads to effective denoising? Will all this work in applications? 

2

02
min y s.t. L


   D

2 2

0 2
min s.t. y


    D

2

0 2
min y


    D

Michael Elad 
The Computer-Science Department  
The Technion 



12 

   To Summarize So Far … 

We proposed a model 
for signals/images 

based on sparse and 
redundant 

representations 

What do    
 we do?   

Image denoising (and 
many other problems 
in image processing) 
requires a model for 

the desired image 

Great!       
No? 

There are some issues:  

1. Theoretical 

2. How to approximate? 

3. What about D? 

Michael Elad 
The Computer-Science Department  
The Technion 
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Theoretical & Numerical 
Foundations  

Michael Elad 
The Computer-Science Department  
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   Lets Start with the Noiseless Problem 

0
ArgMin s.t. xˆ


    D

We aim to find the signal’s 
representation:  

Suppose we build a signal 
by the relation 

xD

̂  Why should we necessarily get                  ? 
 
It might happen that eventually                          . 

0 0
̂  

Uniqueness 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Matrix “Spark” 

Rank  = 4 

Spark = 3 

 
 
 
 
 
 

1 0 0 0 1

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

Example: 

Donoho & E. (‘02)  

Definition: Given a matrix D, =Spark{D} is the smallest          
number of columns that are linearly dependent  

* In tensor decomposition, 
Kruskal defined something 
similar already in 1989 

* 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Uniqueness Rule 

0
ArgMin s.t. xˆ


    D

Suppose this problem has been solved somehow 

This result implies that if       generates signals 
using “sparse enough” , the solution of the 
above will find it exactly 

M 

If we found a representation that satisfy  
 

 

Then necessarily it is unique (the sparsest). 

0
ˆ

2


 

Uniqueness 

 

Donoho & E. (‘02)  

Michael Elad 
The Computer-Science Department  
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   Our Goal   

This is a 
combinatorial 

problem, proven to 
be NP-Hard!  

Here is a recipe for solving this problem: 

Set L=1  
Gather all the 
supports {Si}i        

of cardinality L    
LS error ≤ ε2 ? 

2 2

0 2
min s.t. y


    D

Solve the LS problem  

 

for each support                                   

  i
2

2
Spsup.t.symin 


D

Set L=L+1  

There are (m) 
such supports 

L 

Yes No 

Done Assume: m=2000, L=15 (known!), 1 nano-sec per each LS 

        We shall need ~7.5e20 years to solve this problem !!!!! 

Michael Elad 
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   Lets Approximate    

2 2

0 2
min s.t. y


    D

Greedy methods 

Build the solution one 
non-zero element at a 

time 

Relaxation methods 

Smooth the L0 and use 
continuous optimization 

techniques 

Michael Elad 
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The Technion 
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   Relaxation – The Basis Pursuit (BP) 

0 2
Min s.t. y


    D

Instead of solving 


 21

y.t.sMin D

Solve Instead 

o This is known as the Basis-Pursuit (BP) [Chen, Donoho & Saunders (’95)] 

o The newly defined problem is convex (quad. programming) 

o Very efficient solvers can be deployed: 

 Interior point methods [Chen, Donoho, & Saunders (‘95)] [Kim, Koh, Lustig, Boyd, & D. 
Gorinevsky (`07)] 

 Sequential shrinkage for union of ortho-bases [Bruce et.al. (‘98)] 

 Iterative shrinkage [Figuerido & Nowak (‘03)] [Daubechies, Defrise, & De-Mole (‘04)]                     
[E. (‘05)] [E., Matalon, & Zibulevsky (‘06)] [Beck & Teboulle (`09)] …  

Michael Elad 
The Computer-Science Department  
The Technion 



20 

   Go Greedy: Matching Pursuit (MP) 



o Next steps: given the previously found atoms, 
find the next one to best fit the residual 

o The algorithm stops when the error              is below the 
destination threshold. 

o The MP is one of the greedy 
algorithms that finds one atom 
at a time [Mallat & Zhang (’93)] 

o Step 1: find the one atom that  
best matches the signal 

o The Orthogonal MP (OMP) is an improved version that re-
evaluates the coefficients by Least-Squares after each round. 

2
yD

Michael Elad 
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   Pursuit Algorithms 

There are various algorithms designed for approximating the 
solution of this problem:  

2 2

0 2
min s.t. y


    D

o Greedy Algorithms: Matching Pursuit, Orthogonal Matching Pursuit (OMP), 
Least-Squares-OMP, Weak Matching Pursuit, Block Matching Pursuit [1993-
today]. 

o Relaxation Algorithms: Basis Pursuit (a.k.a. LASSO), Dnatzig Selector & 
numerical ways to handle them [1995-today]. 

o Hybrid Algorithms: StOMP, CoSaMP, Subspace Pursuit, Iterative Hard-
Thresholding [2007-today]. 

o … 

Michael Elad 
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   The Mutual-Coherence 

o The Mutual-Coherence  is the largest off-diagonal entry in 
absolute value 

DT 

= D 

DTD 

o Compute 

o The Mutual-Coherence is a property of the dictionary  
(just like the “Spark”). In fact, the following relation  can be 
shown:  

  


1
1

Assume 
normalized 

columns 

Michael Elad 
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   BP and MP Equivalence (No Noise) 

Given a signal x with a representation                 , 

assuming that                                  , BP and MP    

are guaranteed to find the sparsest solution.  

   

x  D

 
0
0.5 1 1   Donoho & E. (‘02)  

Gribonval & Nielsen (‘03) 

Tropp (‘03)  

Temlyakov (‘03) 

 

Equivalence 

o MP and BP are different in general (hard to say which is better) 

o The above result corresponds to the worst-case, and as such, it is too 
pessimistic 

o Average performance results are available too, showing much better 
bounds [Donoho (`04)] [Candes et.al. (‘04)] [Tanner et.al. (‘05)] [E. (‘06)]  

[Tropp et.al. (‘06)] … [Candes et. al. (‘09)] 

0
ArgMin s.t. xˆ


    D

Michael Elad 
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   BP Stability for the Noisy Case  

o For =0 we get a weaker version of the previous result 

o This result is the oracle’s error, multuiplied by C·log m 

o Similar results exist for other pursuit algorithms (Dantzig Selector, Orthogonal 
Matching Pursuit, CoSaMP, Subspace Pursuit, …) 

Given a signal                     with a representation 

satisfying                           and a white Gaussian  

Noise                           , BP will show   stability, i.e.,  

0
1 / 3  

Ben-Haim, Eldar & E. (‘09) 

Stability 
vy  D

2 2
BP 2 0

Const( ) logm̂         

 2v ~ N 0, I

* With very high    
   probability 

* 

2

1 2
min y


    D

Michael Elad 
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   To Summarize So Far … 

We proposed a 
model for 

signals/images 
based on sparse 
and redundant 
representations 

What do    
we do?   

Image denoising 
(and many other 

problems in image 
processing) requires 

a model for the 
desired image 

We have seen that there  
are approximation  

methods to find the sparsest 
solution, and there are 
theoretical results that 

guarantee their success. 

Problems? 

What           
next?   

The 
Dictionary D 
should be 

found 
somehow !!! 

Michael Elad 
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Dictionary Learning:                         
The K-SVD Algorithm 

Michael Elad 
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2 2

0 2

1
ˆargmin s.t. y and xˆ ˆ

2

        D D

   What Should D Be?  

