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ABSTRACT
Compressed sensing (CS) is a signal processing framework
for efficiently reconstructing a signal from a small number
of measurements, obtained by linear projections of the sig-
nal. Block-based CS is a lightweight CS approach that is
mostly suitable for processing very high-dimensional im-
ages and videos: it operates on local patches, employs a
low-complexity reconstruction operator and requires signifi-
cantly less memory to store the sensing matrix. In this paper
we present a deep learning approach for block-based CS, in
which a fully-connected network performs both the block-
based linear sensing and non-linear reconstruction stages.
During the training phase, the sensing matrix and the non-
linear reconstruction operator are jointly optimized, and the
proposed approach outperforms state-of-the-art both in terms
of reconstruction quality and computation time. For example,
at a 25% sensing rate the average PSNR advantage is 0.77dB
and computation time is over 200-times faster.

Index Terms— block-based compressed sensing, fully-
connected neural network, non-linear reconstruction.

1. INTRODUCTION

Compressed sensing [1, 2] is a mathematical framework that
defines the conditions and tools for the recovery of a signal
from a small number of its linear projections (i.e. measure-
ments). In the CS framework, the measurement device ac-
quires the signal in the linear projections domain, and the full
signal is reconstructed by convex optimization techniques.
CS has diverse applications including image acquisition [3],
radar imaging [4], Magnetic Resonance Imaging (MRI) [5, 6],
spectrum sensing [7], indoor positioning [8], bio-signals ac-
quisition [9], and sensor networks [10]. In this paper we
address the problem of block-based CS (BCS) [11], which
employs CS on distinct low-dimensional segments of a high-
dimensional signal. BCS is mostly suitable for processing
very high-dimensional images and video, where it operates
on distinct local patches. Our approach is based on a deep
neural network [12], which jointly learns the linear sensing
matrix and the non-linear reconstruction operator (a software
package for reproducing all results is provided in section 4).
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The contributions of this paper are two-fold: (1) It presents for
the first time, to the best knowledge of the authors, the utiliza-
tion of a fully-connected deep neural network for the task of
BCS; and (2) The proposed network performs both the linear
sensing and non-linear reconstruction operators, and during
training these operators are jointly optimized, leading to a sig-
nificant advantage compared to state-of-the-art. This paper is
organized as follows: section 2 introduces CS concepts, and
motivates the utilization of BCS for very high-dimensional
images and video. Section 3 presents the deep neural network
approach, and discusses structure and training aspects. Sec-
tion 4 evaluates the performance of the proposed approach for
compressively sensing and reconstructing natural images, and
compares it with state-of-the-art BCS methods and full-image
Total Variation-based CS. Section 5 concludes the paper and
discusses future research directions.

2. COMPRESSED SENSING OVERVIEW
2.1. Full-Signal Compressed Sensing

Given a signal x ∈ RN , an M×N sensing matrix Φ (such that
M ≪ N) and a measurements vector y = Φx, the goal of CS
is to recover the signal from its measurements. The sensing
rate is defined by R = M/N, and since R ≪ 1 the recovery of
x is not possible in the general case. According to CS theory
[1, 2], signals that have a sparse representation in the domain
of some linear transform can be exactly recovered with high
probability from their measurements: let x = Ψc, where Ψ
is the inverse transform, and c is a sparse coefficients vector
with only S ≪ N non-zeros entries, then the recovered signal
is synthesized by x̂ = Ψĉ, and ĉ is obtained by solving the
following convex optimization program:

ĉ = argmin
c′

∥∥c′
∥∥

1 subject to y = ΦΨc′, (1)

where ∥α∥1 is the l1-norm, which is a convex relaxation of the
l0 pseudo-norm that counts the number of non-zero entries of
α. The exact recovery of x is guaranteed with high probability
if c is sufficiently sparse and if certain conditions are met by
the sensing matrix and the transform.

2.2. Block-based Compressed Sensing
Consider applying CS to an image of L×L pixels: the tech-
niques described above can be employed by column-stacking



Table 1: Average reconstruction PSNR [dB] and SSIM vs. sensing rate (R=M/N): for each method and sensing rate, the result is displayed as
PSNR | SSIM (each result is the average over the 10 test images).

