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Noise Removal ?

Our story starts with image denoising ...

Remove
Additive
Noise
P wdl X4
a (i) Practical application; (ii) A convenient platform

(being the simplest inverse problem) for testing basic ideas in image
processing, and then generalizing to more complex problems.

a Partial differential equations, Statistical
estimators, Adaptive filters, Inverse problems & regularization,
Example-based techniques, Sparse representations, ...
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Sparse and Redundant
Representations?
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Denoising By Energy Minimization

Many of the proposed denoising algorithms are related to the minimization
of an energy function of the form

1
f(x) = x5

y : Given measurements Relation to
x : Unknown to be recovered measurements

A This is in-fact a Bayesian point of view, adopting the
Maximum-Aposteriori Probability (MAP) estimation.

A Clearly, the wisdom in such an approach is within the

. S . Thomas Bayes
choice of the prior of interest. 1702 - 1761
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The Evolution Of Pr(x)

During the past several decades we have made all sort of guesses
about the prior Pr(x) for images:
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e Compression algorithms as priors,
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The Sparseland Model for Images

d Every column in
D (dictionary) is
a prototype signal

~ (Atom).

\
m— . A The vector « is
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Our MAP Energy Function

O We L, norm is effectively 1 p)
counting the number of —H X —Y Hz

non-zeros in . 2

O The vector o is the ¥
representation ( /

Da-y =

d The above is solved (approximated!) using a greedy algorithm
- the Matching Pursuit

A In the past 5-10 years there has been a major progress in the
field of sparse & redundant representations, and its uses.

% | Image Denoising Via Learned Dictionaries
¥ and Sparse representations
By: Michael Elad




What Should D Be?
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Our Assumption: Good-behaved Images
have a sparse representation

Y

D should be chosen such that it sparsifies the representations

\ 4 4

One approach to choose D is The approach we will take for
from a known set of transforms building D is training it,
(Steerable wavelet, Curvelet, based on from

Contourlets, Bandlets, ...)
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Dictionary Learning:
The K-SVD Algorithm
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Measure of Quality for D
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Engan et. al. (‘99)

Field & Olshausen ('96)
Lewicki & Sejnowski (*00)
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Cotter et. al. (‘'03)
Gribonval et. al. (‘04)

Aharon, Elad, & Bruckstein ('04)
Aharon, Elad, & Bruckstein (*05)

10

Image Denoising Via Learned Dictionaries
and Sparse representations

By: Michael Elad



The K-SVD Algorithm — General

Initialize
D

]

D

Sparse Coding

Use Matching Pursuit

|

Dictionary
Update

Column-by-Column by
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¥

Combining
It All
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From Local to Global Treatment

a

a

The K-SVD algorithm is reasonable for low-
dimension signals (N in the range 10-400).
As N grows, the complexity and the memory
requirements of the K-SVD become
prohibitive.

So, how should large images be handled?

\

[
»

k

A

\4

D

Force shift-invariant sparsity - on each patch of size
N-by-N (N=8) in the image, including overlaps [Roth & Black (" 05)].

n 1 2
— AraMin =Ilx -
o X -y
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What Data to Train On?

Option 1:
[ Use a database of images,

d We tried that, and it works fine (~0.5-1dB
below the state-of-the-art).

Option 2:
d Use the corrupted image itself !!

d Simply sweep through all patches of size
N-by-N (overlapping blocks),

O Image of size 10002 pixels == ~10°
examples to use — more than enough.

L This works much better!
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Application 2: Image Denoising

[ The dictionary (and thus the image
prior) is trained on the corrupted
itself!

A This leads to an elegant fusion of
the K-SVD and the denoising tasks.
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Application 2: Image Denoising

% = ArgMin ;Hx—xHé+pZHRijx—Dgin; st. HginSSL
]

Xl{gij }ile
x=y and D known x and a;; known D and a;; known
Compute oy; per patch Compute D to minimize Compute x by
: p) ) B
= o i ) )
0
s.t. HQHO =L using SVD, updating one  which is a simple averaging

using the matching pursuit column at a time of shifted patches

RV

Complexity of this algorithm: O(N2xLxIterations) per pixel. For N=8, L=1,
and 10 iterations, we need 640 operations per pixel.

S
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Image Denoising (Gray) (c:dz anaron (06);
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Image Denoising (Gray) (c:dz anaron (06);

2 W Source

The results of this algorithm compete
favorably with the state-of-the-art: E.qg.,
d We get ~1dB better results
compared to GSM+steerable wavelets
. [Portilla, Strela, Wainwright, & Simoncelli ('03)]. Al
: O Competitive works are [+e-or & Shaked (106)]  wat :.',,,iﬁ@
and [Rusanovskyy, Dabov, & Egiazarian ('06)].
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Denoising (Color)

d When turning to handle color images, the
direct generalization (working with R+G+B
patches) leads to color artifacts.

A The solution was found to be a bias in the
pursuit towards the color content.
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Denoising (COlOI‘) [Mairal, Elad & Sapiro, ('06)]

Our experiments lead to state-of-the-art denoising results,
giving ~1dB better results compared to [1icauiey e o coa))
which implements a learned MRF model (Field-of-Experts)

g e
A i o

Original Noisy (12.77dB) Result (29.87dB)
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DemosaiCINg (i, flad & sapiro, (06)}

 Today’s cameras are sensing only one
color per pixel, leaving the rest to be
interpolated.

A Generalizing the previous scheme to
handle demosaicing is tricky because
of the possibility to learn the mosaic
pattern within the dictionary.

A In order to avoid “over-fitting”, we have handled the
demosaicing problem while forcing strong sparsity
and only few iterations.

[ The same concept can be deployed to inpainting.
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Demosaicing [Mairal, Elad & Sapiro, ('06)]

Our experiments lead to state-of-the-art demosaicing
results, giving ~0.2dB better results on average,
compared to (crang & chan (06))
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Inpainting (i, tiad & sapiro, (06);

Our experiments lead to state-of-the-art inpainting results.

Image Denoising Via Learned Dictionaries 23
and Sparse representations
By: Michael Elad



Video Denoising

When turning to handle video, one could
improve over the previous scheme in two
important ways:

1. Propagate the dictionary from one
frame to another, and thus reduce the
number of iterations; and

2. Use 3D patches that handle the motion
implicitly.

3. Motion estimation and
compensation can and should be
avoided
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Video Denolising roer & £lad (06))

average, compared tO [Boades, Coll & Morel (05)] @nd
comparable to [Rusanovskyy, Dabov, & Eglazarlan (’06)]

oisy 15 | eoid (R9.98)
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¥

To
Conclude
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Today We Have Seen that ...

4

and the use of
are important ideas, and More
can be used in designing specifically?
better tools in
signal/image processing

Guillermo Sapiro and

. : Julien Mairal
More on these (including the Hien el

slides, the papers, and a Matlab toolbox) in
http://www.cs.technion.ac.il/~elad
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We have shown how these
lead to state-of-the art results:

e Extension to color, and
handling of missing values,
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