Our Assumption: Good-behaved Images                                      
have a sparse representation 

D should be chosen such that it sparsifies the representations 

The approach we will take for 
building D is training it, based 

on Learning from  
Image Examples  

One approach to choose D is from a 
known set of transforms (Steerable 

wavelet, Curvelet, Contourlets, 
Bandlets, Shearlets …) 

Michael Elad 
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   Dictionary Learning: Problem Setting 

Multiply 
by D 

αDx

M 
α

L
0
α

Given these P examples and a 
fixed size [nm] dictionary D: 

1. Is D unique?  

2. How would we find D? 

 P
1jj

X


Michael Elad 
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Each example is  a  
linear combination  of  

atoms from D 

   Measure of Quality for D 

D  X A 

Each example has a sparse 
representation with no more 

than L atoms 

P
2

jj j2 0,
j 1

Min x s.t. j, L


    
D A

D
[Field & Olshausen (‘96)] 

[Engan et. al. (‘99)] 

[Lewicki & Sejnowski (‘00)] 

[Cotter et. al. (‘03)] 

[Gribonval et. al. (‘04)] 

[Aharon, E. & Bruckstein (‘04)] 
[Aharon, E. & Bruckstein (‘05)] 
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   K–Means For Clustering  

D Initialize           
D 

Sparse Coding 
Nearest Neighbor 

Dictionary 
Update 

Column-by-Column by  Mean 
computation over the 

relevant examples 

X
T 

Clustering: An extreme sparse representation   

Michael Elad 
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   The K–SVD Algorithm – General  

D Initialize           
D 

Sparse Coding 
Use Matching Pursuit 

Dictionary 
Update 

Column-by-Column by   

SVD computation over 
the relevant examples 

[Aharon, E. & Bruckstein (‘04,‘05)] 

X
T 

Michael Elad 
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   K–SVD: Sparse Coding Stage 

D 

X
T 

P
2

jj j2 0
j 1

Min x s.t. j, L


    
A

D

D is known!  For 
the jth item           

we solve  

2

j 02
Min x s.t. L


   D

Solved by                            
 A Pursuit Algorithm 

Michael Elad 
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   K–SVD: Dictionary Update Stage 

D 
We refer only to the 

examples that use the 
column dk ?dk 

Fixing all A and D apart 
from the kth column, and 
seek both dk and the kth 
column in A to better fit 

the residual! 

We should solve: 

2

F

T
kk

,d
dMin

kk

E


Michael Elad 
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   A Synthetic Experiment 

D 

Create A 2030 random dictionary  
with normalized columns 

Generate 2000 signal examples with  
3 atoms per each and add noise 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

R
e
la

ti
v
e
 A

to
m

s
 F

o
u
n
d

MOD performance

K-SVD performance

Results 

D 

Train a dictionary using the  
KSVD and MOD and compare  
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   Improved Dictionary Learning   

P
2

jj j2 0,
j 1

Min x s.t. j, L


    
D A

D

MOD Algorithm 

Fix D and 
update A 

K-SVD Algorithm 

Fix D and update A 

Fix A and 
update D  

for j=1:1:m 
  -  Fix A & D apart from the    

j-th atom its coefficients 
 -  Update dj and its coef. in A 

end  

Michael Elad 
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   Improved Dictionary Learning   

Improved Algorithm  
[Smith & E. 2013] 

Fix D and update A 

Fix the supports in 
A and update both 

D and the non-
zeros 

 
2

F,
Min s.t.
D A

DA X A M 0

Second Stage 

This can be done in two ways: 
1. Apply several rounds of the atoms’ 

update in the K-SVD, or  
2. Extend the MOD to update the                 

non-zero elements in A  

P
2

jj j2 0,
j 1

Min x s.t. j, L


    
D A

D
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   To Summarize So Far … 

We proposed a model 
for signals/images 

based on sparse and 
redundant 

representations 

What do    we 
do?   

Image denoising (and 
many other problems 
in image processing) 
requires a model for 

the desired image 

We have seen approximation 
methods that find the sparsest 
solution, and theoretical results 

that guarantee their success. 
We also saw a way to learn D 

Problems? 

What           
next?   

Will it all work 
in 

applications?  

Michael Elad 
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Back to Denoising …                  
and Beyond – Combining it All 

Michael Elad 
The Computer-Science Department  
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o While the Sparseland model is clear and well-defined, there are 
various ways to bring it into an actual algorithm in applications 

o The bad news: It is not 
obvious how to turn this 
model into a successful 
algorithm 

o The good news: As we are 
about to see, there is a lot 
of room for ingenuity & 
originality in designing 
algorithms in image 
processing  

   Bringing Sparseland to Applications 

Michael Elad 
The Computer-Science Department  
The Technion 

Multiply 
by D 

αDx

M 
α
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Our prior 

Extracts a patch in 
the (i,j) location 

o The K-SVD is reasonable for low-dimension 
signals (n in the range 10-400). As n grows, 
the complexity and the memory 
requirements of the K-SVD are prohibitive 

o So, how should large images be handled? 

ij ij

22

ijij2 2x,{ } ij

ij 0

1
x̂ ArgMin x y x

2

s.t. L



     

 

 R D

   From Local to Global Treatment 

D n 

m 

o The solution: Force shift-invariant sparsity – operate on patches 
of size n-by-n (n=8) in the image, including overlaps  

Michael Elad 
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Option 1: 

o Use a database of images 

o We tried that, and it works fine (~0.5-1dB                 
below the state-of-the-art) 

Option 2:  

o Use the corrupted image itself !!   

o Simply sweep through all patches of size                     
n-by- n (overlapping blocks) 

o Image of size 10002 pixels         ~106                  
examples to use – more than enough 

o This works much better! 

   What Data to Train On? 

Michael Elad 
The Computer-Science Department  
The Technion 



Complexity of this algorithm: O(N2×K×L×Iterations) per pixel. For N=8, L=1, K=256, 

and 10 iterations, we need 160,000 (!!) operations per pixel.  

43 

K-SVD 

ij ij

221

ij ijij2 02 2x,{ } , ij

x̂ ArgMin x y x s.t. L


       
D

R D

x=y and D known 

L.t.s

xMin

0
0

2

2ijij






DR

Compute ij  per patch  

 

 

 

using the matching pursuit 

x and ij known 

 
 ij

2

2ijxMin DR

Compute D to minimize  

 

 

using SVD, updating one 
column at a time 

D and ij known 





























 



ij
ij

T
ij

1

ij
ij

T
ij

yIx DRRR

Compute x by 

 

 

which is a simple averaging of 
shifted patches 

   K-SVD Image Denoising 

D? 

Michael Elad 
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Initial dictionary (overcomplete 
DCT) 64×256 

   Image Denoising (Gray) [E. & Aharon (‘06)] 

Source 

Result 30.829dB 

The obtained dictionary after   
10 iterations 

Noisy image  

20

 

o The results of this algorithm compete favorably with the 
state-of-the-art 

o This algorithm can be extended by using joint sparse 
representation on the patches, introducing a non-local 
force in the denoising, thus leading to improved results 
[Mairal, Bach, Ponce, Sapiro & Zisserman (‘09)] 

o What about EPLL ? … 
 

Michael Elad 
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   EPLL Improvement [Sulam and E. (‘15)] 

o The algorithm we proposed 
updates x only once at the end  

o Why not repeat the whole 
process several times?   

o The rationale: The sparse 
representation model should be 
imposed on the patches of the 
FINAL image. After averaging, 
this is ruined  

Updates 
the 

Output 
image 

Updates the 
sparse repr. 

Updates the 
Dictionary 

ij ij

221

ij ijij2 02 2x,{ } , ij

x̂ ArgMin x y x s.t. L


       
D

R D
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   EPLL Improvement [Sulam and E. (‘15)] 

o Expected Patch Log Likelihood (EPLL) is an algorithm that came 
to fix this problem [Zoran and Weiss, (’11)] , originally in the context 
of a GMM prior 

o An extension of EPLL to Sparsland is proposed in  

[Sulam and E. (‘15)]. The core idea is: 

 After the image has been computed, we proceed the iterative process, 
and apply several such overall rounds of updates 

 Sparse coding must be done with a new threshold, based on the 
remaining noise in the image. This is done by evaluating the noise level 
based on the linear projections (disregarding the support detection by 
the OMP) 

 This algorithm leads to state-of-the-art results, with 0.5-1dB 
improvement over the regular K-SVD algorithm shown before 

Michael Elad 
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   EPLL Improvement [Sulam and E. (‘15)] 

Noisy image   
has σ=25 

 
KSVD PSNR  

31.42 dB 
 

EPLL PSNR  
31.83 dB 

Michael Elad 
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   Denoising (Color) [Mairal, E. & Sapiro (‘08)] 

 When turning to handle color images, the main 
difficulty is in defining the relation between the 
color layers – R, G, and B.  

 The solution with the above algorithm is simple 
– consider 3D patches or 8-by-8 with the 3 
color layers, and the dictionary will detect the 
proper relations.  