Method R = 0.1 R = 0.15 R = 0.2 R = 0.25 R = 0.3
Proposed (block-size = 16×16) 28.21 | 0.916 29.73 | 0.948 31.03 | 0.965 32.15 | 0.976 33.11 | 0.983
BCS-SPL-DDWT (16×16)[13] 24.92 | 0.789 26.12 | 0.834 27.17 | 0.873 28.16 | 0.898 29.02 | 0.917
BCS-SPL-DDWT (32×32)[13] 24.99 | 0.781 26.40 | 0.833 27.46 | 0.868 28.43 | 0.894 29.29 | 0.914
MH-BCS-SPL (16×16) [14] 26.01 | 0.827 27.92 | 0.888 29.46 | 0.919 30.69 | 0.939 31.69 | 0.952
MH-BCS-SPL (32×32) [14] 26.79 | 0.845 28.51 | 0.895 29.81 | 0.923 30.77 | 0.938 31.73 | 0.950
MS-BCS-SPL [15] 27.32 | 0.883 28.77 | 0.909 30.04 | 0.934 31.15 | 0.956 32.05 | 0.974
MH-MS-BCS-SPL [14] 27.74 | 0.889 29.10 | 0.919 30.78 | 0.947 31.38 | 0.960 32.82 | 0.979
TV (Full Image) [3] 27.41 | 0.867 28.57 | 0.890 29.62 | 0.909 30.63 | 0.926 31.59 | 0.939

(or row-stacking) the image to a vector x ∈ RL2
, and the

dimensions of the measurement matrix Φ and the inverse
transform Ψ are M × L2 and L2 × L2, respectively. For
modern high-resolution cameras, a typical value of L is in
the range of 2000 to 4000, leading to overwhelming mem-
ory requirements for storing Φ and Ψ: for example, with
L = 2000 and a sensing rate R = 0.1 the dimensions of Φ are
400,000× 4,000,000 and of Ψ are 4,000,000× 4,000,000.
In addition, the computational load required to solve the CS
reconstruction problem becomes prohibitively high. Follow-
ing this line of arguments, a BCS framework was proposed in
[16], in which the image is decomposed into non-overlapping
blocks (i.e. patches) of B × B pixels, and each block is
compressively sensed independently. The full-size image
is obtained by placing each reconstructed block in its lo-
cation within the reconstructed image canvas, followed by
full-image smoothing. The dimensions of the block sensing
matrix ΦB are B2R×B2, and the measurement vector of the
i-th block is given by:

yi = ΦBxi, (2)

where xi ∈ RB2
is the column-stacked block, and ΦB was

chosen in [16] as an orthonormalized i.i.d Gaussian ma-
trix. Following a per-block minimum mean squared error
reconstruction stage, a full-image iterative hard-thresholding
algorithm is employed for improving full-image quality. An
improvement to the performance of this approach was pro-
posed by [13], which employed the same BCS approach as
[16] and evaluated the incorporation of directional transforms
such as the Contourlet Transform (CT) and the Dual-tree
Discrete Wavelet Transform (DDWT) in conjunction with a
Smooth Projected Landweber (SPL) [17] reconstruction of
the full image. The conclusion of the experiments conducted
in [13] was that in most cases the DDWT transform offered
the best performance, and we term this method as BCS-
SPL-DDWT. A multi-scale approach was proposed by [15],
termed MS-BCS-SPL, which improved the performance of
BCS-SPL-DDWT by applying the block-based sensing and
reconstruction stages in multiple scales and sub-bands of
a discrete wavelet transform. A different block dimension

was employed for each scale and with a 3-level transform,
dimensions of B = 64,32,16 were set for the high, medium
and low resolution scales, respectively. A multi-hypothesis
approach was proposed in [14] for images and videos, which
is suitable for either spatial domain BCS (termed MH-BCS-
SPL) or multi-scale BCS (termed MH-MS-BCS-SPL). In
this approach, multiple predictions of a block are computed
from neighboring blocks in an initial reconstruction of the
full image, and the final prediction of the block is obtained
by an optimal linear combination of the multiple predictions.
For video frames, previously reconstructed adjacent frames
provide the sources for multiple predictions of a block. The
multi-scale version of this approach provides the best perfor-
mance among all above mentioned BCS methods. A survey
of BCS theory and performance is provided in [11], which
also describes applications such as BCS of multi-view images
and video, and motion-compensated BCS of video.