  Original               Noisy (20.43dB)      Result  (30.75dB) 

Michael Elad 
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   Denoising (Color) [Mairal, E. & Sapiro (‘08)] 

  Original                     Noisy (12.77dB)            Result  (29.87dB) 

Our experiments lead to state-of-the-art denoising results, 
giving ~1dB better results compared to [Mcauley et. al. (‘06)] which 

implements a learned MRF model (Field-of-Experts) 

Michael Elad 
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      Original                                        Noisy (σ=25)                    Denoised (PSNR=27.62) 

      Original                                       Noisy (σ=15)                     Denoised (PSNR=29.98) 

   Video Denoising [Protter & E. (‘09)] 

When turning to handle video, one could improve 
over the previous scheme in three important ways: 

1. Propagate the dictionary from one frame to 
another, and thus reduce the number of 
iterations 

2. Use 3D patches that handle the motion 
implicitly; and 

3. Motion estimation and               
compensation can and should be avoided 
[Buades, Col, and Morel (‘06)] 

Our experiments lead to state-of-the-art video 
denoising results, giving ~0.5dB better results on 

average compared to [Boades, Coll & Morel (‘05)]  
and comparable to [Rusanovskyy, Dabov, & Egiazarian (‘06)] 

Michael Elad 
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   Low-Dosage Tomography [Shtok, Zibulevsky & E. (‘10)] 

Original FBP result with 
high dosage 
 
PSNR=24.63dB 

FBP result with low 
dosage (one fifth) 

 
PSNR=22.31dB 

Denoising of the 
sinogram and post-
processing (another 
denoising stage) of 
the reconstruction 
 
PSNR=26.06dB 

 In Computer-Tomography (CT) reconstruction, an image is 
recovered from a set of its projections  

 

 In medicine, CT projections are obtained by X-ray, and it 
typically requires a high dosage of radiation in order to 
obtain a good quality reconstruction 

 

 A lower-dosage projection implies a stronger noise 
(Poisson distributed) in data to work with 

 

 Armed with sparse and redundant representation 
modeling, we can denoise the data and the final 
reconstruction … enabling CT with lower dosage 

Michael Elad 
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   Image Inpainting – The Basics  

o Assume: the signal x has been created                                        
by x=Dα0 with very sparse α0 

o Missing values in x imply                                                                   
missing rows in this linear                                                    
system 

o By removing these rows, we get             

 

o Now solve 

o If α0 was sparse enough, it will be the solution of the above 

problem! Thus, computing Dα0 recovers x perfectly 

0 x D

= 

x D

0
Min s.t. x


  D
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   Side Note: Compressed-Sensing 

o Compressed Sensing is leaning on the very same principal, leading to 
alternative sampling theorems. 



o Assume: the signal x has been created by x=Dα0 with very sparse α0.  

o Multiply this set of equations by the matrix Q which reduces the 
number of rows. 

o The new, smaller, system of equations is 

x x   QD Q D 

o If α0 was sparse enough, it will be the sparsest solution of the new 

system, thus, computing Dα0 recovers x perfectly. 

o Compressed sensing focuses on conditions for this to happen, 
guaranteeing such recovery. 

Michael Elad 
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   Inpainting Formulation [Mairal, E. & Sapiro (‘08)] 



       
ij ij

2 21

ij ijij2 022x,{ } , ij

x̂ ArgMin x y x s.t. L
D

R DM

The matrix M is a mask 
matrix, obtained by the 
identity matrix with 
some of its rows 
omitted, corresponding 
to the missing samples 

= 

M x y 
Michael Elad 
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   Inpainting Formulation [Mairal, E. & Sapiro (‘08)] 



       
ij ij

2 21

ij ijij2 022x,{ } , ij

x̂ ArgMin x y x s.t. L
D

R DM

~K-SVD 

x=y and D known 

 
2

ij ij
2

j

0

0

iMin x

s.t. L


   

 

R DM

Compute ij  per patch  

 

 

 

using the matching pursuit 

x and ij known 

 
2

ij
2

j

ij

i

Min x


  R DM

Compute D to minimize  
 

 

using SVD, updating one 
column at a time 

D and ij known 

1

T

ij ij

ij

T

ijij

ij

T

T

x

y



 
   
 

 
   

 





R RM M

R DM

Compute x by 

 

 

 

 

which is a again a simple 
averaging of patches 
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   Inpainting [Mairal, E. & Sapiro (‘08)] 

For the Peppers image  

This is a more challenging case, 
where the DCT is not a suitable 

dictionary.  
• For Redundant DCT we get 

RMSE=16.13, and  
• For K-SVD (15 iterations) we get 

RMSE=12.74 DCT Result          K-SVD Result 

Michael Elad 
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RMSE for  
75% 
missing  

RMSE for 
50% 
missing  

RMSE for  
25%            
missing 

Alg. 

29.70 19.61 14.55 DCT: No-overlap 

18.18 11.55 9.00 DCT: Overlap 

17.74 10.05 8.1 K-SVD 

Original Image       Masked Image 
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Result 

Our experiments lead to state-of-the-art inpainting results 

  Original               80% missing 

   Inpainting [Mairal, E. & Sapiro (‘08)] 

  Original          80% missing Result 
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   Inpainting [Mairal, E. & Sapiro (‘08)] 

  Original            80% missing     Result 

The same can be done for video, very much like the denoising 
treatment: (i) 3D patches, (ii) no need to compute the 

dictionary from scratch for each frame, and (iii) no need for 
explicit motion estimation 
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Our experiments lead to state-of-the-art demosaicing           
results, giving ~0.2dB better results on average,                  

compared to [Chang & Chan (‘06)] 

   Demosaicing [Mairal, E. & Sapiro (‘08)] 

o Today’s cameras are sensing only one                        
color per pixel, leaving the rest for 
interpolated 

o Generalizing the inpainting scheme to                    
handle demosaicing is tricky because                             
of the possibility to learn the mosaic                       
pattern within the dictionary 

o In order to avoid “over-fitting”, we handle 
the demosaicing problem while forcing 
strong sparsity and applying only few 
iterations 
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   Image Compression [Bryt and E. (‘08)] 

o The problem: Compressing photo-ID images 

o General purpose methods (JPEG, JPEG2000)  
do not take into account the specific family 

o By adapting to the image-content (PCA/K-SVD), 
better results could be obtained 

o For these techniques to operate well, train                                        dictionaries 
locally (per patch) using a 
training set of images is required 

o In PCA, only the (quantized) coefficients are stored,                                   whereas 
the K-SVD requires storage of the indices                                       as well. 

o Geometric alignment of the image is very helpful                                                and 
should be done [Goldenberg, Kimmel, & E. (‘05)] 

Michael Elad 
The Computer-Science Department  
The Technion 



61 

   Image Compression 

Training set (2500 images) Detect main features and warp the 
images to a common reference (20 

parameters)  O
n

 th
e train

in
g set 

Divide the image into disjoint 15-
by-15 patches. For each compute 

mean and dictionary  

Per each patch find the operating 
parameters (number of atoms L, 

quantization Q)  

Warp, remove the mean from each 
patch, sparse code using L atoms, 

apply Q, and dewarp 

On the        
test image 
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   Image Compression Results 

Results    
for 820 

Bytes per    
each file 

11.99 

10.83 

10.93 

10.49 

8.92 

8.71 

8.81 

7.89 

8.61 

5.56 

4.82 

5.58 

Original 

JPEG 

JPEG-2000 

Local-PCA 

K-SVD 
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Results    
for 550 

Bytes per    
each file 

15.81 

14.67 

15.30 

13.89 

12.41 

12.57 

10.66 

9.44 

10.27 

6.60 

5.49 

6.36 

   Image Compression Results 

Original 

JPEG 

JPEG-2000 

Local-PCA 

K-SVD 
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Results    
for 400 

Bytes per    
each file 

18.62 

16.12 

16.81 

12.30 

11.38 

12.54 

7.61 

6.31 

7.20 

? 

? 

? 

   Image Compression Results 

Original 

JPEG 

JPEG-2000 

Local-PCA 

K-SVD 

Michael Elad 
The Computer-Science Department  
The Technion 



65 

550 bytes   
K-SVD results 

with and 
without 

deblocking 

   Deblocking the Results [Bryt and E. (`09)] 

K-SVD (6.60) K-SVD (11.67) K-SVD (6.45) K-SVD (5.49) 

Deblock (6.24) Deblock (11.32) Deblock (6.03) Deblock (5.27) 
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   Super-Resolution [Zeyde, Protter, & E. (‘11)]  

o Given a low-resolution image, we desire to enlarge it while 
producing a sharp looking result. This problem is referred to 
as “Single-Image Super-Resolution” 

o Image scale-up using bicubic interpolation is far from being 
satisfactory for this task 

o A brilliant and very different sparse and redundant 
representation technique was proposed [Yang, Wright, Huang, 

and Ma (’08)] for solving this problem, by training a coupled-
dictionaries for the low- and high res. images 

o We extended and improved their algorithms and results 

Michael Elad 
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Ideal 
Image 

Given Image 

SR Result 
PSNR=16.95dB 

Bicubic 
interpolation 

PSNR=14.68dB 
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   Super-Resolution – Results (1) 

The training image: 
717×717 pixels, 
providing a set of 
54,289 training patch-
pairs. 
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Given image 

Scaled-Up (factor 2:1) using the proposed algorithm, 
PSNR=29.32dB  (3.32dB improvement over bicubic) 
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   Super-Resolution – Results (2) 
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        The Original                    Bicubic Interpolation                   SR result  
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   Super-Resolution – Results (2) 
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        The Original                    Bicubic Interpolation                   SR result  
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   Super-Resolution – Results (2) 
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   Poisson Denoising 

peak 0.1

+ =  
 

2

Y X V

V ~ 0, I

 

 


y

x

i,j
i,j

x
P y | x e

y!

peak max x

peak 100
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   Poisson Denoising [Salmon et. al., 2011] [Giryes et. al., 2013] 

o Anscombe transform converts Poisson distributed noise into an 

approximately Gaussian one, with variance 1 using the following 

formula [Anscombe, 1948]: 

 

o However, this is of reasonable accuracy only if peak>4. 

o For lower peaks (poor illumination), we use the patch-based 

approach with dictionary learning, BUT … in the exponent 

domain: 

   
Anscombe

3
f y 2 y

8

        
   

         0 0

x expx

where L where L

DD
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   Poisson Denoising – Results (1) 

Original                   Noisy (peak=1) 

Dictionary learned atoms: 

Result (PSNR=22.59dB)  
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   Poisson Denoising – Results (2) 

        Original                      Noisy (peak=2)             Result (PSNR=24.76dB)  

      Original                     Noisy (peak=0.2)          Result (PSNR=24.16dB)  
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   Other Applications? 

 Poisson Denoising & Inpainting 

 Blind deblurring 

 Audio inpainting  

 Dynamic MRI reconstruction 

 Clutter reduction in ultrasound  

 Single image interpolation 

 Anomaly detection  

  … 

Michael Elad 
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Summary and                 
Conclusion 

Michael Elad 
The Computer-Science Department  
The Technion 



We keep working on:  

 Improving the model 

 Improve the dictionaries  

 Demonstrate on other 
applications  

 …  
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   In this Part we Have Seen that … 

In our work on we cover 
theoretical, numerical, and 
applicative issues related to 

this model and its use in 
practice 

Sparsity, Redundancy,      
and the use of examples   

are important ideas that can 
be used in designing better 

tools in signal/image 
processing  

What            
next? 

Michael Elad 
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Many of the results we  
got focused on patch-

based methods – it is time 
to understand better this 
choice and its limitations, 

with the hope to  
lead to new insights  

Next we 
focus on … 

What do     
we do?   
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More on these (including the slides and the relevant papers) can be 
found in http://www.cs.technion.ac.il/~elad  
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Welcome to Sparseland 
 

Part 3: A Tale of Three Models 
SparselandCSCCNN 

Michael Elad 
The Computer Science Department 

The Technion – Israel Institute of Technology 

Haifa 32000, Israel 

 

2017 Summer School on Signal Processing Meets Deep Learning 
September 4-8, 2017 

The research leading to these results has been received funding 
from the European union's Seventh Framework Program 

(FP/2007-2013) ERC grant Agreement ERC-SPARSE- 320649 
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In This Talk 

2 

CNN 
Convolutional 

Neural 
Networks 

Sparseland 
Sparse 

Representation 
Theory 

The Underlying Idea 
  

Generative Modeling  
of data sources enable  

o A systematic algorithm development, &   
o A theoretical analysis of their performance  

* 

* Only CNN?     
What about other 
architectures ? 

CSC 
Convolutional 

Sparse  
Coding 
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The Results Presented 

3 

… are the fruit of a joint work with 

Vardan Papyan Yaniv Romano Jeremias Sulam 
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Part I 
Motivation and Background 

4 
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Our Starting Point: Image Denoising 

Many (thousands) image denoising algorithms  
have been proposed over the years, some of 
which are extremely effective  

5 

Original Image 
𝐗 

White Gaussian Noise 

𝐄 

Noisy Image 
𝐘 

Denoising 
Algorithm 

𝐘 𝐗  

Topic=image and 

noise and (removal 

or denoising) 
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Leading Image Denoising Methods… 

are built upon powerful patch-based local models: 
 
 
 
 
 
 
 
 
Popular local models:  GMM 
   Sparse-Representation 
   Example-based 
   Low-rank 
   Field-of-Experts &  
   Neural networks  
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Patch-Based Image Denoising  
o K-SVD: sparse representation modeling of image patches 

[Elad & Aharon, ‘06] 

o BM3D: combines sparsity and self-similarity 
[Dabov, Foi, Katkovnik & Egiazarian ‘07] 

o EPLL: uses GMM of the image patches 
[Zoran & Weiss ‘11] 

o MLP: multi-layer perceptron 
[Burger, Schuler & Harmeling ‘12] 

o NCSR: non-local sparsity with centralized coefficients 
[Dong, Zhang, Shi & Li ‘13] 

o WNNM: weighted nuclear norm of image patches 
[Gu, Zhang, Zuo & Feng ‘14] 

o SSC–GSM: nonlocal sparsity with a GSM coefficient model 
[Dong, Shi, Ma & Li ‘15] 

 
7 
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Recall K-SVD Denoising [Elad & Aharon, ‘06] 

10 

Noisy Image Reconstructed Image 

Denoise 
each patch 

Using OMP 

Initial Dictionary Using K-SVD 

Update the 
dictionary 

o Despite its simplicity, this is a very well-performing algorithm  
o Its origins can be traced back to Guleryuz’s local DCT recovery   
o A small modification of this method leads to state-of-the-art 

results [Mairal, Bach, Ponce, Spairo, Zisserman, `09] 
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What is Missing? 

o Over the years, many kept revisiting this algorithm  
and its line of thinking, with a clear feeling that key  
features are still lacking 

 

o What is missing? Here is what WE thought of… 
 A multi-scale treatment [Ophir, Lustig & Elad ‘11] [Sulam, Ophir & Elad ‘14] 

[Papyan & Elad ‘15] 

 Exploiting self-similarities [Ram & Elad ‘13] [Romano, Protter & Elad ‘14] 

 Pushing to better agreement on the overlaps [Romano & Elad ‘13] 
[Romano & Elad ‘15] 

 Enforcing the local model on the final patches (EPLL) [Sulam & Elad ‘15]  
 

o Eventually, we realized that the key part that is missing is  

  A Theoretical Backbone  

11 
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Missing Theoretical Backbone? 

o The core global-local model assumption on 𝐗 ∈ ℝ𝑁: 

 

 

 

oQuestions to consider: 
 Who are the signals belonging to this model? Do they exist?   

 How should we project a signal on this model (pursuit)?  

 Could we offer theoretical guarantees for this model/algorithms?  

 Could we offer a global pursuit algorithm that operates locally? 

 How should we learn 𝛀 if this is indeed the model? 
 

oAs we will see, all these questions are very relevant to recent 
developments in signal processing and machine learning 

12 

Every patch in the unknown signal is expected to have a 
sparse representation w.r.t. the same dictionary 𝛀 

∀i     𝐑i𝐗 = 𝛀𝛄i     where     𝛄i 0 ≤ k 
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Coming Up 

13 

Limitations of 
patch averaging 

Convolutional Sparse 
Coding (CSC) model 

Theoretical 
study of CSC 

Multi-Layer Convolutional 
Sparse Coding (ML-CSC) 

Convolutional neural 
networks (CNN) 

Fresh view of CNN through 
the eyes of sparsity 
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Part II 

Convolutional 
Sparse Coding 

(IEEE-TSP)  
Working Locally Thinking Globally: 

Theoretical Guarantees for Convolutional Sparse Coding 
Vardan Papyan, Jeremias Sulam and Michael Elad 

 

(ICCV 2017)  
Convolutional Dictionary Learning via Local Processing 
Vardan Papyan, Yaniv Romano, Jeremias Sulam, and Michael Elad 



Michael Elad 
The Computer-Science Department  
The Technion 

Convolutional Sparse Coding (CSC)  
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𝐗 = di