3. THE PROPOSED APPROACH
In this paper we propose to employ a deep neural network
that performs BCS by processing each block independently1

as described in section 2.2. Our choice is motivated by the
outstanding success of deep neural networks for the task of
full-image denoising [18] in which a 4-layer neural network
achieved state-of-the-art performance by block-based pro-
cessing. In our approach, the first hidden layer performs the
linear block-based sensing stage (2) and the following hidden
layers perform the non-linear reconstruction stage. The ad-
vantage and novelty of this approach is that during training,
the sensing matrix and the non-linear reconstruction opera-
tor are jointly optimized, leading to better performance than
state-of-the-art at a fraction of the computation time.
The proposed fully-connected network includes the following
layers: (1) an input layer with B2 nodes; (2) a compressed
sensing layer with B2R nodes, R ≪ 1 (its weights form the
sensing matrix); (3) K ≥ 1 reconstruction layers with B2T
nodes, each followed by a ReLU [19] activation unit, where

1In this paper we treat only block-based processing, and a full-image post-
processing stage is not performed.



Table 2: Reconstruction PSNR [dB] vs. block size (B×B)

Training Examples B = 8 B = 12 B = 16 B = 20
5×106 27.21 27.66 28.21 27.73

Table 3: Reconstruction PSNR [dB] vs. network redundancy

Training Examples T = 2 T = 4 T = 8 T = 12
5×106 27.99 28.11 28.21 28.15

T > 1 is the redundancy factor; and (4) an output layer with
B2 nodes. Note that the performance of the network depends
on the block-size B, the number of reconstruction layers K,
and their redundancy T . We have evaluated2 these parameters
by a set of experiments that compared the average reconstruc-
tion PSNR of 10 test images, depicted in Figure 1, and by
training the network with 5,000,000 distinct patches, ran-
domly extracted from 50,000 images in the LabelMe dataset
[21]. The chosen optimization algorithm was AdaGrad [22]
with a MSE criterion, learning rate of 0.005, batch size of
16, 100 epochs, and without sparsity constraints. Our study
revealed that best3 performance were achieved with a block
size B × B = 16 × 16, K = 2 reconstruction layers and re-
dundancy T = 8, leading to a total of 4,780,569 parameters
(for R = 0.1). Table 2 compares reconstruction quality versus
block size, between 8× 8 to 20× 20 (with 2 reconstruction
layers and redundancy of 8), and indicates that block size of
16× 16 provides the best results. Table 3 provides a com-
parison for varying the redundancy between 2 to 12 (with 2
reconstruction layers and block size of 16 × 16), and indi-
cates that a redundancy of 8 provides the best results. Table 4
provides a comparison for varying the number of hidden re-
construction layers between 1 to 8 (with redundancy of 8 and
block size of 16× 16), and indicates that two reconstruction
layers provided the best performance. Further analysis of the
network depth and redundancy is an important topic, which
is left for future research.

Table 4: Reconstruction PSNR [dB] vs. no. of reconstruction layers

Training Examples K = 1 K = 2 K = 4 K = 8
5×106 27.98 28.21 28.18 27.55

4. PERFORMANCE EVALUATION
This section provides performance results of the proposed ap-
proach4 vs. the leading BCS approaches: BCS-SPL-DDWT

2The network was implemented using Torch7 [20] scripting language, and
trained on NVIDIA Titan X GPU card.

3Note that by increasing significantly the training set, slightly different
values of B, K, and T may provide better results, as discussed in [18].