𝑚

i=1

∗ zi 

𝑚 filters convolved with their 
sparse representations  

An image held as 
a column vector 
of length 𝑁 

i-th feature-map:   
An image of the 
same size as 𝐗  
holding the sparse 
representation 
related to the i-filter 

The 𝑗-th filter of  
small support 𝑛 
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Intuitively  … 

16 

𝐗 

= =     +    +    +    +    +    +    + 

The first filter The second filter 
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oHere is an alternative global sparsity-based model formulation 

 
 

o𝐂i ∈ ℝ𝑁×𝑁 is a banded and Circulant matrix containing a single 
atom with all of its shifts 

 

 

 

 

o𝚪i ∈ ℝ𝑁 are the corresponding coefficients 

CSC in Matrix Form 

17 

𝑛 

𝑁 

𝐂i = 

𝐗 = 𝐂i𝚪i
𝑚

i=1

 =
𝐂1  ⋯  𝐂𝑚 𝚪1

⋮
𝚪𝑚

= 𝐃𝚪 
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Two Interpretations 

18 

𝐂1 𝐂2 𝐂3 = 

𝐃 = 
𝑛 

𝐃L 

𝑚 
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= 

𝐑i𝐗 = 𝛀𝛄i 

𝑛 

(2𝑛 − 1)𝑚 

𝐑i𝐗 𝑛 

(2𝑛 − 1)𝑚 

𝐑i+1𝐗 

𝛄i 𝛄i+1 

Why CSC? 
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𝐗 = 𝐃𝚪 
stripe-dictionary 

Every patch has a sparse 
representation w.r.t. to the 
same local dictionary 𝛀, 
just as we have assumed 

stripe vector 
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CSC Relation to Our Story 

oA clear global model: every patch has a sparse representation         
w.r.t. to the same local dictionary 𝛀, just as we have assumed 

oNo notion of disagreement on the patch overlaps 

oRelated to the current common practice of patch averaging (𝐑i
T  

- put the patch 𝛀𝛄i back in the i-th location of the global vector) 

𝐗 = 𝐃𝚪 =
1

𝑛
 𝐑i

T𝛀𝛄i
i

 

oWhat about the Pursuit?  
 “Patch averaging”: independent sparse coding for each patch          

 CSC: should seek all the representations together  

o Is there a bridge between the two? We’ll come back to this later … 

20 
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o This model has been used in the past [Lewicki & Sejnowski ‘99] 
 [Hashimoto & Kurata, ‘00] 

oMost works have focused on solving efficiently its associated pursuit, 
called convolutional sparse coding, using the BP algorithm 

 

 
o Several applications were demonstrated: 

 Pattern detection in images and the analysis of instruments in music 
signals [Mørup, Schmidt & Hansen ’08] 

 Inpainting [Heide, Heidrich & Wetzstein ‘15] 

 Super-resolution [Gu, Zuo, Xie, Meng, Feng & Zhang ‘15] 

oHowever, little is known regrading its theoretical aspects. Why? 
Perhaps because the regular SparsLand theory is sufficient?  

21 

𝐏1
ϵ :    min

𝚪
   𝚪 1 + λ 𝐘 − 𝐃𝚪 2

2 Convolutional 
dictionary 
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Classical Sparse Theory (Noiseless) 

22 

Definition: Mutual-Coherence: μ 𝐃 = max
i≠j

|di
Tdj| 

[Donoho & Elad ‘03] 

Theorem: For a signal 𝐗 = 𝐃𝚪, if 𝚪 0 <
1

2
1 +

1

μ 𝐃
 

then this solution is necessarily the sparsest 

[Donoho & Elad ‘03] 

Theorem: The OMP and BP are guaranteed to recover the 

true sparse code assuming that 𝚪 0 <
1

2
1 +

1

μ 𝐃
 

[Tropp ‘04], [Donoho & Elad ‘03] 

𝐏0 :    min
𝚪

   𝚪 0   s. t.   𝐗 = 𝐃𝚪 
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oAssuming that 𝑚 = 2 and 𝑛 = 64 we have that [Welch, ’74] 
 

μ 𝐃 ≥ 0.063 
 

oAs a result, uniqueness and success of pursuits is guaranteed  
as long as 

𝚪 0 <
1

2
1 +

1

μ(𝐃)
≤
1

2
1 +

1

0.063
≈ 8 

o Less than 8 non-zeros GLOBALLY are allowed!!! 
This is a very pessimistic result! 

oRepeating the above for the noisy case leads to  
even worse performance predictions 

oBottom line: Classic SparseLand Theory cannot  
provide good explanations for the CSC model 

The Need for a Theoretical Study 

23 
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The Main Questions we Aim to Address: 

I. Is the solution to this problem unique ? 

II. Can we recover the solution via a global OMP/BP ? 

𝑚 = 2 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 𝛄i 

Moving to Local Sparsity: Stripes  

24 

𝐏0,∞ :      min
𝚪

  𝚪 0,∞
s   s. t.   𝐗 = 𝐃𝚪 

ℓ0,∞ Norm:   𝚪 0,∞
s = max

i
  𝛄i 0 

  𝚪 0,∞
s  is low  all  𝛄i are sparse  every 

patch has a sparse representation over 𝛀 
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Stripe-Spark and Uniqueness 
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Definition: Stripe Spark   η∞ 𝐃 = min
𝚫

   𝚫 0,∞
s    s. t.    

𝐃𝚫 = 0
𝚫 ≠ 0

 

Theorem: If a solution 𝚪 is found for (𝐏0,∞) such that: 

𝚪 0,∞
s <

1

2
η∞ 

then it is necessarily the optimal solution to this problem 

𝐏0,∞ :      min
𝚪

  𝚪 0,∞
s   s. t.   𝐗 = 𝐃𝚪 

Theorem: The relation between the 
Stripe-Spark and the Mutual Coherence is: 

η∞ 𝐃 ≥ 1 +
1

μ 𝐃
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Uniqueness via Mutual Coherence 

26 

Theorem: If a solution 𝚪 is found for (𝐏0,∞) such that: 

𝚪 0,∞
s <

1

2
1 +

1

μ 𝐃
 

then this is necessarily the unique optimal solution to 
this problem 

This result is exciting: This and later results 
pose a local constraint for a global guarantee, 

and as such, they are far more optimistic 
compared to the global guarantees  

For 𝑘 non-zeros per 
stripe, and filters of 

length 𝑛, we get   

𝚪 0 ≅
𝑘

2𝑛 − 1
⋅ 𝑁 

non-zeros globally 

𝐏0,∞ :      min
𝚪

  𝚪 0,∞
s   s. t.   𝐗 = 𝐃𝚪 The length of 𝚪 is mN 

The length of each stripe is (2n-1)m 
 
 
We can insert N/(2n-1) stripes in each 𝚪 
without overlaps 
 
If each of those contains k non-zeros, this 
leads to the stated term 
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Recovery Guarantees 

Lets solve this problem via OMP or BP , applied globally 
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Both OMP and BP do not assume local sparsity but 
still guaranteed to succeed. One could propose 

algorithms that rely on this assumption 

𝐏0,∞ :      min
𝚪

  𝚪 0,∞
s   s. t.   𝐗 = 𝐃𝚪 

Theorem: If a solution 𝚪 of (𝐏0,∞) satisfies: 

𝚪 0,∞
s <

1

2
1 +

1

μ 𝐃
 

then global OMP and BP are guaranteed to find it 

* How about variants that would exploit the local sparsity?  

* 
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o So far, we have assumed an ideal signal 𝐗 = 𝐃𝚪 

oHowever, in practice we usually have 𝐘 = 𝐃𝚪 + 𝐄 where 𝐄 is due to 
noise or model deviations 

o To handle this, we redefine our problem as: 

 

 

o The Main Questions We Aim to Address: 
I. Stability of the solution to this problem ? 

II. Stability of the solution obtained via global OMP/BP ? 

III. Could the same recovery be done via local (patch) operations ? 

 

𝐏0,∞
ϵ :      min

𝚪
   𝚪 0,∞

s    s. t.    𝐘 − 𝐃𝚪 2 ≤ ϵ 

From Ideal to Noisy Signals 

29 
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Theorem: If the true representation 𝚪 satisfies 

𝚪 0,∞
s = k <

1

2
1 +

1

μ 𝐃
 

then a solution 𝚪  for (𝐏0,∞
ϵ ) must be close to it 

𝚪 − 𝚪
2

2
≤

4ϵ2

1 − 2k − 1 μ 𝐃
 

Stability of via Stripe-RIP 
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≤
4ϵ2

1 − 2k − 1 μ 𝐃
 

𝐏0,∞
ϵ :      min

𝚪
   𝚪 0,∞

s    s. t.    𝐘 − 𝐃𝚪 2 ≤ ϵ 𝚪  

If you carefully review this result, you should be disappointed,  
as we see a noise magnification !! Is this true ? 

 

Answer: No!!! This is a worst-case (with adversarial noise) analysis 
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Local Noise Assumption 

o Thus far, our analysis relied on the local sparsity of the underlying 
solution 𝚪, which was enforced through the ℓ0,∞ norm 

o In what follows, we present stability guarantees for both OMP and  
BP that will also depend on the local energy in the noise vector E 

o This will be enforced via the ℓ2,∞ norm, defined as: 
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𝐄 2,∞
p

= max
i
 𝐑i𝐄 2 
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Stability of OMP 
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Theorem: If 𝐘 = 𝐃𝚪 + 𝐄 where 

𝚪 0,∞
s <

1

2
1 +

1

μ 𝐃
−

1

μ 𝐃
⋅
𝐄 2,∞

p

Γmin
 

then OMP run for 𝚪 0 iterations will 

1.  Find the correct support 

2.  𝚪OMP − 𝚪 2
2 ≤

𝐄 2
2

1− 𝚪 0,∞
s −1 μ 𝐃

 



Michael Elad 
The Computer-Science Department  
The Technion 

Stability of Lagrangian BP 
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Theorem: For 𝐘 = 𝐃𝚪 + 𝐄, if λ = 4 𝐄 2,∞
p

 and 

𝚪 0,∞
s <

1

3
1 +

1

μ 𝐃
 

Then we are guaranteed that 

1.  The support of 𝚪BP is contained in that of Γ 

2.  𝚪BP − 𝚪 ∞ ≤ 7.5 𝐄 2,∞
p

 

3.  Every entry greater than 7.5 𝐄 2,∞
p

 will be found 

4.  𝚪BP is unique 

Theoretical foundation for 
recent works tackling the 

convolutional sparse coding 
problem via BP 

[Bristow, Eriksson & Lucey ‘13] 
[Wohlberg ‘14] 

[Kong & Fowlkes ‘14] 
[Bristow & Lucey ‘14] 

[Heide, Heidrich & Wetzstein ‘15] 
[Šorel & Šroubek ‘16] 

Proof relies on the work of [Tropp ‘06] 

𝐏1
ϵ :      𝚪BP = min

𝚪
   
1

2
𝐘 − 𝐃𝚪 2

2 + λ 𝚪 1 
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Global Pursuit via Local Processing 
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𝐏1
ϵ :      𝚪BP = min

𝚪
   
1

2
𝐘 − 𝐃𝚪 2

2 + ξ 𝚪 1 

= 

𝐗 = 𝐃𝚪 

𝑛 

𝑚 

𝑚 𝐃L αi 

o While CSC is a global model,  
its theoretical guarantees  
rely on local properties 

 
o We aim to show  

that this  
global-local  
relation can also  
be exploited for  
solving the global BP  
problem using only local operations 
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o 𝐬i are slices – local 
patches that overlap 
to form the full image 

Global Pursuit via Local Processing (2) 

40 

𝐏1
ϵ :      𝚪BP = min

𝚪
   
1

2
𝐘 − 𝐃𝚪 2

2 + ξ 𝚪 1 

𝐗 = 𝐃𝚪 = 𝐑i
T𝐃L𝛂i

i

 

= 

𝐗 = 𝐃𝚪 

=  𝐑i
T𝐬i

i
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𝐏1
ϵ :      𝚪BP = min

𝚪
   
1

2
𝐘 − 𝐃𝚪 2

2 + λ 𝚪 1 

min
𝛂i,𝐬i

   
1

2
𝐘 − 𝐑i

T𝐬i
i 2

2

+ λ 𝛂i 1 +
𝜌

2
𝐬i−𝐃L𝛂i + u𝑖 2

2

i

 

Turning to the local form  
and using the Augmented  

Lagrangian 

o These two problems are equivalent, and convex w.r.t their variables 

o The new formulation targets the local slices, and their sparse 
representations 

o The vectors u𝑖 are  the Lagrange multipliers for the constraints 𝐬i=𝐃L𝛂i 

Global Pursuit via Local Processing (2) 
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min
𝛂i,𝐬i

   
1

2
𝐘 − 𝐑i

T𝐬i
i 2

2

+ λ 𝛂i 1 +
𝜌

2
𝐬i−𝐃L𝛂i + u𝑖 2

2

i

 

ADMM 

min
𝐬i

   
1

2
𝐘 − 𝐑i

T𝐬i
i 2

2

+ 
𝜌

2
𝐬i−𝐃L𝛂i + u𝑖 2

2

i

 o Slice-update: 
 

                                     Simple L2-based aggregation and averaging 

 

o Sparse-Update: 
 

       Separable and local LARS problems 

Global Pursuit via Local Processing (2) 

min
𝛂i 

   λ 𝛂i 1 +
𝜌

2
𝐬i−𝐃L𝛂i + u𝑖 2

2

i

 

Comment: One 
iteration of this 

procedure 
amounts to … 
the very same 

patch-averaging 
algorithm we 

started with  



Michael Elad 
The Computer-Science Department  
The Technion 

43 

Two Comments About this Scheme  

Patches 
Slices 

Patches 
Slices 

The Proposed Scheme can be 
used for Dictionary (𝐃L) Learning 

We work with Slices  
and not Patches  

 

Slice-based DL algorithm using  
standard patch-based tools, leading  

to a faster and simpler method, 
compared to  existing methods  

 

 

Patches extracted from natural  
images, and their corresponding  
slices. Observe how the slices are  

far simpler, and contained by  
their corresponding patches 

[Wohlberg, 2016]                    Ours 



Michael Elad 
The Computer-Science Department  
The Technion 

Partial Summary of CSC 

oWhat we have seen so far is a new way to analyze the global    
CSC model using local sparsity constraints. We proved: 

 

o    Uniqueness of the solution for the noiseless problem 
 

o    Stability of the solution for the noisy problem 
 

o    Guarantee of success and stability of both OMP and BP 
 

o We obtained guarantees and algorithms that operate locally 
while claiming global optimality 
 

o We mentioned briefly the mater of learning the model (i.e. 
dictionary learning for CSC), and presented our competitive 
approach which is based on simple local steps 

44 
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Part III 
Going Deeper 

(JMLR 2017)  
Convolutional Neural Networks Analyzed via 

Convolutional Sparse Coding  
Vardan Papyan, Yaniv Romano and Michael Elad 
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CSC and CNN 

o There seems to be a connection between CSC and CNN: 

 Convolutional structure 

 Data driven models 

 ReLU is a sparsifying operator 
 

oWe propose a principled way to analyze CNN 
 

oBut first, a short review of CNN… 

46 
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CNN 
ReLU ReLU 

ReLU z = max Thr, z  

𝐘 

[LeCun, Bottou, Bengio and Haffner ‘98] 
[Krizhevsky, Sutskever & Hinton ‘12] 
[Simonyan & Zisserman ‘14] 
[He, Zhang, Ren & Sun ‘15] 
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CNN 

Notice that we do not include a pooling stage: 
o Can be replaced by a convolutional layer with increased stride without  

loss in performance [Springenberg, Dosovitskiy, Brox & Riedmiller ‘14] 

o The current state-of-the-art in image recognition does not use it 
[He, Zhang, Ren & Sun ‘15] 
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𝑁 

𝑁 

𝐘 𝑚1 

𝑁 

𝑁 

𝑛0 

𝑛0 𝐖1 

𝑚2 

𝑁 

𝑁 
𝑛1 

𝑛1 

𝐖2 
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𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐗  𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐗  𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐘  𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐘  𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐘  𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐘  𝑓 𝐗, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐘  𝑓 𝐘, 𝐖i , 𝐛i = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐘  

Mathematically... 
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𝐙2 ∈ ℝ𝑁𝑚2 