4A MATLAB package for reproducing all results of the proposed ap-
proach is available at: http://www.cs.technion.ac.il/~adleram/BCS_
DNN_2016.zip

Table 5: Computation time at R=0.25 (512×512 images):

Method Time [seconds]
Proposed 0.80
BCS-SPL-DDWT (16×16) [13] 13.57
BCS-SPL-DDWT (32×32) [13] 13.10
MH-BCS-SPL (16×16) [14] 144.61
MH-BCS-SPL (32×32) [14] 69.73
MS-BCS-SPL [15] 6.39
MH-MS-BCS-SPL [14] 207.32
TV (Full Image) [3] 1675.09

[13], MS-BCS-SPL [15], MH-BCS-SPL [14] and MH-MS-
BCS-SPL [14], using the original code provided by their au-
thors. The proposed approach was employed with block size
16× 16, BCS-SPL-DDWT with block sizes of 16× 16 and
32 × 32 (the optimal size for this method), MH-BCS-SPL
with block sizes of 16 × 16 and 32 × 32 (the optimal size
for this method). MS-BCS-SPL and MH-MS-BCS-SPL uti-
lized a 3-level discrete wavelet transform with block sizes
as indicated in section 2.2 (their optimal settings). In addi-
tion, we also compared to the classical full-image Total Vari-
ation (TV) CS approach of [3] that utilizes a sensing matrix
with elements from a discrete cosine transform and Noise-
let vectors. Reconstruction performance was evaluated for
sensing rates in the range of R = 0.1 to R = 0.3, using the
average PSNR and SSIM [23] over the collection of 10 test
images (512×512 pixels), depicted in Figure 1. Reconstruc-
tion results are summarized in Table 1, and reveal a consis-
tent advantage of the proposed approach vs. all BCS meth-
ods as well as the full-image TV approach. Visual quality
comparisons (best viewed in the electronic version of this pa-
per) are provided in Figures 2-5, and demonstrate the high
visual quality of the proposed approach. Computation time
comparison at a sensing rate R = 0.25, with a MATLAB im-
plementation of all tested methods (without GPU), is pro-
vided in Table 5 and demonstrates that the proposed approach
is over 200-times faster than state-of-the-art (MH-MS-BCS-
SPL), and over 1600-times faster than full-image TV CS.

5. CONCLUSIONS

This paper presents a deep neural network approach to BCS,
in which the sensing matrix and the non-linear reconstruc-
tion operator are jointly optimized during the training phase.
The proposed approach outperforms state-of-the-art both in
terms of reconstruction quality and computation time, which
is two orders of magnitude faster than the best available BCS
method. Our approach can be further improved by extending
it to compressively sense blocks in a multi-scale representa-
tion of the sensed image, either by utilizing standard trans-
forms or by deep learning of new transforms using convolu-
tional neural networks.



Fig. 1: Test images (512×512): ’lena’, ’bridge’, ’barbara’, ’peppers’, ’mandril’, ’houses’, ’woman’, ’boats’, ’cameraman’ and ’couple’.

(a) (b) (c) (d) (e)

Fig. 2: Reconstruction of ’couple’ at R = 0.1 (PSNR [dB] |SSIM): (a) Original, (b) Full image TV (27.1691 | 0.8812), (c) MS-BCS-SPL, (d)
MH-MS-BCS-SPL (27.1804 | 0.8877); and (e) Proposed (28.5902 | 0.9414).

(a) (b) (c) (d) (e)

Fig. 3: Reconstruction of ’houses’ at R = 0.2 (PSNR [dB] | SSIM): (a) Original, (b) Full image TV (31.0490 | 0.9304), (c) MS-BCS-SPL, (d)
MH-MS-BCS-SPL (31.7030 | 0.9544); and (e) Proposed (32.9328 | 0.9766).

(a) (b) (c) (d) (e)

Fig. 4: Reconstruction of ’lena’ at R = 0.25 (PSNR [dB] | SSIM): (a) Original, (b) Full image TV (35.4202 | 0.9718), (c) MS-BCS-SPL, (d)
MH-MS-BCS-SPL (35.7346 | 0.9825; and (e) Proposed (36.3734 | 0.9910).

(a) (b) (c) (d) (e)

Fig. 5: Reconstruction of ’boats’ at R = 0.25 (PSNR[dB] | SSIM): (a) Original, (b) Full image TV (31.5676 | 0.9493), (c) MS-BCS-SPL, (d)
MH-MS-BCS-SPL (31.1675 | 0.9641); and (e) Proposed (33.0422 | 0.9873).
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