𝑚1 

ReLU ReLU 

𝐖2
T ∈ ℝ𝑁𝑚2×𝑁𝑚1 

𝑛1𝑚1 
𝑚2 

𝐖1
T ∈ ℝ𝑁𝑚1×𝑁 

𝑚1 
𝑛0 

𝐛1 ∈ ℝ𝑁𝑚1 

𝐛2 ∈ ℝ𝑁𝑚2 

𝐘 ∈ ℝ𝑁 
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min
𝐖i , 𝐛i ,𝐔

 ℓ h 𝐘j , 𝐔, 𝑓 𝐘j, 𝐖i , 𝐛i
j

 min
𝐖i , 𝐛i ,𝐔

 ℓ h 𝐘j , 𝐔, 𝑓 𝐘j, 𝐖i , 𝐛i
j

 min
𝐖i , 𝐛i ,𝐔

 ℓ h 𝐘j , 𝐔, 𝑓 𝐘j, 𝐖i , 𝐛i
j

 min
𝐖i , 𝐛i ,𝐔

 ℓ h 𝐘j , 𝐔, 𝑓 𝐘j, 𝐖i , 𝐛i
j

 min
𝐖i , 𝐛i ,𝐔

 ℓ h 𝐘j , 𝐔, 𝑓 𝐘j, 𝐖i , 𝐛i
j

 

oConsider the task of classification 
 

oGiven a set of signals 𝐘j j
 and their corresponding labels  

h 𝐘j j
, the CNN learns an end-to-end mapping 

Training Stage of CNN 
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Output of last layer Classifier True label 
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Back to CSC 
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𝐗 ∈ ℝ𝑁 

𝑚1 

𝑛0 

𝐃1 ∈ ℝ𝑁×𝑁𝑚1 

𝑛1𝑚1 
𝑚2 

𝐃2 ∈ ℝ𝑁𝑚1×𝑁𝑚2 

𝑚1 

𝚪1 ∈ ℝ𝑁𝑚1 

𝚪1 ∈ ℝ𝑁𝑚1 

𝚪2 ∈ ℝ𝑁𝑚2 

Convolutional sparsity 
(CSC) assumes an 

inherent structure is 
present in natural 

signals 

We propose to impose the 
same structure on the 

representations themselves 

Multi-Layer CSC (ML-CSC) 
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Intuition: From Atoms to Molecules 
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𝐗 ∈ ℝ𝑁 𝐃1 ∈ ℝ𝑁×𝑁𝑚1 𝐃2 ∈ ℝ𝑁𝑚1×𝑁𝑚2 

𝚪1 ∈ ℝ𝑁𝑚1 

𝚪2 ∈ ℝ𝑁𝑚2 𝚪1 ∈ ℝ𝑁𝑚1 

o We can chain the all the dictionaries  
into one effective dictionary 
𝐃eff = 𝐃1𝐃2𝐃3 ∙∙∙ 𝐃K    𝐱 = 𝐃eff 𝚪K   

o This is a special Sparseland (indeed, a CSC) model, however:  

 A key property in this model:  
sparsity of intermediate representations 

 The effective atoms are combinations of the  
original atoms  molecules  cell  tissue  body-part  … 
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A Small Taste: Model Training (MNIST) 

53 

𝐃1𝐃2𝐃3  (28×28) 
  

MNIST Dictionary: 
•D1:  32 filters of size 7×7, with stride of 2 (dense) 
•D2: 128 filters of size 5×5×32 with stride of 1 -  99.09 % sparse 
•D3: 1024 filters of size 7×7×128 – 99.89 % sparse 

𝐃1𝐃2 (15×15) 
 

𝐃1 (7×7) 
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A Small Taste: Model Training (CFAR) 

55 

𝐃1𝐃2𝐃3  (32×32) 

CIFAR Dictionary: 
• D1: 64 filters of size 5x5x3, stride of 2 

dense 
• D2: 256 filters of size 5x5x64, stride of 2 

82.99 % sparse 
• D3: 1024 filters of size 5x5x256  

90.66 % sparse 

𝐃1𝐃2 (13×13) 𝐃1 (5×5×3) 
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ML-CSC: Pursuit 
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o Deep–Coding Problem 𝐃𝐂𝐏λ  (dictionaries are known): 

 Find   𝚪j j=1

K
    𝑠. 𝑡.   

𝐗 = 𝐃1𝚪1 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

   

 
o Or, more realistically for noisy signals,  

        Find   𝚪j j=1

K
    𝑠. 𝑡.   

𝐘 − 𝐃1𝚪1 2 ≤ ℰ 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK
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A Small Taste: Pursuit 
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Γ1 

Γ2 

Γ3 

Γ0 

Y 

99.51% sparse 
(5 nnz) 

99.52% sparse 
(30 nnz) 

94.51 % sparse 
(213 nnz) 

x=𝐃1Γ1 
 

x=𝐃1𝐃2Γ2 
 

x=𝐃1𝐃2𝐃3Γ3 

x 
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ML-CSC: Dictionary Learning  
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o Deep-Learning Problem 𝐃𝐋𝐏λ : 

         Find   𝐃i i=1
K     𝑠. 𝑡.   

𝐘j −𝐃1𝚪𝟏
j

2
≤ ℰ 𝚪𝟏

j

0,∞

s
≤ λ1

𝚪2
j
= 𝐃2𝚪𝟏

2 𝚪𝟐
j

0,∞

s
≤ λ2

⋮ ⋮

𝚪K
j
= 𝐃K𝚪K

j
𝚪K
j

0,∞

s
≤ λK

j=1

𝐽

 

 

o While the above is an  
unsupervised DL, a  
supervised version can  
be envisioned  
[Mairal, Bach & Ponce ‘12]            

The deepest representation 𝚪K 
obtained by solving the DCP 

min
𝐃i i=1

K ,𝐔
  ℓ h 𝐘j , 𝐔, 𝐃𝐂𝐏

⋆ 𝐘j, 𝐃𝐢

j
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o The simplest pursuit algorithm (single-layer case)  is  
the THR algorithm, which operates on a given input signal 𝐘 by: 

59 

ML-CSC: The Simplest Pursuit 

𝚪 = 𝒫𝛽 𝐃T𝐘  

𝐘 = 𝐃𝚪 + 𝐄  
              and 𝚪 is sparse 
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o Layered thresholding (LT): 

 

 

 

 

o Forward pass of CNN: 

 

 

𝚪 2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐘  𝚪 2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐘  𝚪 2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐘  

Consider this for Solving the DCP 

60 

Estimate 𝚪1 via the THR algorithm 

Estimate 𝚪2 via the THR algorithm 

𝐃𝐂𝐏λ
ℰ :  Find   𝚪j j=1

K
    𝑠. 𝑡.   

𝐘 − 𝐃1𝚪1 2 ≤ ℰ 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

 

The layered (soft nonnegative) 
thresholding and the forward pass 

algorithm are the very same things !!! 

𝑓 𝐗 = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐘  
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oDLP (supervised  ): 

min
𝐃i i=1

K ,𝐔
  ℓ h 𝐘j , 𝐔, 𝐃𝐂𝐏

⋆ 𝐘j, 𝐃𝐢

j

 

 

oCNN training: 

min
𝐖i , 𝐛i ,U

 ℓ h 𝐘j , 𝐔, 𝑓 𝐘, 𝐖i , 𝐛i
j

 

 

min
𝐃i i=1

K ,𝐔
  ℓ h 𝐘j , 𝐔, 𝐃𝐂𝐏

⋆ 𝐘j, 𝐃𝐢

j

 

Consider this for Solving the DLP 
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Estimate via the layered THR algorithm 

The problem solved by the training stage 
of CNN and the DLP are equivalent as well, 
assuming that the DCP is approximated via 

the layered thresholding algorithm 

* 

* Recall that for the ML-CSC, 
there exists an unsupervised 
avenue for training the 
dictionaries that has no 
simple parallel in CNN 

The thresholds for 
the DCP should   

also learned 
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𝐘 

Theoretical Path 
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M A 
𝚪 i i=1

K
 𝐗 = 𝐃1𝚪1 

𝚪1 = 𝐃2𝚪2 
⋮ 

𝚪K−1 = 𝐃K𝚪K 
 

𝚪i is 𝐋0,∞ sparse 

𝐃𝐂𝐏λ
ℰ  

  

Layered THR 
(Forward Pass) 

 

Other? 

𝐗 

Armed with this view of a generative source model, we 
may ask new and daring questions 
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Theoretical Path: Possible Questions 

oHaving established the importance of the ML-CSC model and its 
associated pursuit, the DCP problem, we now turn to its analysis 
 

o The main questions we aim to address: 
 

I. Uniqueness of the solution (set of representations) to the 𝐃𝐂𝐏λ ? 

II. Stability of the solution to the 𝐃𝐂𝐏λ
ℰ  problem ? 

 

III. Stability of the solution obtained via the hard and soft layered THR 
algorithms (forward pass) ? 

IV. Limitations of this (very simple) algorithm and alternative pursuit? 
 

V. Algorithms for training the dictionaries 𝐃i i=1
K  vs. CNN ? 

VI. New insights on how to operate on signals via CNN ? 

63 
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Uniqueness of 𝐃𝐂𝐏λ 
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Theorem: If a set of solutions 𝚪i i=1
K  is found for 

(𝐃𝐂𝐏λ) such that: 

𝚪i 0,∞
s ≤ λi <

1

2
1 +

1

μ 𝐃i
 

then these are necessarily the unique solution to 
the DCP problem 

Is this set 
unique? 

The feature maps CNN aims to recover are unique 

𝐃𝐂𝐏λ :   Find a set of representations satisfying 

             

𝐗 = 𝐃1𝚪1 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK
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o  The problem we aim to solve is this      
 

    𝐃𝐂𝐏λ
ℰ : Find a set of representations satisfying 

                    

𝐘 − 𝐃1𝚪1 2 ≤ ℰ 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

 

 
o Suppose that we manage to solve the  

𝐃𝐂𝐏λ
ℰ   and find a feasible set of   

representations satisfying all the conditions 
 

o The question we pose is How close is 𝚪 i to 𝚪i? 
 

Stability of 𝐃𝐂𝐏λ
ℰ 

65 

𝚪 i i=1

K
 

Is this set 
stable? 
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Stability of 𝐃𝐂𝐏λ
ℰ 

66 

Theorem: If the true representations 𝚪i i=1
K  satisfy 

𝚪i 0,∞
s ≤ λi <

1

2
1 +

1

μ 𝐃i
 

then the set of solutions 𝚪 i i=1

K
 obtained by solving 

this problem (somehow) must obey  

  𝚪 i − 𝚪i 2

2
≤ ℰi

2   for  

ℰ0
2 = 4ℰ2, ℰi

2 =
ℰi−1
2

1 − 2λi − 1 μ 𝐃i
 

The problem CNN aims to solve is 
stable under certain conditions 

Observe  this annoying effect 
of error magnification as we 

dive into the model 
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Stability of Layered-THR 
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Theorem: If 𝚪i 0,∞
s <

1

2
1 +

1

μ 𝐃i
⋅
𝚪 i
min

𝚪 i
max −

1

μ 𝐃i
⋅

εL
i−1

𝚪 i
max  

then the layered hard THR (with the proper thresholds) will  
find the correct supports  and  

              𝚪 i
LT − 𝚪i 2,∞

p
≤ εL

i  

where we have defined εL
0 = 𝐄 2,∞

p
 and 

εL
i = 𝚪i 0,∞

p
⋅ εL

i−1 + μ 𝐃i 𝚪i 0,∞
s − 1 𝚪 i

max  

The stability of the forward pass is guaranteed 
if the underlying representations are locally 

sparse and the noise is locally bounded 

Problems:  
1. Contrast 
2. Error growth 
3. Error even if no noise 
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Better Pursuit ? 

o  𝐃𝐂𝐏λ  Noiseless: Find a set of representations satisfying 
 

𝐗 = 𝐃1𝚪1 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

 

 

o So far we proposed the Layered THR:  
 

𝚪 𝐾 = 𝒫βK 𝐃K
T …𝒫β2 𝐃2

T 𝒫β1 𝐃1
T𝐗  

 

o The motivation is clear – getting close to what CNN use 
 

oHowever, this is the simplest and weakest pursuit known in             
the field of sparsity – Can we offer something better? 
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Layered Basis Pursuit (Noiseless) 
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𝚪2
LBP = min

𝚪2
 𝚪2 1   s. t.    𝚪1

LBP = 𝐃2𝚪2 

𝚪1
LBP = min

𝚪1
 𝚪1 1   s. t.  𝐃1𝚪1=܆      

Deconvolutional 
networks 

[Zeiler, Krishnan, Taylor 
& Fergus ‘10] 

o  Our Goal: 𝐃𝐂𝐏λ : Find a set of representations satisfying 
 

𝐗 = 𝐃1𝚪1 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

 

 

oWe can propose a Layered Basis Pursuit Algorithm:  
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oAs opposed to prior work in CNN, we can do far more than just 
proposing an algorithm – we can analyze its terms for success: 

 

 

 

 

 
 

oConsequences:  
 The layered BP can retrieve the underlying representations in the noiseless 

case, a task in which the forward pass fails to provide 

 The Layered-BP’s success does not depend on the ratio 𝚪 i
min / 𝚪 i

max  

Guarantee for Success of Layered BP 

72 

Theorem: If a set of representations 𝚪i i=1
K  of the 

Multi-Layered CSC model satisfy 

𝚪i 0,∞
s ≤ λi <

1

2
1 +

1

μ 𝐃i
 

then the Layered BP is guaranteed to find them 
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Layered Basis Pursuit (Noisy) 
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𝚪1
LBP = min

𝚪1
 
1

2
𝐘 − 𝐃1𝚪1 2

2 + λ1 𝚪1 1 

                     For 𝐘 = 𝐃𝚪 + 𝐄, if 

𝚪 0,∞
s <

1

3
1 +

1

μ 𝐃
 

then we are guaranteed that 

𝚫 2,∞
p

≤ 7.5 εL
0 𝚪 0,∞

p
 

We can invoke a 
result we have seen 
already, referring to 
the BP for the CSC 

model: 

𝚪2
LBP = min

𝚪2
 
1

2
 𝚪1

LBP − 𝐃2𝚪2 2

2
+ λ2 𝚪2 1 



Michael Elad 
The Computer-Science Department  
The Technion 

Stability of Layered BP 
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Theorem: Assuming that  𝚪i 0,∞
s <

1

3
1 +

1

μ 𝐃i
 

then for correctly chosen λi i=1
K  we are guaranteed that 

 

1.  The support of 𝚪 i
LBP is contained in that of 𝚪i 

2.  The error is bounded:  𝚪 i
LBP − 𝚪i 2,∞

p
≤ εL

i , where  

εL
i = 7.5i 𝐄 2,∞

p
 𝚪j 0,∞

p
i

j=1

 

3. Every entry in 𝚪i greater than  

εL
i / 𝚪i 0,∞

p
will be found 

Problems:  
1. Contrast 
2. Error growth 
3. Error even if no noise 
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Layered Iterative Soft-Thresholding: 
 

𝚪j
t = 𝒮ξj/cj 𝚪j

t−1 +
1

cj
𝐃j
T 𝚪 j−1 −𝐃j𝚪j

t−1  

Layered Iterative Thresholding 

75 
* ci > 0.5 λmax(𝐃i

T𝐃i) 

Layered BP:    𝚪j
LBP = min

𝚪j
 
1

2
 𝚪j−1

LBP − 𝐃j𝚪j 2

2
+ ξj 𝚪j 1

 

Can be seen as a recurrent neural network 
[Gregor & LeCun ‘10] 

t 

j 

j 

Note that our suggestion 
implies that groups of layers 
share the same dictionaries 



Michael Elad 
The Computer-Science Department  
The Technion 

Time to Conclude 
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This Talk 
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Extension of the 
classical sparse theory 
to a multi-layer setting 

Multi-Layer 
Convolutional  
Sparse Coding 

Independent  
patch-processing 

Local  
Sparsity 

Novel View of 
Convolutional  
Sparse Coding 

Convolutional 
Neural 

Networks 

A novel interpretation and 
theoretical understanding of CNN 

The underlying idea: 
Modeling the data source 

in order to be able to 
theoretically analyze 

algorithms’ performance  
We described the limitations of patch-based  
processing as a motivation for the CSC model 
We presented a theoretical study of the CSC                                             
model both in a noiseless and a noisy settings 
We mentioned several interesting connections between 
CSC and CNN and this led us to …  

… propose and analyze a multi-layer extension of  
CSC, shown to be tightly connected to CNN 

The ML-CSC was shown to 
enable a theoretical study of 
CNN, along with new insights  
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   A Massive Open Online Course : Coming Up 

Michael Elad 
The Computer-Science Department  

The Technion 



Michael Elad 
The Computer-Science Department  
The Technion 

More on these (including the slides and the relevant papers) can be 
found in http://www.cs.technion.ac.il/~elad  

Questions? 


